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ABSTRACT The evolution of the Internet of things and the continuing increase in the number of sensors
connected to the Internet impose big challenges regarding the management of the resulting deluge of data and
network latency. Uploading sensor data over the web does not add value. Therefore, an efficient knowledge
extraction technique is badly needed to reduce the amount of data transfer and to help simplify the process
of knowledge management. Homoscedasticity and statistical features extraction are introduced in this paper
as novelty detection enabling techniques, which help extract the important events in sensor data in real time
when used with neural classifiers. Experiments have been conducted on a fog computing platform. System
performance has been also evaluated on an occupancy data set and showed promising results.

INDEX TERMS Fog computing, novelty detection, sensor signals, Internet of Things (IoT), Levenes test,

statistical features.

I. INTRODUCTION
IoT computing paradigm shift is evolving and moving from
the cloud computing, fog computing towards edge comput-
ing. The paradigm shift will be imposed by the need to: reduce
transmission cost; avoid network latency; enhance security
and privacy and many other benefits. However, remains the
scalability, and failure risks issues. IoT computing takes
place at three levels: edge computing (i.e. lowest level) near
a data/information source; fog computing (i.e. intermediate
level) occurs in IoT Gateway or LAN; and cloud comput-
ing (i.e. highest level) which on the cloud server. For example,
edge computing as in a smartphone uses its camera to detect
faces and objects. In fog computing, a Gateway could col-
lect, and/or de-noise and/or analyze sensors data and make
a decision. A good example is the Amazon Echo or Google
Assistant. In cloud computing, the sensor data analytics is
performed on a remote cloud server.

Novelty detection in sensor signals is playing a crucial role
with the increasing number of sensors connected through the

IoT in order to reduce the amount of data that need to be
analyzed and consequently decreasing the cost of both data
storage, transmission, and processing in the cloud. Novelty
detection in continuous sensor data streams is a challenging
problem. A highly discriminant feature set has to be extracted
to reflect any sudden event in sensor signals. These features
should be easy to compute with short computational time to
be able to classify the signal in real-time.

In this paper, seven features have been extracted and fed
into a neural network for signal classification and conse-
quently, event detection at the fog level. Signals are classified
to either normal sensor signals (no novelty) or abnormal sig-
nals with novelty. Once an event has been detected, the owner
of the sensor has to be alerted. This is important in case an
intruder switches lights on in a smart home, or gas leakage
occurs or fire is detected or unauthorized motion detected,
an alert sent to the users mobile phone. Here, a GSM GPRS
module (SIM900) [1] is used to send SMS messages to sensor
owners when there is any novelty detected based on sensor
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FIGURE 1. Layout of the event detection and communication system.

data analytics. The module uses a SIM card for the commu-
nication exactly as a mobile phone. Figure 1 shows the layout
of a system proposed for data analytics at the device level and
sending the important events only to the concerned users.

The main contributions of this paper can be summarized
as follows: (1) we present a fog-level IoT analytic system
for detecting signal abnormality; (2) we introduced a set of
homoscedasticity and statistical features that can be effec-
tively computed in real-time; (3) we examine the system
on a large-scale real data collected from different types of
sensors. The proposed system can be used as a foundation for
future development of many IoT applications which are based
on sensor data analytics such as motion, fire, or occupancy
detection.

The rest of this paper is organized as follows. Related
works are described in Section II. In Section III, a signal
de-noising method is introduced as a preprocessing step. The
feature extraction methods and the neural networks classifier
are described in Section IV and V respectively. The expe-
riential results, discussion, and conclusion are provided in
Sections VI and VII.

Il. RELATED WORKS

Fog data mining is an important strategy for IoT in order
to reduce the cloud storage requirement, the energy con-
sumption, and package transformation across the wireless
network. Each individual sensor or a set of sensors carries
out sort of low-power processing on the acquired data to
discover the novelty patterns. Authors in [2] introduced the
concept of edge mining for IoT and studied the efficiency of
three different edge mining methods on data transmission and
energy reduction.

Edge data mining approaches can be categorized into
time-series forecasting, and event- based approaches.
In time-series forecasting, two prediction models are working
synchronously in the sensor-level and sink (i.e. the base
station) nodes where the time-series data is analyzed on
the low-level sensors to detect anomalies. The data is only
sent to the sink node if the measurement data is different
from the predicted one by some constant. Many approaches
have been used including stochastic, and regression-based
methods. For example, authors in [3] and [4] used Kalman
filter and dynamic probabilistic model respectively to reduce
data transmission rate from sensor nodes. In [5], authors
extend the prior dual model prediction on sensors and sink
by transmitting only a state vector estimate instead of the raw
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FIGURE 2. LDR Signal (top) and de-noised signal (bottom) using empirical
mode decomposition.

data when the error on the sink node exceeds a constant value.
In [6] and [7], authors used Auto-Regressive (AR) model
to reduce the processing achieved by sensors and limit the
transmitted data to be the coefficients of the model. In [8],
authors introduced a simple linear model called derivative-
based prediction to predicate the data by computing the
gradient of the ending points of a collected data over a short
period. Regression-based methods are much simpler than
stochastic based methods and easy to implement.

The event-based approaches work similarly to time-series
forecasting, but it does not have to replicate all the data
generated in the sensor-level on the sink node. The raw
data is quantized into some events or categories, and it only
pushes the data to the sink node when these events happened.
For examples, in [9], authors introduced a postural activ-
ity monitoring system that recognizes nine different human
postures from the accelerometer data using a decision tree
algorithm. Similarly in [10], proposed fall detection system
for elderly people based on accelerometers and gyroscopes
data. In [11], accelerometers reading is used to detect railway
bridge health. In [12], real-time forest fire detection is pro-
posed based on neural networks by analyzing in-networking
measurements gathered from multiple sensors to predicate
weather index that only sent to the sink node. In [13], authors
summarized the measurement data as a histogram to reduce
the packet reduction ratio. However, most of these methods
are directly classifying the raw sensor data which is sensitive
to noise and requiring much more time to process.

IIl. SENSOR SIGNAL DE-NOISING

One of the most powerful filtering techniques for signal
de-noising is the empirical mode decomposition (EMD)
method [14], [15]. The raw sensor signal is decomposed into
a set of intrinsic mode functions (IMFs). In order to consider
a signal as IMF, it must have an equal number (or differ by
one) of extrema and zero crossing and the upper and lower
envelope has zero mean everywhere. The filtered signal z (as
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FIGURE 3. Intrinsic Mode functions 1-8 of the LDR signal from top to
bottom.

shown in Figure 2) is reconstructed by eliminating the first
IMF component according to the following formula:

T
2= ) IMF() M

j=2

where T is the number of the IMFs. Here, we remove the
high-frequency noise which is represented by the first IMF
of sensor signals. Figure 2 shows an LDR signal before and
after processing by using the EMD. The high frequencies
are filtered out, and the valuable features of the signal are
remaining. Figure 3 shows the IMFs of the LDR signal and
as illustrated the high-frequency noise is represented by the
first IMF.

IV. FEATURE EXTRACTION

Efficient feature extraction techniques have been proposed in
order to analyze the overwhelming data acquired by any set
of sensors. Any novel event in a sensor signal is characterized
by a sudden change in signal level. To detect this sudden
change, a multitude of dissimilarity/similarity features should
be extracted as follows:

A. HOMOSCEDASTICITY MEASURE

Homoscedasticity of sensor signals like e.g. tempera-
ture or light is a natural phenomenon. The detection of nov-
elties in sensor signal in the case of a sudden signal change
due to an external factor plays a crucial role in monitoring
the environmental conditions or smart homes or detecting
motion. In this paper, we introduce a new approach for nov-
elty detection using the Levene’s test [16]. Levene’s test is
measuring the homogeneity of variances of samples drawn
from two successive windows of sensor signals.

In this work, it is assumed that the sample variances of the
same sensor signal windows taken under normal operating
conditions without external interruption are equal. The occur-
rence of a novelty causes the Levene’s test to be higher than
its normal value indicating that the null hypothesis of equal
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variances is rejected. Applying EMD technique on the raw
sensor signal is ensuring that the proposed technique has less
effect on the noise. The F-statistic of Levenes test is used as
a measure of homogeneity of variance to detect novelties in
a sensor signal. Levene’s Test’ F-statistic of two successive
windows X} is computed according to the formula

CN=K 3R m(u — )
K =158 3% (diy — k)2

where K = 2 in the case of two successive windows, N is the
total number of samples in the K windows, ny is the number
of samples in the k-th window (e.g. 100 samples), py is the
mean value of all sensor values in all windows, and py is the
mean signal value of all samples in the kK window. The dy; is
defined as follows:

@

dij = |Xig — Xi| 3)

where, X;; is the sensor signal value of the j-th sample from
the k-th window, X is a median sensor sample value in the
k-th window.

B. AUTOCORRELATION FEATURES

One of the most important similarity measures is the self-
similarity computed from the autocorrelation function (ACF)
of sensor signals at different time lags. A sudden change in
sensor signal results in increasing the correlation between
successive signal parts since the regular signal sensor oscil-
lates like a white noise whose correlation function oscillates
and intersects the zero axes very fast. This means that the area
under the ACF increases with the occurrence of a novel event.
Suppose we have a sequence of sensor samples X;, the ACF
is computed at the lag t as follows:

SN — ) Xigr — i)
S (X — )

where N is the total number of samples and p is the mean

value over all samples. Other important features which could

be extracted from the ACF are the skewness, kurtosis, and
sum of correlation values at different lags.

13T (R@) — p)

R(7) =

“

Kurtosis = T Ur4 5)
LY RE — )P
Skewness = — (6)
T o}
T
ACFym =Y _R(r) )
=1

where u,, o, is the mean and standard deviation of the R(t)
values. The features extracted from the ACF reflect the self-
similarity of different signal parts.

C. OTHER STATISTICAL FEATURES
Another set of statistical features is also extracted based on
entropy, the coefficient of variation and minimum ratio. The
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FIGURE 4. An example of a neural network architecture.

Entropy measures the degree of uncertainty of the sensor
samples. The assumption is the normal signals have less
uncertainty than the novelty signal. The Entropy H is defined
as:

N
H(X) == P(X;)log P(X;) (®)
i=1
where, X; = {x1, x2, ..., xn} is a set of random phenomena,
and P(X;) is a probability of the sensor reading X;. A novel
event represents new information, which results in increased
Entropy values. A sudden signal change meant more entropy.
Coefficient of variation (COV) is measuring the dispersion
of sensor samples:

cov = Z %100 ©)
m

Minimum ratio (MR) is another feature, which reflects
the similarity of two successive sensor signal windows
X1 and X2:

1 < X1; X2;
MR = — min(—, — 10
n Z (X 2,' X 1,' ( )
=
A sudden signal change due to a novel event results in
decreasing the minimum ratio. If the two successive windows
are identical as a result of a normal event, the minimum ratio
is approximately equal to 1.

V. FEED-FORWARD NEURAL NETWORKS

The feed-forward neural network is one of the powerful
classifiers that processes the input data across a series of
connected layers where connections between the neurons do
not form a cycle. The input layer forwards the d-dimensional
feature vector, X, to the hidden layer. Each neuron in the
hidden layer is computing an activation function o (e.g.
hyperbolic tangent) over the sum of input features multiplied
by a set of weights W plus bias term b.

h(x) = o(WT'x + b), (1)

The network output is a linear weighted sum of the hid-
den units connected to the output layer. Figure 4 shows the
architecture of a single hidden layer feed-forward neural
network (FFNN) where the input feature vector is computed
as described in the previous section.
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FIGURE 5. Sensor data acquisition system.

V1. RESULTS AND DISCUSSION

A. DATASET AND EVALUATION

The proposed method is evaluated on two dataset sets. The
first one is collected in real-time by using Arduino Uno
microcontroller board, and light sensor to detect novelties
in light sensor signals and the second is the occupancy
dataset [17] collected from 4 different sensors; light, tem-
perature, CO», and humidity sensors in order to predict the
occupancy of an office room.

Figure 5, shows the experimental setup used for sensor
data acquisition, which consists of an Arduino Uno microcon-
troller board, and light sensor. The novelty detection approach
discussed in this paper is applied to successive sensor data
windows to detect any novelty, which might result from
sensor data change in a smart home, due to any activity or for
other reasons.

Six performance metrics [18], [19] are used to evaluate
the event detection system performance. Table 1 shows the
confusion matrix for our problem, where TP and TN represent
the number of abnormal and normal signals that are classified
correctly, and FN and FP represent the number of abnormal
and normal signals that are misclassified. Sensitivity (Sens.)
measures the rate of abnormal events. Specificity (Spec.)
measures the proportion of normal sensor signals that are
correctly identified. Sensitivity, therefore, assess the avoiding
of false normal events, and similarity, specificity evaluates
the avoiding of false abnormal events (novelties). Accu-
racy (Acc.) measures the population of the correctly predicted
novelties. The Fl-score (F1-sc.) is the harmonic mean of
precision (Prec.) and sensitivity. The G-mean is computed by
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TABLE 1. Confusion matrix for an event detection problem.

TABLE 2. Classifier performance metrics.

Predicted Normal Signal
FN (False negative)
TN (True negative)

Predicted Abnormal Signal
TP (True positive)
FP (False positive

Abnormal Signal
Normal Signal

Sensory lightsignal Sensory light signal

Iaht 1evel

0OM 0 R B 1020 1 1R 1B 0 0 20 & 6 80 100 120 140 160 180 200

~ Sarvnume ~ Sample
(a) (b)

FIGURE 6. Example of a light signal. (a) Normal light signal (no novelty).
(b) Abnormal light signal (as a result of novelty).

Light Sensor signal
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FIGURE 7. EMD filtered light sensor signal.

taking the square of the accuracy on both classes. A higher
Gmean value means that the method performs well on both
classes.

B. REAL-TIME LIGHT SENSOR

To test the validity of the proposed approach in testing novel-
ties in sensor signals, twenty cases have been studied with
ten normal cases and other cases with novelties. Figure 6
shows an example of the acquired light signals in the two
scenarios (i.e. normal and abnormal). To eliminate noise
effect before extracting the features, EMD is used to filter
the signal from high-frequency noise as shown in Figure 7.
An example of the extracted features for 10 normal sensor
signals and 10 signals with novelties is shown in Figures 8.
There is a clear difference between the features of normal and
abnormal cases. For example, Figure 8 (f) shows the variation
of the F-statistic of Levene’s test among different test cases.
The values for the first normal test cases are much lower
than the values of the next 10 cases which encompassed a
novelty.

24066

Metric Formula FFNN (%) LVQ (%)
Sensitivity % 100 90.0
Specificity % 100 100
Precision % 100 800
Accuracy % 100 83.3
Fl-score YCryny Zm 100 90.9

G-mean \/Sensitivity + Speci ficity 100 89.4

275

TABLE 3. Performance evaluation of the occupancy’s testing set;.

Sensor Classifier ~ Sens. Spec. Prec. Acc.  Fl-sc. G-mean
KNN 9298 100.00 100.00 96.88  96.36 96.42

Licht DT 89.47  100.00 100.00 9532 94.44 94.59
& RF 9228 100.00 100.00 96.57 9598 96.06
FFNN 96.49 100.00 100.00 98.44  98.21 98.22

KNN 54.21 74.68 63.12 65.58 58.32 63.62

Tem, DT 62.10 69.28 61.78 66.09 61.94 65.59
P- RF 67.80 67.11 62.23 6742  64.90 67.45
FFNN 69.82  93.12 89.03 8277  78.26 80.63

KNN 94.12 53.71 61.91 71.66  74.69 71.10

co. DT 90.35 57.15 62.76 7190  74.07 71.85
2 RF 94.91 58.83 64.82 7486  77.03 74.72
FFNN 97.71 78.05 78.06 86.78 86.79 87.33

KNN 89.21 95.93 94.60 9294 91.82 92.51

Humidit DT 86.75 94.03 92.08 90.80  89.34 90.32
ity RF 96.05 9740 9673 9680 9639  96.72
FFNN 93.33 98.66 98.24 96.29  95.72 95.96

We compare two popular neural network algorithms;
Feed-Forward Neural Network (FFNN) and Learning Vector
Quantization (LVQ) neural networks as shown in Table 2. The
FFNN has been trained with 50 hidden units using Gradient
descent with momentum and adaptive learning rate backprop-
agation algorithm. Testing the FFNN classifier resulted in a
100% for all of the 6 metrics in contrary to the LVQ classifier.

C. OCCUPANCY DETECTION

The dataset is divided into three sets; training set, testing set;
collected with the office door closed and testing set, collected
with the office door opened. The total number of samples
acquired simultaneously from the 4 sensors for training is
8143, and 2665 for the testing set;, and 9752 for the testing
sety. In order to evaluate the proposed method, the data is
divided into a number of overlapping windows. If the occu-
pancy (i.e. the event) is detected, the window is classified as a
novel signal otherwise as a normal signal. Here, the window
size is set to 100 samples.

Tables 3 and 4 show comparison results of 4 differ-
ent classifiers on both testing set; and sety of 4 different
sensors. We compare k-nearest neighbor (KNN), decision
tree (DT), random forests (RF), and feed-forward neural
network (FFNN). For KNN, the number of neighbors £ is set
to 10. For RF, the total number of trees is 500. The FENN
classifier has a single hidden layer with 50 hidden units.
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TABLE 4. Performance evaluation of the occupancy’s testing set,.

transfer to the cloud saving both the cost of data transfer and
storage on the cloud. Different types of low computational
classifiers have been examined. In most cases, the neural net-
work outperforms the other classifiers. Avoiding the problem
of parameter selection and the thresholding process are major
advantages of this approach. Future research will focus on the
addition of more features to increase the system reliability in

Sensor Classifier ~ Sens.  Spec.  Prec. Acc.  Fl-sc. G-mean
KNN 86.50 9330 83.66 9137 85.06 89.83

Light DT 83.51 96.44  90.29 92.76 86.77 89.74
& RF 87.85 9671 9138 9419  89.58 92.17
FFNN 89.05 9565 89.05 9378  89.05 92.30

KNN 7370 8024 59.68 7839  65.95 76.90

Tem DT 60.61 77.19  51.32 7248 55.58 68.40
emp- RF 72.61 8147 60.86 7895 6622 76.91
FFNN 80.63 80.19  61.75 80.31 69.94 80.41

KNN 83.88 81.00 63.65 81.81  72.38 82.42

co DT 79.75  83.79  66.13 82.64 72.30 81.75
2 RF 8475 8227 6548 8297  73.88 83.50
FFNN 7545  90.60 76.12  86.30 75.78 82.68

KNN 76.98  66.64 4780 69.58  58.98 71.63

Humidit DT 7297 6291 4384  65.77 54.77 67.75
u y RF 7742 6580 4732 69.10 58.74 71.38
FFNN 72.17 8450 64.88  81.00 68.33 78.09

For the testing set;, the light sensor gives the best result
with Fl-score (%) of the FFNN is 98.21, while for the RF
is 95.98, DT is 94.44, and KNN gives 96.36. The second
best sensor for detecting the occupancy is the humidity.
Fl-score (%) of the FFNN is 95.72, while for the RF
is 96.39, DT is 89.34, and KNN gives 91.82. In gen-
eral, the FFNN classifier gives better performance than the
other classifiers, except in one case (i.e. humidity sensor)
the RF can outperform the FFNN. The results show that
the proposed method can perform well on different sensor
types.

For the testing setp, the results are slightly deteriorated
due to the changing of the environment of acquiring data.
The light sensor gives the best result, then the CO, sensor.
For the light sensor, the FFNN’s F1-score is 89.05%, while
for the RF, DT, and KNN, the F1-score is 89.58%, 86.77%,
and 85.06% respectively. The the CO, sensor is the second
best sensor for detecting the occupancy, and the humidity
moved to the third place. The CO,’s Fl-score of the FFNN,
RF, DT, and KNN is 75.78%, 73.88%, 72.30% and 72.38%
respectively. Still, the FFNN classifier generally gives better
performance than the other classifiers. The results show that
a good setup of the sensors in the testing environment would
help to increase the system performance.

VII. CONCLUSIONS

This paper presents a new approach for novelty detection
in sensor signals based on Levene’s test which tests the
homogeneity of variances of samples taken from the same
population and combined with other statistical and autocorre-
lation features. The proposed system tested on four different
types of sensors (light, temperature, CO> and humidity) for
occupancy detection. For the light sensor, novelty detection
accuracy reached 98.44% while both sensitivity and precision
reached 96.49% and 100.00% respectively on the testing set;
for occupancy detection. These performance indicators show
the effectiveness of the extracted features for novelty detec-
tion in sensor signals. This helps in processing sensor signal
at the Fog level resulting in faster and efficient knowledge

24068

an unconstrained environment.
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