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ABSTRACT This paper proposes a new strategy to promote the robustness of structure from motion algo-
rithm from uncalibrated video sequences. First, an augmented affine factorization algorithm is formulated to
circumvent the difficulty in image registration with noise and outliers contaminated data. Then, an alternative
weighted factorization scheme is designed to handle the missing data and measurement uncertainties in
the tracking matrix. Finally, a robust strategy for structure and motion recovery is proposed to deal with
outliers and large measurement noise. This paper makes the following main contributions: 1) An augmented
factorization algorithm is proposed to circumvent the difficult image registration problem of previous affine
factorization, and the approach is applicable to both rigid and nonrigid scenarios; 2) by employing the
fact that image reprojection residuals are largely proportional to the error magnitude in the tracking data,
a simple outliers detection approach is proposed; and 3) a robust factorization strategy is developed based on
the distribution of the reprojection residuals. Furthermore, the proposed approach can be easily extended
to nonrigid scenarios. Experiments using synthetic and real image data demonstrate the robustness and
efficiency of the proposed approach over previous algorithms.

INDEX TERMS Structure and motion factorization, robust factorization, alternative factorization, outlier
detection, reprojection residual.

I. INTRODUCTION
Structure from motion (SfM) is the process to find the three-
dimensional structure and cameramotion from a set of uncali-
brated 2D images. Classical method for 3D structure recovery
is stereo vision [17], which is sensitive to image noise, since
stereo vision only explores limited information from two or
three images. Given a sequence of images, structure from
motion is a powerful method to build a consistent 3D map
with the knowledge of multiple-view geometry. Over the past
two decades, tremendous progress in structure from motion
has beenmade [10], [20], [22], [23], [26], [36], [38], [55], The
results of this research have a wide range of potential appli-
cations, including robot navigation and obstacle avoidance,
autonomous driving, video surveillance, and environment
modeling.

Structure and motion factorization algorithm, pioneered
by Tomasi and Kanade [39], is an effective approach for
SfM. Given a set of tracked features across the sequence,
the method decomposes image measurement directly into the
3D structure and the camera motion components through a

bilinear formulation using singular value decomposi-
tion (SVD). By uniformly utilizing the data from all mea-
surement, the algorithm achieves a more reliable result than
stereo vision-based methods [29], [34], [41], [54].

A linear affine camera has been adopted by most research
in SfM due to its simplicity [16]. It was extended to a more
accurate nonlinear perspective camera model in [9] by incre-
mentally factorizing a scaledmeasurement matrix. A full pro-
jective factorization algorithm was proposed by Triggs [41]
iteratively using epipolar geometry between two adjacent
image pairs. Inspired by this idea, different iterative strategies
to recover the projective depths were designed by minimizing
back-projection errors [44]. A complete analysis of these
iterative methods was presented by Oliensis and Hartley [28].
Full perspective model based approach, though accurate, is
computational intensive; as a trade-off of the efficiency and
accuracy, a quasi-perspective model was proposed in [45].

By assuming deformation constraints that the nonrigid
3D shape can be represented by a span of rigid bases,
the factorization algorithm was extended to handle nonrigid
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deformation [7], where the shape bases, combination coef-
ficients, and motion parameters are solved simultaneously
from the SVD decomposition. This idea received a lot
of attention and has been extensively studied in [3],
[11], [31], and [40]. A manifold-learning framework was
proposed in [33] to relax the deformation assumption.
Agudo et al. [2] proposed a sequential nonrigid factorization
approach. Yan and Pollefeys [50] developed a similar frame-
work to recover the structure of articulated objects. In a dual
trajectory space, Akhter et al. [5] suggested a duality solution
to this problem based on basis trajectories.

Most factorization algorithms are based on the SVD
decomposition of the tracking matrix composed by all
tracking features tracked. In case of incomplete tracking
data, however, the SVD-based approach is not applicable.
Different alternative factorization approaches have been
proposed to handle incomplete data, such as power fac-
torization [15], alternative factorization [21], and factor
analysis [14]. In practical application, the tracked fea-
tures are usually corrupted by outliers or larger errors,
in this case, most algorithms will degrade or even fail.
The most popular strategies to handle outliers are ran-
dom sample consensus (RANSAC) [13] and its variations,
least median of squares (LMedS) [17], and other similar
framework based on hypothesis-and-test [35]. Most of these
methods are computational intensive. Recently, some robust
structure and motion factorization algorithms have been
proposed [1], [6], [31], [42], [52].

A scalar-weighted factorization scheme was proposed by
Aguiar and Moura [4] through minimizing weighted square
errors. The robustness to measurement uncertainties was
enhanced in [14] using a factor analysis in an expectation
maximization (EM) framework. Zelnik-Manor et al. [53]
proposed temporal consistency for uncertain multi-body fac-
torization. A Gaussian mixture model was introduced by
Zaharescu and Horaud [52]. The same model was also
adopted in [24] to approximate the noise distribution which
was then estimated by a maximum likelihood algorithm.
Ke and kanade [21] proposed to use L1 norm to increase
robustness. The L1 norm and a damping factor were also
introduced to the Wiberg algorithm in [12] and [27] to
handle outliers. The outliers in the measurement were cor-
rected using ’pseudo’ observations in [18]. Bazin et al. [6]
developed an optimal approach based on branch-and-bound.
Other robust techniques were proposed based on quadratic
formulation [51], kernel-scale [49], alternating bilinear algo-
rithm [30], and spatial-and-temporal-weighted strategy [46].

In this paper, by exploring the reprojection residuals, we
propose to handle the outlying data through a new viewpoint
via the distribution of image reprojection residuals. The pro-
posed approach is based on a new augmented factorization
formulation, which circumvents the errors caused by image
registration of contaminated tracking data. We also develop
an alternative factorization algorithm to handle incomplete
data and a weighted factorization scheme to incorporate
measurement uncertainties. At last, we develop a robust

factorization strategy for both rigid [48] and nonrigid [47]
structure and motion recovery.

The remainder of this paper is organized as follows. Some
background on affine factorization is offered in Section II.
The augmented factorization algorithm is elaborated in
Section III. Section IV presents the alternative factoriza-
tion algorithm for incomplete data. An outlier detection
scheme and the robust factorization algorithm are discussed
in Section V. Section VI discusses the extension to nonrigid
factorization. Extensive experimental results and compar-
isons are presented and analyzed in Sections VII and VIII,
respectively. Finally, the paper is concluded in Section IX.

II. BACKGROUND ON AFFINE STRUCTURE FROM MOTION
To facilitate our discussion, some background on affine struc-
ture and motion factorization is presented in this section.
Under affine projection model, the mapping process from
3D space to 2D image can be approximated by the following
equation.

xij = AiXj + ci (1)

where xij = [uij, vij]T is the image in frame i of a 3D space
point Xj = [xj, yj, zj]T ; Ai is the projection matrix of the
size 2 × 3; and ci is a translation term between the space
and the image frames. Suppose there are n space points, the
projection of these points in the i-th image frame can be
formulated as

[xi1, xi2, · · · , xin] = Ai[X1,X2, · · · ,Xn]+ Ci (2)

where all the translation vectors are grouped in the matrix
Ci = [ci, ci, · · · , ci], and i = 1, · · · ,m is the frame number.
Stacking the imaging equations of all m frames together, we
can obtain the projection of an image sequence as follows.x11 · · · x1n
...

. . .
...

xm1 · · · xmn


︸ ︷︷ ︸

W2m×n

=

A1
...

Am


︸ ︷︷ ︸
M2m×3

[
X1, · · · , Xn

]︸ ︷︷ ︸
S3×n

+

C1
...

Cm


︸ ︷︷ ︸
C2m×n

(3)

where m is the frame number and n is the number of features.
From the affine projection (1), we can see that the origin of
the world system X = [0, 0, 0]T is projected to xi = ci,
which is the translation term of that frame. Assuming the
world origin is aligned with the centroid of all space points,
if we register the origin of the image system to the centroid
of all imaged points, we have ci = [0, 0]T , which means
the translation term vanishes and C = 0. As a result, the
projection process (3) can be simplified to the following
concise form after image centroid registration.

W2m×n =M2m×3S3×n (4)

where the 2m × n matrix W is composed of all tracked
features, we call it tracking matrix hereafter. As an inverse
problem of the image formulation, the problem of structure
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from motion is to recover the shape matrix S and the motion
matrixM from the tracking dataW obtained across the image
sequence.

From the right side of (3), we can see that the tracking
matrix is at most 3, which is highly rank-deficient. For real
tracking data, due to image noise and tracking errors, the
rank of W is far more greater than 3. Therefore, we need
to find a low rank approximation of W by techniques like
SVD decomposition. From the rank-3 approximation of the
tracking matrix, the shape matrix S and the motion matrixM
can be easily decomposed. Obviously, such kind of decom-
position is not unique as one can always insert a nonsingular
transformation matrix H ∈ R3×3 as

W = (MH)(H−1S) (5)

Since we are interested in the metric structure and motion
parameters, to this end, we need to find a metric transforma-
tion matrixH to upgrade the structure to the Euclidean space.
Certain metric constraints are employed for this purpose H
[32], [45], once an Euclidean upgradingmatrixH is available,
the metric structure can be recovered from H−1S, and the
corresponding camera motions can be obtained fromMH.

III. AUGMENTED STRUCTURE AND
MOTION FACTORIZATION
Previous studies on affine factorization of rigid objects are
based on the formulation of (4) due to its simplicity. One nec-
essary condition of the rank-3 affine factorization is that all
imaged points should be centroid registered. However, when
some tracked features are missing, or contaminated with
outliers and significant noise, the centroid of image points
could not be computed reliably, the error in the registration, as
shown in the experiments, will result in significant deviation
to the final result. This issue was overlooked by previous
studies. We propose an augmented factorization algorithm to
circumvent this registration problem.

A. AUGMENTED AFFINE FACTORIZATION
By adopting homogeneous representation, we can rewrite the
affine projection equation (1) as below.

xij = [Ai|ci] X̃j (6)

where the space point Xj is denoted using homogeneous
coordinates as X̃j = [XT

j , tj]
T . Then, the imaging process of

the entire sequence can be written asx11 · · · x1n
...

. . .
...

xm1 · · · xmn


︸ ︷︷ ︸

W2m×n

=

A1 | c1
... |

...

Am | cm


︸ ︷︷ ︸

M2m×4

×
[
X̃1, · · · , X̃n

]︸ ︷︷ ︸
S4×n

(7)

which can be written in a concise form as

W2m×n =M2m×4S4×n (8)

Compared to the rank-3 factorization, the motion matrix
in (7) is augmented by an extra column, while the shape
matrix is augmented by an extra row. As a result, the rank
of the tracking matrix becomes four, instead for three for the
data after registration. We call the formulation (7) augmented
factorization.

It is obvious that the expression (7) is derived directly from
the affine projection model (1), which does not require image
registration with respect to the centroid. Therefore, it is appli-
cable to corrupted data with significant noise, missing entries,
and outlying points. Both factorization algorithms (4) and (8)
can be equivalently written as the following minimization
problem.

f (M,S) = argmin
M,S

‖W−MS‖2F (9)

The major difference between (4) and (8) lies in the rank
constraints. As a result, the corresponding residual errors are

E3 =
N∑
i=4

σ 2
i , E4 =

N∑
i=5

σ 2
i , (10)

respectively, where σi are the singular values of W in
descending order, and N = min(2m, n) denotes the num-
ber of singular values. It is obvious that the error between
the two algorithm is σ 2

4 when the tracking data is properly
normalized. If all imaged points are noise free and registered
accurately to the corresponding centroid, the last column of
M in (7) will vanish because ci = 0, and the augmented
expression (8) is equivalent to the rank-3 factorization (4) .
Thus, (4) is a special case of the augmented factorization after
registration to the centroid. Nonetheless, in case of noise and
outlier corrupted data or there are missing feature, we cannot
accurately recover the image centroid, the rank-3 algorithm
will produce a large error since σ4 is not close to zero.

Suppose the rank-4 decomposition of (7) yields a set of
solutions M̂m×4Ŝ4×n. Similar to rank-3 factorization, the
decomposition is defined up to a nonsingular transformation
asMS = (M̂H)(H−1Ŝ). In the following, wewill discuss how
to recovery of the Euclidean upgrading matrix.

B. EUCLIDEAN UPGRADING MATRIX
The upgrading matrixH is a 4× 4 nonsingular matrix which
can be denoted as the following form.

H = [H1:3|h4] (11)

where H1:3 and h4 stand for the first three and the last
columns of H. Let us denote the i-th two-row of M̂ as M̂i,
which corresponds to the motion of the i-th camera, after
upgrading, the metric motion matrix becomes

Mi = M̂iH =
[
M̂iH1:3|M̂ih4

]
= [Ai|ci] (12)

By assuming a simplified camera model with only one
parameter, i.e., the focal length fi, the left 2 × 3 submatrix
of Mi in (12) can be written as

Ai = M̂iH1:3 = fi

[
rTi1
rTi2

]
(13)
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from the camera imaging process [15], where rTi1 and rTi2
are the first two rows of the camera’s rotation matrix. Let
Q = H1:3HT

1:3, then, Q is constrained from (13) as

M̂iQM̂T
i =

(
M̂iH1:3

)(
M̂iH1:3

)T
= f 2i

[
1 0
0 1

]
(14)

The above equation provides two independent constraints
to Q, which is a 4 × 4 positive semidefinite symmetric
matrix. The matrix Q is homogeneous and has nine degree-
of-freedom, thus, a least squares solution can be obtained
from five or more images. Then, according to our previous
study [45], the submatrix H1:3 can be recovered from the
matrix Q via extended Cholesky decomposition.
After recovering H1:3, the last column of the upgrading

matrix is then determined straightforwardly. From the expres-
sion (12), the projection equation (6) can be written as

xij = M̂iH1:3Xj + M̂ih4 (15)

It can be easily proved from (15) that the last column
h4 corresponds to the translation term between the world
system and the image frame for noise free case with general
motion. For any given world system, the values of h4 make no
influence to the metric structure of the reconstructed object.
Therefore, we can choose any 4-vector for h4, as long as it
is independent of the columns of H1:3, since the upgrading
matrix should be nonsingular. In practice, we construct h4 as
below.

From the SVD decomposition of H1:3

H1:3 = U4×464×3VT
3×3

= [u1,u2,u3,u4]


σ1 0 0
0 σ2 0
0 0 σ3
0 0 0

 [v1, v2, v3]T (16)

where U and V are two orthonormal matrices, and 6 is a
diagonal matrix of the singular values of H1:3. Then, h4 can
be simply set as

h4 = κ4u4 (17)

where u4 is the last column of U, with κ4 an arbitrary scalar
between the largest and the smallest singular values σ1 and σ3.
The construction guarantees a good numerical stability in
computing the inverse of H, since the constructed matrix H
has the same condition number as H1:3.

C. ALGORITHM OF THE AUGMENTED
AFFINE FACTORIZATION
The above proposed augmented rank-4 affine factorization
algorithm is summarized in Algorithm 1.

IV. ALTERNATIVE FACTORIZATION SCHEME
SVD decomposition is a convenient technique for structure
and motion factorization, however, SVD only works when
the tracking matrix is complete. In practice, missing data are
inevitable since some features may get lost during the process

Algorithm 1 Augmented Affine Factorization
Input: Tracking data W

1. Perform SVD decomposition of the tracking matrix;
2. Recover a set of rank-4 solutions of M̂ and Ŝ;
3. Estimate the metric transformation matrix H;
4. Upgrade the result to metric space as H−1Ŝ and M̂H.

Output: Euclidean structure and camera motion

of tracking due to occlusion or other factors. To this end,
a two-step alternative factorization scheme is developed to
handle incomplete data and image uncertainties.

A. ALTERNATIVE FACTORIZATION ALGORITHM
The essence of the structure from motion algorithm (7) is
equivalent to finding a set of rank-4 solutions M and S by
minimizing the following Frobenious norm.

argmin
M,S

‖W−MS‖2F

s.t.M ∈ R2m×4,S ∈ R4×n (18)

To solve the problem (18), S and M can be factorized
simultaneously using SVD decomposition. Alternatively, we
can fix either the shape matrix or the motion matrix, and
iteratively solve the other one as below.

f (S) = argmin
S
‖W−MS‖2F (19)

f (M) = argmin
M
‖W−MS‖2F (20)

The above algorithm is called Power Factorization [15] or
alternative factorization. It can be verified that each of the
above two cost functions is convex by itself, and it converges
very fast even with random initial values. The idea has been
adopted by several researches [15], [45].

During iteration, each step can be solved via least squares.
Let us take the cost functions (19) as an example and rewrite
it with respect to each feature.

f (sj) = argmin
sj
‖wj −Msj‖2F (21)

where wj denotes the j-th column of W, and sj stands for the
j-th column of S. Thus, each column of S can be solved in
closed form via least squares.

sj =M†wj = (MTM)−1MTwj, j = 1, · · · , n (22)

where M† denotes the Moore-Penrose pseudoinverse. The
least squares solution can naturally handle themissed features
in tracking. For example, if some entries in wj is missing, we
can simply set those entries in wj to zeros, then, sj can still be
solved from (22) in the least squares sense.

Similarly, the second cost function (20) can be rewritten
with respect to each frame as

f (mT
i ) = argmin

mT
i

‖wT
i −mT

i S‖
2
F (23)
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Algorithm 2 Alternative Factorization Algorithm
Input: Tracking data W
while not convergence do

1. update the shape matrix via (22)
2. update the motion matrix via (24)

end
Output: The shape matrix and the motion matrix

which yields the following least-square solution of themotion
matrixM.

mT
i = wT

i S
†
= wT

i S
T (SST )−1, i = 1, · · · ,m (24)

where mT
i and wT

i respectively stand for the i-th row of M
and W, and S† denotes the pseudoinverse. Like in (22), we
can set the missed entries in wT

i to zeros.
The above alternative algorithm is summarized in Algo-

rithm 2 with random initialization.

B. WEIGHTED FACTORIZATION
Feature tracking is a hard problem and tracking errors are
inevitable in practice. If prior knowledge about distribution
of the errors is available, all elements of the approximation
error can be weighted by taking account of the error distri-
bution. The basic idea is to give each image measurement
a weight according to its uncertainty. Reliable features are
assigned higher weights while unreliable features receive
lower weights. The weighted factorization is formulated as
follows.

argmin
M,S

‖6 ⊗ (W−MS)‖2F

s.t.M ∈ R2m×4,S ∈ R4×n (25)

where ′⊗′ stands for the Hadamard product, which is
element-wise array product; 6 = {σij} denotes the uncer-
tainty matrix composed by the weights of all features derived
from the measurement confidence.

The general weighted factorization could not be solved
analytically using the singular value decomposition.
In our study, we adopt an alternative scheme, similar
to [4], [19], [52], to solve S andM alternatively as follows.

f (S) = argmin
sj
‖6j ⊗ (wj −Msj)‖2F (26)

f (M) = argmin
mT
i

‖6T
i ⊗ (wT

i −mT
i S)‖

2
F (27)

where6j denotes the j-th column of6 and6T
i represents the

i-th row. Then, a close-form solution of can be obtained in the
sense of least squares.

sj =
(
diag(6j)M

)† (diag(6j)wj
)
, j = 1, · · · , n (28)

mT
i =

(
wT
i diag(6

T
i )
) (

Sdiag(6T
i )
)†
, i = 1, · · · ,m

(29)

where (•)† denotes the pseudoinverse of a matrix, and
′diag(•)′ denotes the diagonal matrix formed from a vector.

Equations (28) and (29) yield the least-square solutions of
S and M. Same as the alternative factorization, when there
are some missing elements in the tracking matrix, one can
simply set those entries in wj to zeros.
The alternative weighted factorization algorithm is sum-

marized in Algorithm 3, where the motion matrix M can be
initialized randomly or using previous estimation, while the
initial value of the weight matrix 6, as will be discussed in
next section, is estimated from the reprojection residuals.

Algorithm 3 Alternative Weighted Factorization
Input: Matrices W, M, and 6
while not convergence do

1. update the shape matrix via (28)
2. update the motion matrix via (29)

end
Output: The shape and motion matrices

V. ROBUST FACTORIZATION STRATEGY
Based on the augmented factorization scheme proposed in the
foregoing sections. An efficient strategy for outlier detection
is proposed below.

A. OUTLIER REJECTION
Outliers are inevitable in practice. The most popular strategy
in the computer vision field is based on the hypothesis-and-
test scheme [8], [35], which are computationally intensive.
We will investigate the problem from a new viewpoint via
the distribution of image reprojection residuals.

Both the SVD-based and the alternative factorization-
based algorithms yield a set of least-square solutions, which
are achieved by minimizing the sum of the squared errors
between the fitted values and the observation. Extensive
experiments show that the least-square algorithms usually
yield reasonable solutions, however, the residuals yield from
outliers are outstandingly larger than the errors from inliers.

Suppose M̂ and Ŝ are the solutions of the rank-4 fac-
torization of a tracking data W, by reprojecting the set of
solutions back to the sequence, we can obtain the reprojection
residuals, which can be organized as a matrix.

E =W− M̂Ŝ =

e11 · · · e1n
...

. . .
...

em1 · · · emn


2m×n

(30)

where

eij = xij − M̂iŝj =
[
1uij
1vij

]
(31)

is the residual of the point (i, j). The reprojection error can
be defined by the Euclidean distance ‖eij‖ of the image point
and its reprojection, thus, the reprojection error of the entire
can be defined by the following error matrix

Err =

‖e11‖ · · · ‖e1n‖
...

. . .
...

‖em1‖ · · · ‖emn‖


m×n

(32)
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FIGURE 1. (a) The absolute values of the added noise and outliers in the
tracking matrix, where the gray level of each pixel corresponds the
normalized error magnitude at that point; (b) the distribution of the
normalized reprojection errors (32); (c) the distribution of the added
outlying data; (d) the outliers segmented from reprojection error by a
single threshold; (e) the distribution of false positive error given by the
thresholding; and (f) the false negative error given by the thresholding.

Fig. 1 shows the distribution of the matrix (32), where
40 images are generated from 100 random 3D space points
via affine projection. The image resolution is 800 × 800,
and the images are corrupted by Gaussian noise and 10%
outliers. The added noise level is 3 pixels, and the outliers are
simulated by random noise whose level (standard deviation of
the noise) is set at 15 pixels. The real added noise and outliers
are illustrated by an image as shown in Fig. 1(a), where the
grayscale of each pixel corresponds to the inverse magnitude
of the error on that point, the darker the pixel, the larger the
error magnitude on that point. The distribution of the real
added outliers is depicted as a binary image in Fig. 1(c),
which correspond to the darker points in Fig. 1(a).

Using the corrupted data, a set of motion and shape matri-
ces were estimated by employing the rank-4 factorization
algorithm and the error matrix was then computed. The
distribution of the reprojection error (32) is illustrated in
Fig. 1(b) with each pixel corresponds to the reprojection error
of that point. It is evident that the reprojection error and the
real added noise have similar distribution. The points with
large reprojection errors correspond to those with large noise
levels. Fig. 1(d) shows the binary image of Fig. 1(b) by simply
applying a global threshold to the reprojected residuals.

It is obvious from the above example that almost all out-
liers are successfully segmented by a single threshold. The
distribution of false positive error (the inlier points being
classified as outliers by the given global threshold) and the
false negative error (the outliers not being detected by the
thresholding) are given in Fig. 1(e) and (f), respectively.
The false positive error is mainly caused by those inliers

with large noise (which should be treated as outliers), while
the false negative error is caused by the outliers with small
deviations (which can actually be treated as inliers), these two
types errors are related to the threshold, however, theywill not
make a big influence to the final solutions.

FIGURE 2. The outline of the robust structure from motion strategy.

Inspired by this observation, an intuitive outlier detection
and robust factorization scheme is proposed. The flowchart
of the strategy is shown in Fig. 2, and the computation details
is given in Algorithm 4.

Algorithm 4 Robust Structure and Motion Factorization
Input: Tracking matrix W

1 Normalize the tracking matrix point-wisely and
image-wisely, as in [37], to improve the numerical
stability;

2 Perform augmented affine factorization on the tracking
matrix to obtain a set of solutions of M̂ and Ŝ;

3 Estimate the reprojection residuals and determine a global
threshold to remove the outliers;

4 Eliminate the outliers and recalculate the matrices
M̂ and Ŝ using the remaining inliers via Algorithm 2;

5 Estimate the uncertainty of each inlying feature from the
distribution of the reprojection residuals;

6 Refine the solutions by weighted factorization
Algorithm 3;

7 Recover the metric upgrading matrix H and upgrade the
solutions to the metric space;

8 Perform a global optimization via bundle adjustment.
Output: 3D metric structure and camera motion parameters

recovered from S and M, respectively

In Algorithm 4, steps 3 and 4 can be repeated for one
more time to ensure a more refined inlying data and solutions.
In practice, however, the repetition does not make much
difference to the final results. During computation, the Algo-
rithms 2 and 3 are employed to handle the missing data and
measurement uncertainties. Concerning the initialization of
the alternative algorithm, since an initial set of solutions have
been obtained in the previous steps, these solutions can be
used as initial values in the iteration so as to speed up the
convergence of the algorithm.

B. PARAMETER ESTIMATION
Suppose the image noise is modeled by Gaussian distribu-
tion, it can be verified that the reprojection residuals (30)
also follow the same distribution as the image noise, while
the reprojection errors (32) follow χ2 distribution with
codimension 2. It is nature to assume that the noise at
both coordinate directions in the image is independent and
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FIGURE 3. (a) The histogram of the noise added to the sequence (upper),
and the noise plus outliers (lower); and (b) the distribution of the
residuals.

identically distributed (i.i.d.). Let V(E) denotes the vector
derived from the matrix E, then, V(E) should also be Gaus-
sian. For example, we add Gaussian noise and outliers to a
tracking matrix, as shown in Fig. 3(a), then, we compute a set
of solutions using the proposed augmented factorization and
calculate the reprojection residuals, whose distribution is also
Gaussian, as shown in Fig. 3(b).

Suppose the mean and standard deviation (STD) of V(E)
are µ and σ respectively, by registering the residual vec-
tor V(E) with respect to its mean µ, we can determine the
outlier threshold as below.

θ = κ σ (33)

where κ is a parameter, which is set at 4.0 in our experiment
(the result is not sensitive to this value). The points whose
reprojection errors are greater than θ after registration are
classified as outliers, i.e.,

outliers =
{
xi,j
∣∣ ((1uij − µ)2 + (1vij − µ)2

) 1
2 > θ

}
(34)

Since the residual vector V(E) contains outliers, which
have significant influence to the estimation of the mean and
STD since the outliers will make an extreme deviation of the
result. In this study, we estimate the standard deviation using
the median absolute deviation (MAD) as

σ = 1.4826 median(|V(E)−median(V(E))|) (35)

which is proved to be robust to outliers. The mean is calcu-
lated from the features that are smaller than the median of the
residuals.

µ = mean{V ′(E)|V ′(E) < median(|V(E)|)} (36)

The above computation usually yields a more reasonable
estimation of the STD and the mean.

FIGURE 4. The distribution of the added noise and the calculated
reprojection residuals of 50 feature along the u-axis in one image.

In previous study, the weights in weighted factorization are
usually obtained from the uncertainty of the features, either
isotropically [4], [39] or directionally [19], [25]. However,
the uncertainty is usually hard to estimate or unavailable
in practice. Through extensive experiments, we proved that
the uncertainty is in general proportional to the reprojection
residuals [46]. For example, from the structure and motion
matrices computed at step 5, the residuals of inlying data
can be estimated. As depicted in Fig. 4, the distribution
of the residuals is largely close to that of the added noise.
Therefore, we are suggested to estimate the weights from the
reprojection residuals after outlier removal. The features with
higher residual values have larger uncertainties, and thus,
lower weights are assigned. We treat each coordinate direc-
tion independently and estimate the weight via the following
equation.

ωij =
1
N

exp

(
−

e2ij
2σ 2

)
(37)

where the weights are assigned in a shape of Gaussian, eij
denotes the (i, j)-th entry of the residual (30), the σ is esti-
mated from theMAD (35), andN is a scalar used for normal-
ization. For the missed points and outliers, the corresponding
weights are set as ωij = 0.

VI. EXTENSION TO NONRIGID FACTORIZATION
In the preceding discussion, we assume the scene is glob-
ally rigid or static. In case of nonrigid scenarios, we follow
Bregler’s assumption which models the nonrigid structure
using a linear model composed of a set of shape bases Bl [7],
i.e.,

Si =
∑k

l=1
ωilBl (38)

where ωil is the combination weight; and k is the number of
bases. Based on the assumption (38), the projection of image i
can be modeled as

Wi = [xi1, · · · , xin] = AiSi + [ci, · · · , ci]

= [ωi1Ai, · · · , ωikAi]

B1
...

Bk

+ [ci, · · · , ci]
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Similar to rigid factorization, if we register all image points
to the associated centroid in each frame and adopt relative
image coordinates, the translation ci = 0. Consequently, the
nonrigid structure and motion factorization can be modeled
asx11 · · · x1n
...

. . .
...

xm1 · · · xmn


︸ ︷︷ ︸

W2m×n

=

ω11A1 · · · ω1kA1
...

. . .
...

ωm1Am · · · ωmkAm


︸ ︷︷ ︸

M2m×3k

B1
...

Bk


︸ ︷︷ ︸
B3k×n

(39)

It is obvious from the right side of (39) that the rank
of the tracking matrix is 3k , which is the basic assumption
of previous work on nonrigid factorization. Please note that
the expression (39) is obtained based on the assumption of
image registration with respect to the centroid of feature
measurement. However, it is impossible to recover the cen-
troid when there are outliers and/or missing features in the
measurement. Similar to the rigid case, we can employ an
augmented formulation like (7) to circumvent the registration
issue. By adopting homogeneous expression as (6), the above
nonrigid factorization can be expressed in the following aug-
mented form.x11 · · · x1n
...

. . .
...

xm1 · · · xmn


︸ ︷︷ ︸

W2m×n

=

ω11A1 · · · ω1kA1 c1
...

. . .
...

...

ωm1Am · · · ωmkAm cm


︸ ︷︷ ︸

M2m×(3k+1)


B1
...

Bk
tTi


︸ ︷︷ ︸
B(3k+1)×n

(40)

where the motion matrix is augmented by one additional
column, while the shape matrix is augmented by one
row, which can be taken as a homogeneous term. The
above equation can be written in short as W2m×n =

M2m×(3k+1)B(3k+1)×n. Different to the expression of (39),
the rank of the tracking matrix is 3k + 1, instead of 3k ,
in this case. Given the tracking data, the structure bases
and motion matrix can be easily obtained via SVD decom-
position or the alternative factorization with the rank con-
straint. Since the expression (40) does not depend on data
registration, it can naturally handle outliers and missed
features.

Based on the new formulation, the preceding pro-
posed augmented factorization, alternative factorization, and
weighted factorization algorithms can be directly extended to
the nonrigid scenario. The only difference here with respect
to the rigid case lies in the rank constraint applied to the
tracking matrix. Thus, a set of motion and structure matrices
can be easily decomposed as shown in (40). Obviously, the
decomposition is not unique and we need to find a metric

upgrading matrixH ∈ R(3k+1)×(3k+1) to upgrade the solution
to the metric space. Then, the nonrigid structure and camera
motion parameters can be factorized from M and S, respec-
tively. A detailed discussion about this approach can be found
in our early study [47].

VII. EVALUATIONS ON SYNTHETIC IMAGES
The proposed algorithm was validated and evaluated exten-
sively using simulated image data. During the simulation,
we generated 100 random space points within a cube of
40×40×40. Then, these 3D points are projected to a sequence
of 50 frames using affine camera models. The image and
camera parameters are set as follows: The image size is set
as 800× 800 pixel; the camera is set at 600 to the object with
the center varying randomly within±40 in each direction; the
focal lengths are chosen randomly between 500 to 550; and
the rotations are set randomly within ±60◦.

A. INFLUENCE OF REGISTRATION
We compared the proposed augmented factorization scheme
with its rank-3 counterpart with respect to various image
centroid displacements. During the test, different levels of
Gaussian noise was added to every simulated image features.
To simulate the scenario that the centroid cannot be reliably
estimated due to outliers and missing features, we deviate the
centroid of image features with certain amount of displace-
ment, and register all image points with respect to the deviated
centroid.

Using the corrupted data, we recover the motion and shape
matrices using the SVD factorization with the rank-4 and the
rank-3 constraints, respectively; then, reproject the solution
back onto the images and calculate the reprojection residuals.
In order to evaluate the performance of different algorithms,
we calculate the difference between the ground truth and the
corresponding back-projected features, we call the average
of all these errors as the mean reprojection variance, which is
defined as follows.

Erv =
1
mn
‖W0 − M̂Ŝ‖2F (41)

whereW0 is the tracking matrix without noise; and Ŝ and M̂
are the estimated structure and motion matrices, respectively.
In order to obtain a statisticallymeaningful result, we perform
100 independent tests at each noise level. Fig. 5 shows the
mean reprojection variance with respect to different centroid
displacements and noise levels, which are defined as the STD
of the Gaussian noise.

As shown in Fig. 5, it is evident that themisaligned centroid
has no influence to the proposed augmented factorization,
however, the error of centroid has a significant impact to
the performance of the rank-3 based approach. As demon-
strated in the experiment, the error caused by the centroid
greatly outperforms that by the image noise. Therefore, the
augmented affine factorization is a wise choice in practice,
especially in the presence of outliers, missing points, and/or
large measurement errors.
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FIGURE 5. The mean reprojection variance with respect to different
centroid displacements at the noise level of (a) 1 pixel and (b) 4 pixels.

B. PERFORMANCE EVALUATION
In this test, we evaluated and compared the performance of
the proposed approach with respect to other robust factor-
ization algorithms in terms of accuracy and computational
complexity.

We add Gaussian noise to the above generated image
sequence and vary the noise level from 1 to 5 pixels in steps
of 1 pixel. In the mean time, 5% and 20% outliers were added
to the tracking matrix, respectively. Using the corrupted data,
we recover the motion and shape matrices using the propose
technique. As a comparison, three competing approaches
were implemented as well. The first one is based on an
outlier correction scheme [18], the second one is based on
L1 minimization [21], and the last one is based on mixture of
Gaussian model [24].

FIGURE 6. The mean reprojection variance at different noise levels with
(a) 5% outliers and (b) 20% outliers.

Fig. 6 shows the mean reprojection variance at different
noise levels and outliers ratios, where ‘Direct’ stands for
the regular augmented factorization without outlier removal,
‘Huynh’ stands for [18], ‘Ke’ denotes [21], and ‘Meng’
stands for [24]. Here the reprojection variance was esti-
mated only from the original inlying data by eliminating the
added outliers so as to provide a fair comparison of different
approaches, and the results were evaluated by 100 indepen-
dent tests. It is obvious all three robust algorithms are resilient
to outliers, as can be seen in Fig. 6, the ratio of outliers has
little influence to the reprojection variance of the three robust
algorithms. However, the proposed scheme outperforms other
approaches in terms of accuracy, while the direct factorization
yields significant error due to the influence of outliers.

We also compared the complexity of different approaches
in terms of real computation time. All algorithms were

implemented using Matlab on a Lenovo T500 laptop with
2,26GHz CPU. To generate different sizes of the tracking
data, we vary the frame number 50 to 300 in steps of 50, and
add 10% outliers to the tracking data. Table 1 tabulates the
real computation time of different approaches. We can see
from the table that the complexity of the proposed algorithm
is much less than [21] and [24]. This is because [21] and [24]
are based on the minimization of L1 norm, which is com-
putationally more intensive than others. The proposed algo-
rithm is slower than [18] since [18] does not incorporates the
weighted factorization scheme, which leads to a much higher
reprojection error as demonstrated in Fig. 6.

TABLE 1. Real computation time of different algorithms (unit: second).

C. EVALUATIONS ON NONRIGID FACTORIZATION
We evaluated the performance of the augmented nonrigid
factorization algorithm. In this experiment, we simulated a
deformable space cube with 21 evenly distributed rigid points
on each side. At the same time, we generated three sets of
dynamic points (33 × 3 points) on the adjacent surfaces of
the cube that were moving outward, as shown in Fig. 7. Using
the synthetic cube, we simulate 100 continues images by the
affine projection with random camera parameters with each
image corresponds to a different 3D structure, and the image
size is set at 800× 800.

FIGURE 7. (a) (e) Two simulated space cubes with three sets of moving
points; (b) (c) (d) three synthetic images with noise and outliers (black
stars); and (f) (g) (h) the reconstructed 3D structures corresponding to the
three images.

For the above simulated image sequence, we add 3 pix-
els Gaussian noise, as well as 10% outliers, to the tracking
matrix. Fig. 7(b)–(d) show three noise and outlier corrupted
images. Using the proposed robust algorithm, all outliers
were successfully removed from the contaminated data, and
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the motion and shape matrices were recovered. The corre-
sponding 3D dynamic structures reconstructed by the pro-
posed approach are shown in Fig. 7(f)–(h), respectively. From
the results we can find that the dynamic cubic structures are
correctly recovered by the proposed robust strategy.

VIII. EVALUATIONS ON REAL SEQUENCES
The method was evaluated extensively on a number of real
image datasets. We will report the experimental results and
evaluations on four real sequences in the paper.

FIGURE 8. Reconstruction results of the fountain base sequence.
(First row) four frames from the sequence, where the first one is a texture
image, the other three images are overlaid with the the tracked features
and outliers with disparities to the first image; (mid row) the
reconstructed VRML model of the scene shown from different viewpoints
with texture mapping; and (last row) the corresponding triangulated
wireframe of the VRML model.

The first experiment is on the sequence of a fountain base
captured at downtown San Francisco. The sequence consists
of 10 images and on average 5648 features were tracked
across the sequence using the feature tracking system [43].
It should be noted that feature tracking for this type of scene
is hard since the texture of the images is homogeneous and
repetitive. The tracking results contain many mismatches,
in addition, we add an additional 5% false matching points
in order to test the robustness of the proposed strategy.
Fig. 8 shows all these features overlapped with disparities
to the reference frame. Using the proposed algorithm, we
successfully detect and remove the outliers. Then, we employ
the weighted alternative algorithm to recover the 3D struc-
ture and camera motion parameters. Finally, the solution
was upgraded to the metric space. As shown in Fig. 8, the
reconstructed 3D structure looks realistic and most details are
correctly identified.

The histogram distribution of the reprojection residual
matrix (30) with outliers is shown in Fig. 9(a). The residuals
are largely conform to the Gaussian assumption. It can be
seen from the distribution that the outliers can be explicitly
distinguished from the inliers by the estimated threshold,
as shown in the figure. The histogram distribution of the
residuals of the detected inlying data is shown in Fig. 9(b).
Obviously, the residual error is reduced significantly after

FIGURE 9. The histogram distribution of the reprojection residuals of the
fountain base sequence before (a) and after (b) outliers rejection.

rejecting the outliers. As a quantitative evaluation, the final
reprojection errors by different approaches are tabulated in
Table 2, from which we can see that the proposed scheme
yields the lowest reprojection error.

TABLE 2. Reprojection errors (pixel) for different datasets.

The second sequence is a corner of the Hearst Gym at
UC Berkeley. There are 12 images in the sequence, and on
average 1890 features were tracked in total. The correctly
detected inlying features, together with about 5% outliers are
shown in Fig. 10. Using the proposed robust algorithm, we
successfully recovered the Euclidean structure of the scene,
as shown in Fig. 10, all outliers are correctly detected and
removed. As a comparison, the reprojection errors obtained
using different algorithms are listed in Table 2, which
shows that the proposed approach outperforms other robust
algorithms.

FIGURE 10. Reconstruction results of the Hearst Gym sequence.
(First row) four frames from the sequence, where the first one is a texture
image, the other three images are overlaid with the the tracked features
and outliers with disparities to the first image; (mid row) the
reconstructed VRML model of the scene shown from different viewpoints
with texture mapping; and (last row) the corresponding triangulated
wireframe of the VRML model.
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The third test is on a deformable dinosaur sequence [5].
The image sequence consists of 231 frames with deformable
structure of a dinosaur model. The image size is
570× 338 pixel, and in total 49 features were tracked across
the sequence. The initial tracking data are not very reliable, as
shown in Fig. 11. We also add an additional 8% mismatches
to the data so as to evaluate the robustness of the algorithm.

FIGURE 11. (First row) four frames from the dinosaur sequence
superimposed with the tracked features (red circles) and added outliers
(blue stars); (mid row) the reconstructed VRML models associated with
each frame; and (last row) the corresponding triangulated wireframes of
the VRML models.

Using the proposed approach, all outliers were success-
fully rejected, however, a few inliers were also removed
due to large tracking errors. We then utilize the proposed
nonrigid factorization algorithm to recover the structure and
motionmatrices, and upgrade the solution to themetric space.
Fig. 11 shows the recovered deformable structures and
the associated wireframes. The VRML model is visually
plausible and the deformation of the model is correctly
reconstructed.

FIGURE 12. The histogram distribution of the reprojection residuals of
the dinosaur sequence before (a) and after (b) outliers rejection.

The histogram distribution of the reprojection residual
matrix (30) with outliers is shown in Fig. 12(a). The residuals
are largely conform to the assumption of normal distribution.
As can be seen from the histogram, the outliers are obviously
distinguished from inliers. A threshold is computed from
the mean and STD of the distribution, and the histogram of
the residuals produced by the final solution after rejecting
outliers is shown in Fig. 12(b), which shows a significant
decrease on the residual errors. For comparison, we also
extend the algorithms of ‘Huynh,’ ‘Ke,’ and ‘Meng’ to the
nonrigid scenarios, and the reprojection errors by different
algorithms are shown in Table 2. The proposed scheme yields
the lowest reprojection error in this test.

FIGURE 13. Reconstruction results of a human face with different facial
expressions. (First row) four frames from the face sequence
superimposed with the tracked features (red circles) and added outliers
(yellow stars); (mid row) the reconstructed VRML models associated with
each frame; and (last row) the corresponding triangulated wireframes of
the VRML models.

The last experiment is on the Franck face sequence down-
loaded from FGnet,1 as shown in Fig. 13. We selected
200 images with different facial expressions from the
sequence. The image resolution is 720×576, and 68 features,
which are automatically tracked using the active appearance
model, are provided by the dataset. For test purpose, 8% out-
liers are added to the tracking data.

We apply the proposed robust scheme to remove the
outliers and recover the metric structure of the face.
The reconstructed VRML model of the face with texture and
the corresponding wireframes are shown in Fig. 13. From the
results we can see that different facial expressions have been
correctly recovered by the proposed approach. The reprojec-
tion errors by different approaches are tabulated in Table 2.
Like in other experiments, the proposed approach also yields
the best performance in this experiment.

IX. CONCLUSION
In this paper, we first proposed a new augmented factorization
framework which has been proved to be more accurate than
the classical affine factorization, especially in the situation
when the centroid of the imaged features could not be reliably
recovered due to the presence of missing and outlying data.
Then, we presented an alternatively weighted factorization
algorithm to handle incomplete tracking data and alleviate the
influence of large image noise. Finally, a robust factorization
scheme was designed to deal with contaminated data with
outliers and missing points. The proposed technique requires
no prior information of the error distribution in the tracking
data, and it can be directly extended to nonrigid factorization,
which was rarely discussed in the literature. Extensive eval-
uations on both synthetic and real datasets demonstrated the
advantages of the proposed scheme over previous methods.

1http://www-prima.inrialpes.fr/FGnet/html/home.html
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