IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON INTERNET-of-THINGS (loT) BIG DATA TRUST MANAGEMENT

Received August 10, 2017, accepted September 5, 2017, date of publication September 20, 2017,

date of current version October 25, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2754515

Virtualization of the Encryption Card for Trust

Access in Cloud Computing

DELIANG XU!, CAI FU"“1, (Member, IEEE), GUOHUI LI', DEQING ZOU',

HONGHAO ZHANG', AND XIAO-YANG LIU?3

!School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

2Electrical Engineering Department, Columbia University, New York City, NY 10027, USA

3Computer Science and Engineering Department, Shanghai Jiao Tong University, Shanghai 200240, China

Corresponding author: Cai Fu (fucai @hust.edu.cn)

This work was supported in part by China NSF under Grant 61572222, Grant 61272405, Grant 61672249, Grant 61772194,
Grant 61472121, Grant 61272033, and Grant 61272451, and in part by the Fundamental Research Funds for the Central Universities.

ABSTRACT The increasing use of virtualization puts stringent security requirements on software integrity
and workload isolation of cloud computing. The encryption card provides hardware cryptographic services
for users and is believed to be superior to software cryptography. However, we cannot use the encryption card
directly in the user domain because of the complicated virtualization mechanisms and the security problems
about the user key and the user private data flow. To address these challenges, we propose a new virtualization
architecture to ensure the trustworthiness of encryption cards. First, we design a privacy preserving model
to ensure the security of the dynamic schedule of encryption cards. Second, we present a hardware trust
verification procedure based on the trusted platform module to supply a trusted virtualization hardware
foundation. Third, we provide a series of security protocols to establish a trusted chain between users and
encryption cards. Finally, we give security proofs of the encryption card virtualization architecture. Based
on our prototype implementation, the encryption service provided by the encryption card has higher-level
security and higher efficiency than software encryption. It provides strong support for security services of

virtualization systems in cloud computing.

INDEX TERMS Encryption card, trusted computing, virtualization.

I. INTRODUCTION
Serving as the foundation of cloud computing, in recent years
hardware virtualization has gone through a period of rapid
development as a method to decrease the total resource cost of
owning clouding computing systems [1]. One consequence of
the development of virtualization has been the need for rigor-
ous security requirements in the areas of application integrity
and user space isolation [2]. The encryption card is a popular
hardware device for encrypting and decrypting information.
Compared to software encryption, the encryption card offers
higher-level security with higher efficiency. The encryption
card is physically installed on a host’s motherboard and used
by the software; it and provides hardware cryptography ser-
vices for users. People can use advanced algorithms in the
encryption card without concerns about the efficiency.
Ideally, the capabilities of an encryption card are available
to all users’ virtual machines on the same platform [3]. In a
perfect world, all virtual machines should be granted virtual
access to their own private encryption card, despite the fact
that the number of virtual machines usually exceeds the

number of physical cards on the system. But the current
virtualization system cannot meet the high security require-
ments in encryption. To defend against possible attacks, the
following challenges need to be addressed:

o The security of the encryption resource schedule needs
to be protected. Given the limited hardware resources,
various users may share one encryption card and one
user may use different cards at different points in
time. The intricate relationships between users and
encryption cards make the resource schedule difficult to
execute. We need to design a secure mechanism to man-
age resource scheduling.

« A malicious user may attack normal users by disguis-
ing himself. Because of the lack of authentication, the
malicious user can access the normal users’ messages by
using encryption cards with the normal users’ identities.
In addition, the malicious user may use up the virtual
resources, depriving normal users the use of the encryp-
tion services. In these shared hardware environments,
malicious users disrupt normal operations, which can

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.

20652

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 5, 2017

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4536-3537

D. Xu et al.: Virtualization of the Encryption Card for Trust Access in Cloud Computing

IEEE Access

become particularly serious. When different users use
one encryption card at the same time, we must be able to
distinguish the different users in order to prevent attacks
from malicious users.

o The efficiency of an encryption card in virtualization is
also an important issue. Current virtualization systems
achieve the reuse of hardware devices but they face an
efficiency problem. Poor efficiency could degrade the
system’s performance. We must ensure efficiency high
enough to maintain usable virtualization.

Compared with normal devices, encryption card virtual-
ization requires higher-level security, as the users’ data is
confidential. To manage the encryption card resource sched-
ule, we design a multi-classification access control model to
protect users’ messages from unauthorized access. To ensure
the security of user identification and key transmission from
users to encryption cards, we design a series of security proto-
cols to establish a trusted chain between users and encryption
cards. We also prove the protocols’ correctness through BAN
logic [4], a series of rules for formulating and analyzing
data exchange protocols. Finally, it is demonstrated through
simulation experiments that the virtualization mechanism is
efficient enough to avoid a perceptible delay for users.

To summarize, this paper makes the following

contributions:
o We establish a risk model to investigate security require-

ments for encryption card virtualization, including those
related to virtual machines and encryption cards.

o We design a multi-classification access control model
for security of the encryption resource schedule. In this
model, we introduce the concept of virtual classification
that achieves secure and flexible access control.

o We design an encryption card virtualization architecture,
including secure protocols for user identification and
key transmission. The architecture can also be used as
a template for virtualization in other security devices.

« We achieve the implementation of the virtualization sys-
tem, the efficiency of which is comparable to that of the

native mode.
The rest of this paper is organized as follows. Section II

introduces background concepts that support the subsequent
material. Section III, IV, and V respectively describe the
design, security analysis, and implementation of the archi-
tecture. Section VI concludes the paper.

Il. BACKGROUND AND RELATED WORKS
A. BACKGROUND
1) BLP MODEL
The Bell-LaPadula (BLP) Model is a popular state machine
model for enforcing access control of applications in govern-
ment and military. It is a state transition model of computer
security policy that includes a set of access control rules that
use security levels on clearances for subjects and objects.
The Bell-LaPadula model makes no clear distinction between
security and protection.

The Bell-LaPadula model pays close attention to data
confidentiality and controls access to classified data. In an

VOLUME 5, 2017

information system based on the Bell-LaPadula model, enti-
ties are divided into objects and subjects. Only if a security
policy controls subjects’ access to objects, is a system state
“secure.” To decide if a subject is allowed to access an object,
the clearance of a subject is compared to the level of the
object. The clearance/level method is expressed in the form
of a lattice. The model includes three security properties that
define two mandatory access control rules and one discre-
tionary access control rule:

o The Simple Security Property—a subject is not allowed
to view an object at a higher security level.

o The *-property—a subject is not allowed to write to an
object at a lower security level, nor view an object at a
higher security level.

o The Discretionary Security Property—the discretionary
access control is specified by an access matrix.

2) HARDWARE VIRTUALIZATION

Virtualization, which dates back to the 1960s, is a method
of logically assigning the resources provided by mainframe
computers among a various of applications. System partition-
ing technology created by IBM is a representative example of
virtualization [5]. With the development of computer science
and the rising demand for computing resources today, advan-
tages of virtualization such as high efficiency are becoming
increasingly attractive.

Virtualization conceals the physical components of a com-
puter from the users, providing another virtual computer
instead. Through dividing a huge system into small parts,
the technology can make a complex physical structure that
is difficult to manage, simple and easy to manage. Hardware
virtualization is an important part of virtualization, providing
architectural support that builds a virtual machine monitor.
It also allows users’ operating systems to be run in an iso-
lated environment [6]. “Hypervisor” is needed to simulate
hardware devices for users requesting one device at the same
time. The virtual machine transmits users’ requests to the
hypervisor and the hypervisor handles the requests in order.

3) TRUSTED COMPUTING

Used to build the virtualization mechanism, trusted comput-
ing is a method to verify system integrity and ensure infor-
mation security. With trusted computing, the system behav-
iors are consistent, following rules enforced by computer
hardware and software [7].

As the basis for trusted computing, the Trusted Platform
Module (TPM), defined by the Trusted Computing Group [8]
as a trusted chain, measures the status of a device and passes
the measurements from the BIOS to the boot loader. The
measurements are finally passed to the operating system to
ensure trust across the system.

The basis of trusted authentication is that a subject gets the
proof of an object. Trusted authentication can be described by
the formula below:

T, = f;(proofs, expect),

20653

IEEE Access

D. Xu et al.: Virtualization of the Encryption Card for Trust Access in Cloud Computing

in which proofs are evidence for the subject to verify
the object, expect is the subject’s expectation of what the
object is. Function f; gives a result of whether the object is
reliable by comparing the evidence and the expectation.

4) BAN LOGIC
BAN logic is a series of rules that define and analyze
information-exchanging protocols [11]. It assists users in dis-
tinguishing whether the exchanged information can be trusted
and if the information has been eavesdropped. BAN logic is
based on the assumption that all information is exchanged
via an intermediary that is vulnerable to eavesdropping and
tampering. Like all axiomatic systems, BAN logic uses pos-
tulates and definitions to analyze authentication protocols.
In our project, we adopt BAN logic to analyze a series of
security protocols.

When we use BAN logic, we make the following

assumptions:
o The ciphertext cannot be falsified or altered; nor can it

be formed by a series of small ciphertexts.

o We regard two ciphertexts in a message as ciphertexts
that arrive separately

o The encryption system is perfect, i.e., an attacker cannot
access the message without knowing the key.

o There is enough redundancy in the ciphertext that the
receiver can determine whether the correct key has been
used.

« All participants in the protocol are honest.

B. RELATED WORKS

In this section, four research areas related to encryption card
virtualization are reviewed: security management based on
a virtualization platform, TPM virtualization, TPM-based
security architecture, and a method of improving the security
of the architecture.

1) SECURITY MANAGEMENT BASED ON

VIRTUALIZATION PLATFORM

Krautheim [12] proposed a security model called the Private
Virtual Infrastructure for cloud computing that allows the ser-
vice provider and user to share the responsibility of security,
thus reducing the risk exposure to both. However, this model
is based on a macroscopic cloud computing security structure,
which is not implemented in detail.

Cheng et al. [13] presented a protection architecture and
integrity measurement, which is used for software stacks that
are running on a user operating system of a virtualization
platform in the cloud environment. However, due to extensive
modifications of hypervisors, which bring a high degree of
complexity, this solution does not have good versatility.

Murray et al. [14] disaggregated the management virtual
machine for a Xen-based system. However, after being disag-
gregated by a trusted computing base, the system lost some
degrees of virtual systems, and may have functional defects
because there was no user space.

Sailer et al. [15] presented the sHype hypervisor secu-
rity architecture and examined its mandatory access control

20654

facilities. Jansen et al. [16] improved the security of virtual
machines, specifically in the context of integrity by adding
scalable credible computation concepts to a virtual machine
infrastructure. However, the two architectures cannot meet
the security needs of the encryption card virtualization.

2) TPM VIRTUALIZATION

Berger et al. [17] presented the implementation and design
of a system that enabled credible computation for virtual
machines on a single hardware platform. However, since
vIPM security is not assured, the effectiveness of user
authentication is greatly compromised.

Kursawe et al. [18] proposed a new architecture, that
resets the credible boundary to a much lower scale, allowing
for much simpler and more flexible uTPM implementa-
tions. However, the proposed system is based on a hard-
ware endorsement key to make the signature on the remote
authentication, which is likely to expose uTPM hardware
information to attackers.

Wan et al. [19] proposed an improved secure vIPM migra-
tion protocol that uses a credible channel and property-based
certification of the destination platform to ensure the security
of the vTPM migration. However, this migration solution
is implemented in the virtual machines, which cannot offer
the same level of security as solutions implemented in the
hardware.

Sadeghi er al. [20] presented a flexible and privacy-
preserving model of a vTPM that in contrast to existing solu-
tions, which supported different methods to measuring the
platform’s status and for key generation and uses property-
based certification mechanisms to support software updates
and virtual machine migration.

3) TPM-BASED SECURITY ARCHITECTURE

Fraser and Hand [21] presented a novel secure isolation
architecture that uses the latest release of Xen which allowed
unmodified hardware device drivers to be shared across
isolated instances of operating system, while protecting indi-
vidual operating systems from the driver failure.

Santos et al. [22] proposed a trusted cloud computing plat-
form. He uses TPM to achieve the separation of users from the
virtual machine managers. However, the design requires that
each virtual machine install a trusted virtual machine monitor
module with an embedded TPM chip, leading to high cost.

Azab et al. [23] presented a novel framework to enable
integrity measurement of a running hypervisor. However, this
method cannot be applied to a device virtualization system,
because of its disruption of other processes, which may com-
promise the efficiency of device virtualization systems.

Liu and Deng-Guo [24] presented an integrity measure-
ment architecture that enables administrators to measure the
process integrity in system dynamically. Using TPM, the sys-
tem utilizes a new method to provide dynamical measurement
of the processes and kernel modules in system.

Khan et al. [25] described the design and implementation
of a trusted Eucalyptus cloud architecture that was based on

VOLUME 5, 2017

D. Xu et al.: Virtualization of the Encryption Card for Trust Access in Cloud Computing

IEEE Access

remote attestation via TPM. However, due to the dynamic
changes in the data, this solution can only protect the integrity
and privacy of user’s information temporarily.

4) METHOD OF IMPROVING SECURITY OF

TPM-BASED ARCHITECTURE

Stumpf and Eckert [26] presented a credible platform module
that supported virtualization based on the hardware tech-
niques. This work introduced a privilege level, only available
to a virtual machine monitor, to send control commands to
the TPM. However, this approach also makes the trust chain
very long, and its reliability is not guaranteed when there is a
large number of users.

England and Loeser [27] introduced a technique with a
hypervisor through which its guest operating systems can
safely share a TPM. However, the trusted chain needs to
extend to a virtual machine from a physical TPM application.
This also results in a very long trusted chain, in which some
components need to be verified repeatedly, thus compromis-
ing the effectiveness of the verification process.

Wang and Cheng [28] proposed a technique of access
control using a secure virtual machine in Xen architecture.
However, this method ignores the new security issues and
efficiency problems caused by reusing TPM hardware.

Encryption card virtualization covers all four aspects men-
tioned above. Since we establish a trusted chain, using TPM
as the trusted computing base, TPM virtualization serves
as a good reference for our work. When we enhance the
security mechanism to address the weakness in traditional
virtualization, we consider the security method based on TPM
and security management based on a virtualization platform.

IIl. ENCRYPTION CARD VIRTUALIZATION ARCHITECTURE
We designed a virtual encryption card system that pro-
vides encryption card functionality in virtual machines. This
section first describes the risk model of virtualization, and
then the overall architecture design. It then introduces the vir-
tual Encryption Card Privacy Preserving Model (VEC-PPM)
and the TPM-based trust verification mechanism. Finally,
it introduces protocols for registration and key transmission.

A. RISK MODEL OF ENCRYPTION CARD VIRTUALIZATION
Before building a secure virtualization architecture, the secu-
rity threats we expect to encounter must be analyzed. So we
will establish a risk model and analyze where the secure
condition may be destroyed. After screening, we choose the
Dolev-Yao model to establish the risk model for encryption
card virtualization.

As shown in Fig. 1, the virtualization architecture is
represented by a set of abstract domains that can exchange
messages. DomU represents users’ virtual machines and
Dom0 is a manager monitor. EC represents the encryption
card. The attacker in this model can overhear, intercept and
synthesize any messages and is only constrained by crypto-
graphic methods. Unlike in the real world, the attacker can
neither manipulate the bit representation of the encryption

VOLUME 5, 2017

A\ /

A\ //
_________ N it
A\ /7
Y \

NN
,,,,,,, 7//,,(,,,,,,JV,<,,,,,,,
v A

FIGURE 1. Risk model.

nor guess the key. The attacker may re-use any message that
has been sent and therefore becomes known. The attacker can
encrypt or decrypt these messages with any key he knows and
forge subsequent messages.

We build a risk model in which a user’s information passed
through certain paths may be under attack. First, the user’s
key is transmitted to the encryption card through the path
DomU — Dom() — EC. An attacker may intercept the
message and get the key through the path DomU — Attacker.
Second, the user’s messages are transferred through the path
DomU — Dom0 — EC or EC — Dom0 — DomU.
A malicious user may pretend to be a normal user. He com-
municates with the encryption card through the path EC —
DomO — Attacker and then obtain the innocent user’s
messages. Finally, all users’ data is handled in the encryption
card. So an attacker may intercept the data through the path
EC — Dom0 — Attacker.

B. OVERVIEW OF ENCRYPTION CARD VIRTUALIZATION
As shown in Fig. 2, virtual machines communicate with
encryption cards using a split device-driver model, where a
frontend driver runs inside each virtual machine that wants to
access a virtual encryption card instance.

At the bottom of Fig. 2, the hardware component represents
the machine with the TPM and encryption cards. The hyper-
visor is a virtual machine manager that creates and manages
the virtual machines. The backend driver in the hypervisor
exchanges messages with the frontend drivers in the virtual
machines. The virtual encryption card (VEC) manager in
Domain0 allocates virtual encryption card instances for fron-
tend drivers in the virtual machines. We also add a Certifica-
tion Authority (CA) as a trusted third party that authenticates
users and encryption cards. The CA also helps the encryp-
tion card to determine whether the user has supplied the
correct key.

As illustrated by the dotted arrows in Fig. 2, when a
user wants to use an encryption card, the virtual encryption
card manager allocates a virtual encryption card instance to
the user. This procedure involves both user registration and
encryption card registration. Before the user begins to use the

20655

IEEE Access

D. Xu et al.: Virtualization of the Encryption Card for Trust Access in Cloud Computing

Encryption Server
F-———-—-9 == 9 f———————— - — - — -
1 Virtual Machine—! | Virtual Machine | \ Domain0 ! CA Server
I
1 ! ! ! ‘ VEC Manager r~—| Authentication
| Frontend | | Frontend | I . . l
i Driver | | Driver | ‘ rT Native Driver 1
| I |
L L] T
'
i ! T -
I : i b
I Backend Driver | : | I
|
| VEC Instance ¢ ——————————— S5 : : :
} Hypervisor | | |
1 [
L — 1> VEC Instance [—F —————————— 4 po==d : :
[|
T T
A4 A 4
TPM Encryption ‘ Encryption Control Flow
Hardware Card Card ———- DataFlow

FIGURE 2. Architecture.

encryption card, they verify each other with the help of the
CA to establish a trusted relationship. As illustrated by the
solid arrows, the frontend drivers transmit users’ messages
that need to be encrypted to backend driver. The backend
driver receives the messages and calls the native driver in
Domain0 to use the encryption card.

C. THE vEC PRIVACY PRESERVING MODEL

The vEC Privacy Preserving Model (VEC-PPM) is designed
for encryption card virtualization based on the BLP model
discussed in Section II. The VEC-PPM redefines elements,
security theorems, and state-transition rules. We introduce the
dynamic security level policy, which manages the encryption
resource schedule. We also introduce the virtual security
classification to restrain the adjustment of security level.

1) MODEL ELEMENTS AND VIRTUAL

SECURITY CLASSIFICATION

Elements of the VEC-PPM are approximately the same
as those of the BLP, including subjects, objects, access
attributes, classification, access matrix, and system states.
Symbols in the vVEC-PPM are the same as those in BLP, unless
otherwise indicated.

The components of the VEC-PPM are users, the virtual
encryption card manager (vVEC-Manager), virtual encryption
card instances (VEC-Instance), and encryption cards (EC).
These components could be subjects or objects, depending
on the direction of the information flow. In particular, The
vEC-Manager must be trusted subject (S7).

We redefine the access attributes as A = {r, w, a, e*, c}.
The r, w, a attributes are the same as those in BLP. The
e* attribute denotes the vEC-Manager’s instruction to an
object, such as creating or destroying virtual machines. The
c attribute denotes a trust relationship between the subject and
the object.

To break the limitation of the traditional static classifica-
tion, we introduce the virtual security classification, defined
below.

20656

Definition 1: The virtual security classification (vL,) is a
discrete-time mapping to static classification, that is vL, =
{Li}, 1 <i<p.

As shown in Fig. 3, a subject or object with virtual security
classification can change its current classification depending
on the status. A possible situation is an entity’s virtual security
classification vLy = {L3, Ls}. When it is handling important
data, the current classification is L3. When it is in free status,
the current classification is Ls.

Static Classification

Virtual Security Classification

FIGURE 3. Virtual security classification.

We redefine the classification vector as {f;, f,, f,,}, where f;
denotes the clearance of the subject, f;,, denotes the classifica-
tion of the object, and f;, denotes the virtual security classifi-
cation. The classification of an entity must adjust limited in
virtual security classification.

The virtual security classification solves the following
problems:

« Applications in one virtual machine have different secu-
rity levels, so the virtual machine in a static security level
cannot serve different applications.

o The BLP is characterized by the phrase “read down,
write up.” But one encryption card can be distributed to

VOLUME 5, 2017

D. Xu et al.: Virtualization of the Encryption Card for Trust Access in Cloud Computing

IEEE Access

different users dynamically in virtualization. Encryption
cards also need to change their security level.

2) SECURITY THEOREMS
The BLP model includes three security properties that
define two mandatory access control rules and one discre-
tionary access control rule: the simple security property,
the *-property, and the discretionary security property,
respectively. As with the BLP, the vEC-PPM uses three sim-
ilar security theorems to judge whether a system state is
secure. Only if a system state meets all the security conditions
in the security theorems, is the state secure. The security
theorems are as shown below. Note: All the security theorems
in VEC-PPM use “vEC-"" as a prefix. Following each security
theorem, we provide the proof that every security theorem
meets the corresponding theorem in the BLP.

Theorem 1: S’ is a subset of S. A statev = (bxM xf x H)
meets the vEC-ss-property if

ses
= {0 €b(S :r,w)=[((S, 0,c) € H&(f(S) = f,(O)]}.

The vEC-ss-property claims that only if the clearance of a
subject is higher than the classification of the object and has
the c attribute, can it execute r, w operations.

According to the definition of the VEC-ss-property,
VY(s,0,x) € bA[x =r or x = w], we get f(s) >
fo(0) A (s,0,c) € b. Then it is evident that fi(s) > f,(0).
So the vEC-ss-property meets the Simple Security Property
in the BLP.

Theorem 2: S’ is a subset of S. A statev = (bxM xf x H)
meets the vEC-*-property if

Ses’
(0 € D(S : a) = [(fo(0) = fs($)&((S, O, ¢) € b)],
(0 € b(S : w)) = [(fo(0) = f(S)N&((S, O, ¢) € D)],
(O €b(S : 1) = [(fo(O) < f{(SN&((S, O, ¢) € b)],
(0 € b(S : ") = [(fo(0) < f(S)&(S € S7)].

To ensure the security of the user data, the VEC-*-property
claims that the data flow must be limited to a established
trusted chain. Specifically, a subject must have the c attribute
to its object if it wants to execute an a, w, r operation.

According to the definition of the VEC-*-property,
Y(s, 0,x) € bAx = a, we getfi(s) < f,(0)A(s, 0, ¢) € b. Then
it is evident that fi(s) < f,(0). Similarly we get fi(s) = f,(0)
and f5(s) > f,(0) from V(s, 0,x) € bAx =wand V(s, 0, x) €
b A x = r. So the vVEC-*-property meets the *-property
in BLP.

Theorem 3: A state v = (b x M x f x H) meeting the
vEC-ds-property is equivalent to ¥(s,0,x) € b, x € M,
therein x € {r,a, w, e*, c}.

For the vEC-ds-property, we only change the definition of
the e attribute, so the vVEC-ds-property meets the ds-property
in BLP.

A state must meet all the properties to ensure data security.

VOLUME 5, 2017

3) DYNAMIC SECURITY LEVEL POLICY

In the BLP model, a secure system is based on the principle
of tranquility. This principle requires that the classification
of an entity cannot change once it is created. The principle
makes the system secure but not flexible; therefore it cannot
work in the dynamic environment in the encryption card
virtualization.

In the vEC-PPM, the classification of entities can change
under different conditions. Because the applications in one
virtual machine have different classifications, the virtual
machine has to change its classification in handling different
applications. That is why the virtual security classification
and dynamic security level policy are needed.

—— Data flow

— Trust chain

-------- Resource schedule
User

VM1 VM2

. . . VEC- vEC
Virtualization | Instance1 | | Instance2 | | Instance3 | °cc

— ?/ é @Z g%
EC1 EC2 EC3 EC4 EC5 EC6
I I

using Under control free

FIGURE 4. vEC-PPM.

In Fig. 4, the vEC-PPM is divided into three levels: the
hardware level, the middle level, and the user level. Encryp-
tion cards are in the hardware level, while vEC-Instances and
host operating systems are in the middle level, and virtual
machines are in the user level. We define three statuses for
the encryption card: free, control, and using.

o free: the encryption card has not mapped with any

instance;

o control: the encryption card has mapped with an

instance, but it is not handling data;

« using: the encryption card is handling data.

We use the symbol Oy to denote the set of all encryption
cards in free status. Similarly, O, denotes control status and
0, denotes using status.

A user requests a VEC-Instance from the encryption
service. Then the vEC-Instance calls the encryption card
to handle the user data. A user can use one or more
VEC-Instances. A vEC-Instance can also connect with one or
more encryption cards. When a user requests more encryption
resources, more VEC-Instances or more encryption cards can
be providedeither has the same effect.

In particular, if one encryption card is used by several
instances, just like EC5 in Fig. 4, it uses a time division mul-
tiplexing mechanism, where the encryption card distributes
its working time to the instances equally. Of course, before
changing to the next instance, the card will clean the context
to ensure the information security of users.

Virtual security classification is a special definition in
the vVEC-PPM. The vEC-Manager has the virtual security
classification vL; = {L;}. It is the only subject at L;.
Encryption cards have the initial virtual security classification

20657

IEEE Access

D. Xu et al.: Virtualization of the Encryption Card for Trust Access in Cloud Computing

no request
Ly
Free
| VED-Manager " Wrequest [""" '
! 1
! . Revoke control 1
....... JI... Authentication |» Set control attribute | attribute ...:.......
1
LI gy W
Under result output wait for data no data
Control £ o L
" n
clean | | data input |
. L,
Working

FIGURE 5. State transition.

vLy = {Lp, Ly}. Cards in free status are at L,, which is the
lowest security level. When a card is in the using status, it
goes to Lp, which is the highest security level other than
vEC-Manager.

Fig. 5 shows the procedure of an encryption card from
free to using. At the top of the figure, the encryption card
is in the free status, corresponding to L,. When an instance
connects with the encryption card, vEC-Instance gets the
c access attribute to the encryption card. At the same time,
the card upgrades to the same level as the instance. Now the
encryption card is in the control status, and is ready to handle
data. When the card receives data from the user (through
vEC-Instance), it upgrades to L;: the specific level for cards
to handle data. After finishing handling, the card cleans the
user key and other private information and then downgrades
to the instance’s level to output the results.

4) STATE-TRANSITION RULES

The form of state-transition rules in vVEC-PPM is the same as
those in the BLP. The input of rules is (request, state) and the
output is (result, state). We also call the input as the domain
of definition and use the symbol def (R;) to denote it. Because
the states have the same expression v = (b x M x f x H),
we only need to focus on the requests. In the output, we
define result as D = {yes, no, 7}, where yes indicates that
the request is allowed, no that it is not, and ? that the request
is not in the domain of definition.

The rules can be divided into five categories:

o Rj_s5: The subject gets one of the access attributes to an
object.

o Rg: The subject releases a certain access attribute to an
object.

o R7_g: The vVEC-Manager creates or destroy an object.

e Rg_1o: The vEC-Manager gives other subjects access
attributes.

20658

e Rj1: The vEC-Manager changes the classification of

objects.))
R is used to get the ¢ access attribute. The subject (S;)

is the user or the vEC-Instance. The object (O;) is the
vEC-Instance or the encryption card. The subject S; requests
the ¢ access attribute to O;. The symbol < denotes assign-
ment. The symbol f\f, indicates that f is changed by f,.
If the result is yes, S; gets the ¢ access attribute to O;.

Ry>_s5 are used for getting a,w, r, e, access attributes,
respectively. The form of these rules is similar to R;. We show
them together.

Rg is used for releasing access attributes. The subject (S;)
is the user or the VEC-Instance or the vEC-Manager. The
object (0j) is the VEC-Instance or the encryption card. S;
requests the release of one of the access attributes to O;.
If the result is yes, S; releases the access attribute to O;.

R7 is used for creating objects. The subject (S;) is the
vEC-Manager. The object (O;) is the user or the vEC-
Instance. If the result is yes, the vEC-Manager creates an
object successfully. (0j, L,) denotes f,(O;)) = L,, while
(Ofree, Oj) indicates that O; is in the free status. After creating
the object, the system state upgrades.

Rg is used for deleting objects. The subject (S;) is the
vEC-Manager. The object (O;) is the user or the vEC-
Instance. If the result is yes, the vEC-Manager deletes an
object successfully. It is worth noting that one of the condi-
tions of yes is that the object must be in the free status. This
condition prevents the loss of user data.

Ry is used to give access attributes. The subject (S;) is the
vEC-Manager. §; gives O; one of the access attributes. O; can
be the user, the vEC-Instance, or the encryption card. If the
result is yes, the corresponding access attribute is added to
the access matrix.

Rio is used to undo access attributes. The rule is similar
to VvEC — R9. If the result is yes, the corresponding access
attribute is deleted in the access matrix.

R11 is used to change the classification of the object.
The subject (S;) is the user or the VEC-Instance or the
vEC-Manager. The object (O;) is the vEC-Instance or
the encryption card. The subject (S;) requests a change in
the classification of O;. R.(Ry, v) is an indicative function.
If state v still meets the VEC-*-property after being changed
by Ry, the output of R.(Ry, v) is true. If the result is yes,
Si changes the classification of the object.

All the state-transition rules are shown in Table I. Only if
a transition is allowed by the rules, is the next system state
legal.

5) SYSTEM STATE MAP
State-transition rules ensure that the resource redistribution is
secure. The system state map is shown in Table 2.

D. TRUST ESTABLISHMENT OF ENCRYPTION

CARD VIRTUALIZATION

The trust relationship between users and encryption cards
relies on the security provided by TPM [29]. When the
encryption server starts up, the TPM verifies measurements

VOLUME 5, 2017

D. Xu et al.: Virtualization of the Encryption Card for Trust Access in Cloud Computing

IEEE Access

TABLE 1. State-transition rules.

Rule

Condition

R1(Ry,v)

itRy, & def(Ri)
if[Ry, € def(R1)]&[c € Mi;]&[fs(Si) > fo(O5)]
otherwise

Ro(Rg,v)

<
&
@
=
C
«
Q
ol
&
=~
=z

iRy, ¢ def(R2)
if[Ry € def(R2)]&[w € M;;1&[fs(S:) < fo(O;))&[(Si, Of,¢) € b]

otherwise

R3(Ry,v)

iRy, ¢ def(R3)
if[Ry, € def(R3)|&lw € Mij]&[fs(S:i) = fo(0;)]&[(Ss, 05, ¢) € b]
otherwise

<
I
»
S
C
w
Q
<.
2
-
3z

ifRy, ¢ def(Ra4)
if[Ry € def(Ra)]&[r € My;]&[fs(Si) 2> f0(O;)]&[(Ss, Oy, ¢) € Y]
otherwise

Rs5(Ry,v)

iRy, ¢ def(Rs)
if[Ry € def(R5)]&[e* € M;;1&[fs(S:i) > fo(O;)1&[S;: € ST]

otherwise

Re(Rp, v) yes, (b — (S;,0j4,x), M, f, H)) [Ry € def(Rsg)|&x € {c,a,w,r,e*}
oV ?7,v) otherwise
?,0) ifRy ¢ def(R7)
R7(Rg,v) (yes, (b, M, f\fv < fv U(Oj, Lu), HU (0;,0¢))) if[Ry, € def(R7)]&[S; € St]
no,v otherwise
?,v) ifRy ¢ def(Rg)

(
(
(
(
(
(
(
(
(
(7
Ra(Rg,v) (
(
(
(
(
(
(
(
(
(
(
(

3‘/65,(b7(5><{Oj}XA)ﬂb*({S]’}XOXA)ﬂb,

B8 0) 0N (Mg 6, Myu 0}, £, H — (05,0,)))

if[R), € def(Rs)|&[S; € STI&[O; ¢ S&lO; € H(O)]
&[0; ¢ H(O.)]

otherwise

RQ(szv) yes,(b,M\MijUx,f,H))

ifRy, ¢ def(Ro)
if[Ry, € def(Ro)|&[S; = S1]&[0; € H(Of)]&[z € {c,a,w,T}]

otherwise

Ri0(Rg,v) (yes, (b — (Si,05,x), M\M;; — x, f, H))

ifRy, ¢ def(Rio0)
if[Rk c def(Rlo)}&[:B c {c, a,w, T}]&[Si = ST}
otherwise

(
(
(
(no,v
(7,v)
(
(
(
(

R (Rp,v) &% (b, M, f\fo + fo U (0y, Ly), HU (O, 0;)))

(no,v)

iRy, & def(Ri1)

iRy € def (R11)]&[(S1,05,¢) € &IO; # O 1&(Lu € £2(0;)]
&[R« (R, v) = true]

otherwise

TABLE 2. System state map.

System State State-Transition Rule

Create VM/VEC-Instance vEC — Ry
Delete VM/VEC-Instance vEC — Rg
User/EC Authentication vEC — Rg
Authentication Success vEC — Ry
Authentication Failed vEC — Rig
Data Transmission vEC — Ri_5
EC Status Transformation vEC — R11

of the hardware, BIOS, kernel, and operating system in the
proper order. If one of the measurements is different from
the expected value, the start will be terminated. This process
ensures the integrity of the system.

We design three protocols to establish a two-way trust rela-
tionship between users and the encryption card. The protocols

VOLUME 5, 2017

are designed based on the idea of multiple trust: only if a user
believes the encryption card is secure, will the user use it;
only if the encryption card verifies that a user is legitimate,
will the encryption card serve.

The first two protocols are designed for user registration
and encryption card registration. After registration, users’
identities and the encryption card’s statuses will be stored in
the CA.

The third protocol is designed for verification and key load-
ing. The user and the encryption card verify each other with
the help of the CA. The user’s key will then be transferred to
the encryption card securely.

The protocols for user registration and encryption card
registration are introduced below, followed by a two-part
protocol, including verification (between the user and the
encryption card) and key loading.

In this system, there are two kinds of public keys, one for
encryption and other for digital signature verification.

20659

IEEE Access

D. Xu et al.: Virtualization of the Encryption Card for Trust Access in Cloud Computing

Card

hash(card.MAC) | | Kcarg

Ecara(signca(card.cer| | Tca))

o]

Eca(hash(Dom0.MAC) | | pkgcara)

pngcard

FIGURE 6. Card registration.

User

hash(ID) | [hash(K) | | Kuser

DomO

Euser(signea(user.cer| | Tca))

o]

Eca(hash(Dom0.MAC) | | pkgyser)

pkg2user

FIGURE 7. User registration.

1) USER AND ENCRYPTION CARD REGISTRATION

When a new encryption card is installed, it has to register in
the CA. After the encryption card sends its status to the CA,
the CA logs the card’s information and issues a certificate
to the card. Now the encryption card is certified and ready to
be used. As shown in Fig. 6, the encryption card registration
protocol includes the following procedures:

1) The encryption card sends the hash of its identity
marker to DomO0. In most cases, we choose the MAC
of the encryption card as its identity marker, as MAC is
unique for each encryption card. The public key of the
encryption card, K 44, is also sent to Dom0.

2) Dom0 adds its own identity marker (also using MAC)
to the package and encrypts the whole new package
using the public key of the CA. Dom0O then sends the
encrypted package to the CA.

3) After receiving and decrypting the package, the CA
logs the status of encryption card and generates a cer-
tificate for the card with a time stamp and a signa-
ture. Finally, the CA encrypts the whole package using
the public key of the encryption card and sends the
encrypted package to DomO.

4) Dom0 passes the package to the encryption card. The
card decrypts the package and obtains its certificate.

As shown in Fig. 7, the procedures of user registration are

similar to those of the encryption card, except that the user
also sends the hash of his or her encryption key to the CA.

2) VERIFICATION AND KEY LOADING

This protocol consists of two parts. Only if part 1 is completed
successfully can part 2 be started. Part 1 checks whether the
user and its corresponding encryption card are registered;
part 2 passes the user’s encryption key to his or her encryption

20660

card. The procedures of the protocol are shown in Fig. 8 and
are detailed as follows:
Part 1: Verification

1) The user and the corresponding encryption card sign on
the hash of their respective identity markers and send
them to Dom0.

2) DomO encrypts the two packages from the user and the
encryption card using the public key of the CA and then
sends the whole encrypted package to the CA.

3) After receiving and decrypting the package, the CA
determines whether the user and the corresponding
card are registered by checking their identities against
information in storage. The two results of this checking
process for the user and the corresponding card are
timestamped and encrypted using the public keys of the
user and the encryption card, respectively. Finally, the
two encrypted packages are sent to Dom0.

4) DomO receives the two packages and passes them
to the user and the corresponding encryption card,
respectively.

5) The user and the card receive the results packages and
decrypt them. If both the user and the encryption card
have been registered, part 2 of the protocol will be
started.

Part 2: Key Loading

1) The user encrypts his or her encryption key using the
public key of the encryption card and then sends the
encrypted package to the encryption card.

2) The encryption card decrypts the package and gets the
user’s encryption key. The card then sends the hash of
the user’s encryption key to the CA to determine if the
key is correct for authentication.

VOLUME 5, 2017

D. Xu et al.: Virtualization of the Encryption Card for Trust Access in Cloud Computing

IEEE Access

User Card

signy.e-(hash(ID))

DomO CA

signcard(hash(card.MAC)]

Ecard(SignCA(Veruser | |TCA))

ECA(pkguserI |pkgcard)
Pkg2user | | pkg2card

E\,lser(SignCA(Vercard | |TCA| | Kcard))

— hash(ID)[[Ecau(K)

hash(I1D) | | hash(K)

Ecard(SignM(VerK | |TCA))

ECA(pkgcard)
< pkg2user| |pkg2card

Euser(SignCA(NK | |TCA))

4 W

FIGURE 8. Verification and key loading.

3) The CA receives the card’s request and decrypts it. The
CA then compares the received hash with the hash in
storage. Finally, the CA signs and encrypts the check-
ing results which are sent to Dom0. An encryption key
number is also encrypted and sent to Dom0.

4) The user and the card each receive their results. The
encryption key number will be used as an identifier in
communication between the user and the correspond-
ing card.

IV. MODEL ANALYSIS

This section proves the integrity of the design. It contains the
analysis of vVEC-PPM, the analysis of encryption cards and
users registration, and the analysis of verification and key
loading. By demonstrating, we reach the conclusion that the
state-transition rules in VEC-PPM and the protocols in trust
establishment are secure.

A. VEC-PPM SECURITY ANALYSIS
The vEC-PPM is a finite-state machine model based on BLP.
Only if a state in the VEC-PPM meets the three security the-
orems, is the state secure. According to the VEC-ss-property,
a subject is not allowed to view an object at a security level
higher than his or her own. According to the VEC-*-property,
asubject is not allowed to write to an object at a lower security
level, nor view an object at a higher security level. According
to the VEC-ds-property, the operation that a subject to an
object has to meet the access matrix. We give the security
proof for vEC — R4 and vEC — Ry as examples to prove that
the state-transition rules are secure.
We assume that vVEC — R4(Ri,v) = (D, V), therein v is
a secure state that meets vVEC-*-property, VEC-ss-property,
and vEC-ds-property. We get v. = vorVv = (b U
{(5i, 0, N}, M. f,H).
D VvV=v
It is evident that v/ meets the three properties.
2) V=0bU{Si, 0, M. f,H)
If (S;, 0j,r) € b, then Vv = v and v meets the three
properties. If (S;, Oj, r) ¢ b, according to vEC — Ry
we get f(S;)) >= F,(0;) and (S}, Oj,¢) € b. So the

VOLUME 5, 2017

rule meets the vEC-*-property. For VO € b'(S : r),
because b’ = b U (S;, 0, r), that is (S;, 0;,r) € b,
we get ((S, 0, ¢) € V)&(f(S) >= f,(0)). So the rule
meets VEC-ss-property. Last, we get r € M;; from the
rule. The rule meets the vEC-ds-property.

In conclusion, the vVEC — R4 meets the three security
properties and the Basic Security Theorem.
We assume that vVEC — Ri1(Rk,v) = (D, V'), therein v
is a secure state that meets VEC-*-property, VEC-ss-property,
and VEC-ds-property. We get Vv = vorv = (b,M,f\f, <
Jo YU (0j, Ly), H U (O, 0))).
D V=v
It is evident that v/ meets the three properties.

2) V=0b,M, f\fo <~ folU (0}, Ly), H U (Oy, 0y))
Because the rule does not add a new element to b,
V' inherits the VEC-ds-property from v. According to
VEC — *11(Rg, v) = true,for VS € b(0; : w, a), we get
L, > fs(S). For VS € b(O; : w,r), we get L, < f(S).
For YO € b(S; : w, a), we get L, < f,(0). So the rule
meets the VEC-*-property and vEC-ss-property.

In conclusion, the vEC — Rj; meets the three security
properties and the Basic Security Theorem.
Similarly, we can give proof that the other rules are secure.

B. ENCRYPTION CARDS AND USERS

REGISTRATION ANALYSIS

In this section, we give security proof of encryption cards and
user registration protocols by using BAN logic. By derivation,
the two protocols are both secure.

1) IDEALIZATION OF ENCRYPTION CARD REGISTRATION
The user registration protocol is shown below, where the mes-
sages are derived from the card registration process described
in section 3.4.1 (see Fig. 6 for details).

Message 1 Card — DomQ :
Card, Kearq

Message 2 Dom0 — CA :
{Dom0, Card, Kcara}k,,

20661

IEEE Access

D. Xu et al.: Virtualization of the Encryption Card for Trust Access in Cloud Computing

Message3 CA — Dom0 :

{{card.cer, Tca}, -1}
KCA Keard

Message 4 Dom(0 — Card :

{{card.cer, Tca}, -1} .
KCA Keard

It is assumed that DomO is reliable, i.e., it only passes the
cards’ messages to the CA or encrypted information back to
the card. Therefore, we omit DomO in the idealized form and,
in our analysis, the card communicates with the CA directly.
We idealize the protocol as follows:

Message2 Card — CA :

{Card, M card}g,,
Message 4 CA — Card :

{{card .cer, TCA}K*AI }KCM
2) PROTOCOL ANALYSIS OF ENCRYPTION
CARD REGISTRATION
First, the following assumptions on trust are made. We use
A | = B to indicate that A trusts B and # M to indicate that
the message M is fresh.

card| = Kca
CA| = Keard
CA| = card.cer

card| = (CA| = card.cer)
card| = #(Tcp).

The encryption card sends its identity to the CA, which
authenticates and certifies it. The CA passes the certification
to the card, along with a time stamp Tc4. The card receives
the encrypted message and decrypts it, i.e.,

card < {card .cer, TCA}K—I,
CA

where A < B indicates that A has received B.
Knowledge of the CA’s public key allows the card to
decrypt the message above:

card < (card.cer, Tcyp).

By applying the rules of message-meaning, nonce-
verification, and jurisdiction [11], the card trusts the certifi-
cate from the CA, i.e.,

card| = card .cer.

This concludes the analysis of card registration. The anal-
ysis of user registration is omitted in the interest of space, as
it is similar to that of cards registration.

C. VERIFICATION AND KEY LOADING ANALYSIS

In this section, we give security proof of verification and
key loading protocol by using BAN logic. By derivation, the
protocol is secure.

20662

1) IDEALIZATION OF VERIFICATION AND KEY LOADING
This protocol is shown below. Messages are derived from
Fig. 8. As this protocol consists of two parts, we will use the
result of part 1 when we analyze part 2.

Part 1: Part 1 is as follows:

Message 1 VM — Dom0 :

{User} -

Message 2 Card — Dom0 :
(Cardy,

Message 3 Dom(0 — CA :
({User}K;sér, {Card} 1)

card Kcp

Message 4 CA — Dom0 :

({{Veruser, TCA}KEAI }K)

card

{Vercara, Keard, TCA}Kfl })
CA Keard

Message 5 Dom0 — Card :

{{Veruser, Tcalg-1}
e KCA Keard

Message 6 Dom(0 — VM :

{{Vercara, Keara, Tcatp-1} -
car car KCA Kuser

Part 2: Part 2 is as follows:

Message7 VM — Card :

(User, {K}Kcard)

Message 8 Card — Dom0 :
(User, hash(K))

Message9 Dom(0 — CA :
(User, hash(K))k,,

Message 10 CA — DomO :

({{VerK, TCA}KEAI}K s

card

{{NK’TCA}KEAI}K)

user

Message 11 DomQ — Card :

T _
((Veric, Teal 1)

card

Message 12 DomQ — VM :
{{Nk, Teatg -1}
CA user

Similarly to 4.2.1, we also omit Dom0 in the idealized
form and have the card communicates with the CA directly.
We idealize messages in two parts in the protocol. In the
analysis, we will use the result of part 1 when we analyze

part 2.
Part 1: Part 1 is as follows:
Messagel VM — CA:
{User}KL&ér
Message?2 Card — CA :
{Card} -

card

VOLUME 5, 2017

D. Xu et al.: Virtualization of the Encryption Card for Trust Access in Cloud Computing

IEEE Access

Message5 CA — Card :
{{Veryser, TCA}K—l}

CA Keard

Message6 CA — VM :

K,
{Vercara, = card, Tca} 1} -
CA " Kyser

Part 2: Part 2 is as follows:

Message7 VM — Card :
(User, (K g,,,,)

Message 8 Card — CA :
(User, hash(K))

CA — Card :

T _
{{Verk, Tealg 1}

card

Message 12 CA — VM :
T -
Nk, Teabg 1

user

Message 11

2) PROTOCOL ANALYSIS OF VERIFICATION

AND KEY LOADING

Part 1: The following assumptions are made about the veri-
fication protocol.

Kca

user| = — CA

card| = &) CA
CA| = I&i user
CA| = Kearg card

user| = (CA| = Vercarq)

card| = (CA| = Veryger)
Kcar

user| = (CA| = (—‘)1 card))

user| = #(Tca)

card| = #(Tcp).

The user and the encryption card send their identities to
the CA, which checks and makes sure that the card has
registered, then sends a verification to the user along with the
public key of the card, which will be used in Part 2. The user
receives message 6, and from the rule of message-meaning,
nonce-verification, and jurisdiction, we obtain:

user| = Vercard,
user| = Keard,
which means the user believes the card is legitimate.

Similarly, the card receives a verification assuring it that
the user is reliable:

card| = Veryser.

Part 2: The following assumptions are made about the key
loading protocol.

Kca
user| = — CA

card| = X4 ca

VOLUME 5, 2017

Kus
CA| = =X user

Keara
CA| = =% card

user| = (CA| = Ng)
card| = (CA| = Verg)
user| = #(Tcp)
card| = #(Tcp).
When the card receives K, it passes the hash of K to the
CA for authentication. The CA then sends a verification to

the card to confirm that K is correct. In the same way, the
final result is:

card| = Verg.
The user also gets the identifier of K:
user| = Ng.
This concludes the analysis of the processes of verification

and key loading.

V. IMPLEMENTATION

After actualizing the virtualization of the encryption card in
the KVM platform, we add the vEC-PPM to key routes in the
system as an extra security model. The implementation of the
vEC-PPM is shown in Fig. 9.

Frontend

inish

Continue

Delete
State Matrix&
Access Matrix

VEC-PPM module

State Add
Matrix State Matrix

A

Backend

Change Level

A

Access Matrix

Backend I
Info

FIGURE 9. Implementation of vEC-PPM.

The VEC-PPM is initialized after the backend driver is
loaded. The model creates two arrays to denote the access
matrix and the state matrix. We use five bits in one byte
to denote access attributes r, a, w, ¢*, and c¢. To save the
mapping between virtual machines and encryption cards,
we change codes in KVM. The key data structure is shown
in Fig. 10.

The EC structure saves the key information of an encryp-
tion card. It is worth noting that the virtual security classi-
fication is saved in a bool array. In our implementation, we

20663

IEEE Access

D. Xu et al.: Virtualization of the Encryption Card for Trust Access in Cloud Computing

Backend struct EC struct

struct ec ec[MAX_EC_NUM]; char path[20];

ecif_t *ecif; int usercount;

char name[20]; enum {free,control,using} status;
long int frontend_id; $» bool vL[IMAX_LEVEL_NUM];

u8 is_message_set; unsigned int level;

spinlock_t ec_message_set; int syn;

wait_queue_head_t outqueue;
struct task_struct *watch_task;
struct list_head ec_list;

rwlock_t rw_lock;

FIGURE 10. Data structure.

TABLE 3. Server configuration.

Component Configuration

CPU Intel Core i3-4160 @ 3.60 GHz
Memory Capacity 4GB

Disk Capacity 500GB

Operating System openSUSE 12.3

System Kernel Linux 3.7.10

Hypervisor Qemu-KVM 1.2.0

Encryption Card SWCSM09

TABLE 4. Virtual machine configuration.

Component Configuration

CPU Intel Core i3-4160 @ 3.60 GHz
Virtual CPU Quantity 1

Memory Capacity 2GB

Disk Capacity 20GB

Operating System Windows XP Professional SP3

set L = {L1, Ly, L3, Ls}. L1 is the highest level, used only
for vEC-Manager, L, is for encryption cards in using status,
L3 is for virtual machines, and L4 is for cards in free status.

Experiments are conducted in two parts: initialization time
and efficiency. Because of the VEC-PPM and related secu-
rity mechanism, initialization time in a virtual machine is
inevitably longer than that of the native model. Efficiency
is also the key concern that is reflected in the testing. The
configuration of the server and virtual machines is detailed
in Table 3 and Table 4, respectively. It is worth noting that
the source of the encryption card is Sanwei Xin’an Company.
The card provides RSA, AES, and SM1. We use the SM1
algorithm in our implementation.

A. INITIALIZATION
According to our design, before users’ keys can be trans-
mitted to the encryption card, users and the encryption card
need to be authenticated. After the virtual machine starts up,
a series of authentication processes are required to transmit
the keys in a safe environment. Inevitably, these processes
affect the efficiency of the encryption card. The purpose of
this experiment is to quantify this delay.

The experiments are repeated ten times under the same
environment and in the same virtual machine. By repeatedly
switching on the virtual machine, we can add up the time

20664

1200 ", T

VM
—&— Net
—+— Dom0

1000 Net N

—<— Net
800 : : : —#*—Dom0 |
—<+— Net

—b— VM/EC

FIGURE 11. Verification time.

1000 T T
Net
900 m —6—Dom0 |4
1 —+—Net [f
800 —*— CA i
—+&— Net
700} . : : —<—Dom0 ||
—#— Net
600/ —<— VM/EC ||
M8 5001 1
400 %
300 q
200 q
100p——6———6—06 OO — o 4
d%ﬁ%@%j

N A
Wi
EN: 8
[0S
[} 3
~A
(Y’ S
[} 3

Times

FIGURE 12. Loading time.

taken for each authentication to calculate the total initializa-
tion time of the virtual machine.

Results of the experiments are presented in Fig. 11 and
Fig. 12, which show the initialization time of each authentica-
tion stage. It can be seen that the average time of each stage is
generally acceptable. For example, the network transmission
time, which refers to each request’s transfer time between the
virtual machine, Dom0, and the CA, is around 50 ms and the
minimum time is 0. In particular, if the time equals 0, this
indicates that information transmission in this stage is per-
formed by the frontend driver, so the time is negligible. Refer
to the data indicate that there is little variation in initialization
time consumption, the average of which is about 3,648 ms,
exerting little influence on the practical user experience.

Fig. 13 lists the average time of each stage in the exper-
iments, after being repeated ten times. Obviously, the pro-
cess times of the CA and Dom0 are longer than others. For
example, the times of the CA are up to 951 ms and 877 ms,
which together take up 50 percent of the total initializa-
tion time causing a bottleneck. During initialization, the CA
authenticates users’ contextual information and encryption

VOLUME 5, 2017

D. Xu et al.: Virtualization of the Encryption Card for Trust Access in Cloud Computing

IEEE Access

1000 —
900 —|
800 —'
700 —|
600 —|

mS 500 —|:
400 —|
300 —|
200 —|

100 —

0—-

VM Netpomo
Net caA
Net
Dom0 Net carg Netpom0 et
CA Netpomo
Net card

FIGURE 13. Initializing time.

3 1

MB/s
®
|

VM Number

FIGURE 14. Average speed in virtualization.

card respectively, and then authenticates users’ keys, each of
which involve multiple instances of decryption and encryp-
tion. If the efficiency of the CA could be improved, initial-
ization time could be significantly reduced.

B. PERFORMANCE

Given the great impact of virtualization on the efficiency
of the overall system, these experiments are conducted to
quantify the decrease of efficiency when additional virtual
machines are introduced into the system.

In virtualization, one encryption card is shared across
multiple virtual machines. Fig. 14 shows how the average
encrypting speed of each virtual machine changes when the
number of virtual machine increases. It shows that when there
is only one virtual machine, the average encrypting speed is
15.17 MB/s without VEC-PPM and 14.99 MB/s with vEC-
PPM. When more virtual machines share the encryption card,
each virtual machine’s average encrypting speed decreases to
4.59 MB/s and 4.59 MB/s, respectively.

Fig. 15 shows the total encrypting speed of virtual
machines when the number of virtual machine increases.
When the number of virtual machines increases to four, the
total speed increases to 18.36 MB/s. In general, the total

VOLUME 5, 2017

MB/s
S
|

3 1

VM Number

FIGURE 15. Total speed in virtualization.

02—

3

VM Number

FIGURE 16. Average speed in non-virtualization.

MB/s

3
VM Number

FIGURE 17. Total speed in non-virtualization.

encrypting speed remains steady throughout the experiments
suggesting that there is very little loss of efficiency, even in a
multiple virtual machines mode.

In contrast, we measure the speed of software encryption.
Fig. 16 and Fig. 17 show the virtual machines’ average speeds
and total speeds respectively. The trend is similar to that
of hardware encryption. We assume that the software and

20665

IEEE Access

D. Xu et al.: Virtualization of the Encryption Card for Trust Access in Cloud Computing

EC
—*—AES ||

Efficiency
o o
(5] (2]
T T
; ;

o
IS
T
i

i
1 1.5 2 2.5 3 3.5 4
VM Number

FIGURE 18. Speed comparison between software and hardware
encryption.

hardware encryption speed are both one unit when there is one
virtual machine. The trends in the decrease in speed for the
two encryption modes are shown in Fig. 18, which indicates
that the encrypting speed decreases more slowly in hardware
mode than in software mode.

When we use software encryption, the CPU schedules the
computing resources and does the encryption at the same
time. Heavy scheduling tasks will grab the CPU computing
resources. But when we use hardware encryption, the CPU
only schedules the computing resources: the encryption is
done by encryption cards and the efficiency of encryption
will not be affected by scheduling. Hence there is higher
efficiency if we use encryption card.

In conclusion, through encryption card virtualization, our
encryption card can support multiple virtual machines effi-
ciently, and there is very little loss of efficiency due to the
vEC-PPM.

VI. CONCLUSION

Hardware virtualization is an important technology for cloud
computing, where security is currently provided through soft-
ware encryption. However, this technology is confronted with
many risks: for example, the user’s encryption key may be
disclosed, and the user’s private data may be exposed to mali-
cious users. Higher-level security is needed, especially when
important information is encrypted. Compared to software
encryption, an encryption card has higher-level security and
higher efficiency. Nevertheless, with many problems to be
solved, encryption card virtualization has not been exten-
sively implemented despite its technological advantages.

In this paper, we designed a virtual encryption card sys-
tem that provides encryption card functionality in virtual
machines. In this system, we presented the vVEC-PPM, which
manages the encryption resource schedule. We preserved
users’ data using a trusted hardware of virtualization based
on TPM. We also established a trusted chain between users
and encryption cards based on the designed protocols. Our
design of the virtual encryption card enables the security

20666

and efficiency of the encryption service. An implementation
analysis demonstrates that the efficiency of our system is
comparable to that of the native mode.

In the future, we will continue with our study, seeking to
design a virtual encryption cards cluster to support higher
encryption velocity and more suitable compatibility with
virtualization.

REFERENCES

[1] R. Figueiredo, P. A. Dinda, and J. Fortes, “Resource virtualization renais-
sance,” IEEE Comput., vol. 38, no. 5, pp. 28-31, May 2005.

[2] D. Sgandurra and E. Lupu, “Evolution of attacks, threat models, and
solutions for virtualized systems,” ACM Comput. Surv., vol. 48, no. 3,
2016, Art. no. 46.

[3] S.-K. Kim, S.-Y. Ma, and J. Moon, “A novel secure architecture of the
virtualized server system,” J. Supercomput., vol. 72, no. 1, pp. 24-37,
2015.

[4] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,”
Proc. Roy. Soc. A Math. Phys. Eng. Sci., vol. 426, no. 1871, pp. 233-271,
1989.

[5] R. Creasy, “The origin of the VM/370 time-sharing system,” IBM J. Res.
Develop., vol. 25, no. 5, pp. 483—490, Sep. 1981.

[6] R.Uhlig et al., “Intel virtualization technology,” Computer, vol. 38, no. 5,
pp. 48-56, May 2005.

[7]1 C. Mitchell, Trusted Computing. London, U.K.: IEE, 2005.

[8] Trusted Computing Group. Trusted Platform Module Library Part
1: Architecture. Accessed: Sep. 29, 2016. [Online] Available:
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-
Part-1-Architecture-01.38.pdf

[9] J. A. Goguen and J. Meseguer, ‘““Security policies and security models,” in
Proc. Symp. Secur. Privacy, Oakland, CA, USA, Apr. 1982, p. 11.

[10] J. A. Goguen and J. Meseguer, “Unwinding and inference control,” in
Proc. Symp. Secur. Privacy, Oakland, CA, USA, Apr. 1984, p. 75.

[11] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,”
in Proc. 12th ACM Symp. Oper. Syst. Principles (SOSP), New York, NY,
USA, 1989, pp. 1-13.

[12] F. J. Krautheim, “Private virtual infrastructure for cloud computing,”
in Proc. Conf. Hot Topics Cloud Comput. USENIX Assoc., 2009,
pp. 1-5.

[13] G. Cheng, H. Jin, D. Zou, and X. Zhang, “‘Building dynamic and trans-
parent integrity measurement and protection for virtualized platform in
cloud computing,” Concurrency Comput., Pract. Exper., vol. 22, no. 9,
pp. 1893-1910, 2010.

[14] D. G. Murray, G. Milos, and S. Hand, “Improving Xen security through
disaggregation,” in Proc. VEE, New York, NY, USA, 2008, pp. 151-160.

[15] R. Sailer et al., “Building a MAC-based security architecture for the
Xen open-source hypervisor,” in Proc. ACSAC, Washington, DC, USA,
Dec. 2005, p. 285.

[16] B. Jansen, H. V. Ramasamy, and M. Schunter, ‘‘Flexible integrity protec-
tion and verification architecture for virtual machine monitors,” in Proc.
2nd Workshop Adv. Trusted Comput., 2006, pp. 1-13.

[17] S. Berger, R. Caceres, K. A. Goldman, R. Perez, R. Sailer, and
L. van Doorn, “vTPM: Virtualizing the trusted platform module,” in Proc.
15th Conf. USENIX Secur. Symp., 2006, pp. 305-320.

[18] K. Kursawe and D. Schellekens, “Flexible uTPMs through disem-
bedding,” in Proc. ACM Symp. Inf., Comput. Commun. Secur., 2009,
pp. 116-124.

[19] X. Wan, X. Zhang, L. Chen, and J. Zhu, “An improved vTPM migration
protocol based trusted channel,” in Proc. Int. Conf. Syst. Inform. (ICSAI),
May 2012, pp. 870-875.

[20] A. R. Sadeghi, C. Stiible, and M. Winandy, ‘“Property-based TPM
virtualization,” in Proc. 11th Int. Conf. Inf. Secur. (ISC), 2008,
pp. 1-16.

[21] K.Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Wareld, and M. Williamson,
“Safe hardware access with the Xen virtual machine monitor,” in Proc.
1st Workshop Oper. Syst. Archit. Support Demand IT InfraStruct. (OASIS),
Boston, MA, USA, Oct. 2004, pp. 1-10

[22] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards trusted cloud
computing,” in Proc. Conf. Hot Topics Cloud Comput. USENIX Assoc.,
Berkeley, CA, USA, 2009, pp. 1-5.

VOLUME 5, 2017

D. Xu et al.: Virtualization of the Encryption Card for Trust Access in Cloud Computing

IEEE Access

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky,
“HyperSentry: Enabling stealthy in-context measurement of hypervisor
integrity,” in Proc. 17th ACM Conf. Comput. Commun. Secur., 2010,
pp- 3849.

Z.-W. Liu and D.-G. Feng, “TPM-based dynamic integrity measurement
architecture,” J. Electron. Inf. Technol., vol. 32, no. 4, pp. 875-879, 2010.
I. Khan, H. Rehman, and Z. Anwar, “Design and deployment of a trusted
eucalyptus cloud,” in Proc. IEEE Int. Conf. Cloud Comput., Washington,
DC, USA, Jul. 2011, pp. 380-387.

F. Stumpf and C. Eckert, “Enhancing trusted platform modules with
hardware-based virtualization techniques,” in Proc. 2nd Int. Conf. Emerg.
Secur. Inf., Syst. Technol., Aug. 2008, pp. 1-9.

P. England and J. Loeser, ‘‘Para-virtualized TPM sharing,” in Proc. Ist Int.
Conf. Trusted Comput. Trust Inf. Technol., 2008, pp. 119-132.

X. Wang and C. Cheng, “Access control using trusted virtual machine
based on xen,” in Proc. Int. Conf. Appl. Inf. Commun. (ICAIC), 2011,
pp. 94-101.

J. Shi, Y. Yang, and C. Tang, “Hardware assisted hypervisor introspec-
tion,” SpringerPlus, vol. 5, no. 1, 2016, Art. no. 647.

L. He et al., “Dynamic secure interconnection for security enhancement
in cloud computing,” Int. J. Comput. Commun. Control, vol. 11, no. 3,
pp. 348-357, 2016.

M. A. Hakamian and A. M. Rahmani, “Evaluation of isolation in virtual
machine environments encounter in effective attacks against memory,”
Secur. Commun. Netw., vol. 8, no. 18, pp. 4396-4406, 2015.

J. Rushby, “Noninterference, transitivity, and channel-control secu-
rity policies,” Stanford Res. Inst., Menlo Park, CA, USA, Tech.
Rep. CSL-92-02, 1992.

DELIANG XU received the bachelor’s and
master’s degrees from the Hubei University of
Technology, China. He is currently pursuing
the Ph.D. degree with the School of Computer,
Huazhong University of Science and Technology,
China. His research interests include system secu-
rity and wireless network security.

CAl FU (M’14) received the Ph.D. degree.
He is currently an Associate Professor and a
Deputy Director of the Information Security Insti-
tute, Computer School, Huazhong University of
Science and Technology. His main research inter-
ests include wireless networking security, routing
algorithms, and distributed computing.

VOLUME 5, 2017

GUOHUI LI is currently a Professor with the
School of Computer Science, Huazhong Uni-
versity of Science and Technology, China. His
research interests include big data and data
security.

DEQING ZOU received the Ph.D. degree. He is
currently a Professor with the Computer School,
Huazhong University of Science and Technol-
ogy. His main research interests include trust
computing, cloud computing security, network-
ing security, routing algorithms, and distributed
computing.

HONGHAO ZHANG received the B.E. degree in
information security from the Huazhong Univer-
sity of Science and Technology, Wuhan, China,
in 2016. He is currently pursuing the master’s
degree with the Huazhong University of Science
and Technology, Wuhan, China. His research inter-
ests focus on cloud computing security and net-
work security.

XIAO-YANG LIU received the B.A. degree in com-
puter science and technology from the Huazhong
University of Science and Technology, Wuhan, in
2010. He is currently pursuing the Ph.D. degree
with the Department of Computer Science and
Engineering, Shanghai Jiao Tong University. His
research interests include wireless communica-
tion, sensor networks, MANETSs, VANETS, cyber
physical system, and network security.

20667

