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ABSTRACT An improved singular value decomposition based on Toeplitz (TopSVD) is proposed to solve
the problem of inaccurately estimating source numbers under the condition of a low signal-to-noise (SNR)
ratio for blind source separation. First, Toeplitz modifies the covariance of the received data, and singular
value decomposition is used to estimate the number of signal sources. The advantages of TopSVD over
traditional approaches are demonstrated by simulated signals. The results demonstrate that the proposed
method can be used to estimate the number of coherent sources under low SNR conditions; at the same time,
it can significantly improve the accuracy of source number estimation under the conditions of a low SNR
and coherent signal source with the simple algorithm.

INDEX TERMS Blind source separation, singular value decomposition, toeplitz, low SNR.

I. INTRODUCTION
Blind source separation occurs in the case of unknown source
signals and mixed processes, and the source signal can be
recovered effectively only by the observing signal [1], [2].
With the development of science, blind source separation
is often applied in the field of mechanical equipment fault
diagnosis [3]–[5]. Before blind source separation, one of
the important preconditions for blind source separation is
to estimate the number of source signals accurately and
effectively [6]–[8].

Many scholars have put forward methods of estimating the
number of sources and have achieved good results in practice,
such as spatial smoothing rank (SSR) [9], [10], information
theory (AIC, MDL) [11], [12], singular value decomposi-
tion (SVD) [13]–[15], among others. The AIC algorithm has
better performance under low SNR conditions; however, due
to the large number of coherent signals in the process of signal
transmission and reception, the source signal and noise sig-
nal influence each other, invalidating the information theory
method. Therefore, decorrelation of the signal is performed
before source number estimation. For the decorrelation of the
observed signal, many algorithms have been proposed [16],
[17]. However, the singular value decomposition method pro-
posed in this paper is obtained by reducing the degree of
freedom. Although the smoothed rank sequence method can

estimate the number of coherent sources, it also requires a
higher SNR. When the SNR is low, the performance is not
ideal. At the same time, although there aremany theories and
methods regarding estimating the number of sources in the lit-
erature [18]–[20],little research has been done on application
of the source number estimation method to solve the problem
of mechanical system engineering. Therefore, in this paper,
an improved eigenvalue decomposition algorithm is proposed
for the estimation of mechanical system source number under
the condition of low SNR.The new algorithm combines the
advantages of the traditional SVD algorithm and the Toeplitz
algorithm, and is used to estimate the source number under
the conditions of a low SNR and coherent signal source.The
proposed method is called TopSVD.

II. SOURCE NUMBER ESTIMATION THEORY
A. SOURCE LINEAR SUPERPOSITION MODEL
The signals S (t) = [s1 (t) , . . . , sn (t)]T are contained in
n mechanical system source signals, so the observed sig-
nal X (t) = [x1 (t) , . . . , xm (t)]T is obtained in m dif-
ferent sensors. Each observed signal is assumed to be
a linear superposition of all source and noise signals
N (t) = [n1 (t) , n2 (t,) . . . nm (t)] via a hybrid matrix
A = {aij}(m × n). The observed mixed signal X (t) can be
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described as follows:

xi(t) =
n∑
j=1

aijsj(t)+ ni(t)

i = 1, ...m; j = 1, ...n (1)

X (t) = AS(t)+ N (t) (2)

R = E[XXT ] is assumed to be the autocorrelation matrix of
the observed mixed signal X (T ) (E is the expressed expecta-
tion function), and the eigenvalues satisfice λ1 ≥ λ2 ≥ ... ≥
λm, L (n) is a log likelihood function. The expressions are as
follows for this calculation:

L(n) =
(λn+1λn+2...λm)1/(m−n)

1/(m− 1)(λn+1 + λn+2 + ...+ λm)
(3)

Signal processing methods are based on linear superposition
theory, and the central problem of principal component anal-
ysis is to choose the number of separated components that
needs to be preserved. The M-dimension signal is projected
onto the N-dimension (n < m) feature space, and com-
pressing the spatial dimension of the redundant information
is achieved while preserving all of the source information
and determining the uncorrelated separated components. The
number of separated components represents the number of
the source signals in the observation signal to realize effective
estimation of the number of source signals.

B. SINGULAR VALUE DECOMPOSITION (SVD) METHOD
For the covariance matrix Rx of the received data, the eigen-
value decomposition is performed as follows:

Rx = Q3QH (4)

where 3 is a diagonal matrix composed of the eigenvalues
{λ1λ2, ...λm} of Rx . Every column vector of the eigenvector
Q is a unit eigenvector corresponding to the eigenvalue, and
the unit vectors are orthogonal to each other. It can be deduced
that the eigenvalues of RXRHX derived by the characteristic
decomposition are {λ21, λ

2
2, ...λ

2
M }. That is,

RXRHX = Q3QH (Q3QH )H = Q32QH (5)

Therefore, the singular value of RX defined by the singular
value is {

∣∣λ1 ∣∣ , |λ2| , ..., |λM |} because the singular value of
the covariance matrix is the same as the absolute value of the
eigenvalue. Therefore, the number of nonzero singular values
is equal to the number of nonzero eigenvalues. It is assumed
that R̃x is covariance matrix of the mixed signal with noise.
By the mixed system model X = AS + N , the following can
be calculated:

R̃X =
XXH

L
=

(AS + N )(AS + N )H

L

=
ASSHAH + ASNH

+ NSHAH + NNH

L

= RX + RN +
A(SNH )+ (NSH )AH

L
(6)

where RN ≈ σ 2I , SN
H

L ≈ 0, NS
H

L ≈ 0, and then,

R̃X = RX + σ 2I (7)

where σ 2 is power of the noise.
If λ1 ≥ λ2 ≥ ... ≥ λk = λk+1... = λM = 0 is M

eigenvalues of RX and µ1 ≥ µ2 ≥ ... ≥ µk ≥ µk+1 ≥

... ≥ λM ≥ 0 is M eigenvalues of R̃X , µ1 ≈ λ1 + σ
2,

µ2 ≈ λ2 + σ
2, . . . , µk ≈ λk + σ

2, . . . , µm ≈ λm + σ
2.

Therefore, in the case of a high SNR, the main eigenvalue of
the covariancematrix is equal to the number of signal sources.

The eigenvalues of the signal covariance matrix are
arranged from high to low, that is, µ1 ≥ µ2 ≥ ... ≥ µM ≥ 0;
let λk = µk/µk+1, (k = 1, 2, ...,M − 1). h is the
maximum eigenvalue of the covariance matrix and satisfies
λh = max (λ1, λ2, ..., λM−1).The eigenvalue decomposition
method is simple and can be realized easily; however, the
values are easily affected by the SNR and the number of
sampling points. It is not suitable for coherent signal sources.

C. IMPROVEMENT OF SINGULAR VALUE
DECOMPOSITION BASED ON TOEPLITZ
The essence of the Toeplitz method is to average the diagonal
elements of the data covariance matrix. It can be calculated
by the following two equations:

r̃(−n) =
1

M − n

M−n∑
i=1

r̃i(i+n)0 ≤ n < M (8)

r̃T (n) = r̃∗T (−n) (9)

whereM is the number of sensors, r̃ij is the element of R̃, and
r̃Tij(n) = r̃T (i− j).
The covariance matrix obtained by Eq. (6) is as follows:

R̃x = E[X (t)X (t)H ] (10)

The elements of the data covariance matrix are as follows:

[R̃x]ij = E[xi(t)xj(t)H ] = Rxx(i− j) = R∗xx(i− j) (11)

where R̃x satisfies the following:

R̃x

=


R̃x(1) R̃∗x (2) R̃∗x (3) · · · R̃∗x (m)
R̃x(2) R̃x(1) R̃∗x (2) · · · R̃∗x (m− 1)
R̃x(3) R̃x(2) R̃x(1) · · · R̃∗x (m− 2)
...

...
...

. . .
...

R̃x(m) R̃x(m− 1) R̃x(m− 2) · · · R̃x(1)


(12)

According to Eq (10), in the ideal case of an independent
signal source, R̃x has the properties of the Toeplitz matrix.
In fact, R̃x is approximately estimated by R̃X = XXH/L.
Due to the influence of the coherent signal source and low
SNR, R is generally a diagonally dominant matrix that does
not maintain the properties of the Toeplitz matrix.
The traditional eigenvalue decomposition method cannot

estimate the coherent signal source and susceptibility to SNR,
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so the Toeplitz algorithm is used. The Toeplitz algorithm
makes the true covariance matrix of the matrix be near to the
eigenvalue by Toeplitz pre-treatment. That is,

min
RT∈ST

|RT − R|

where ST is the Toeplitz matrix set [21], [22].
Through the analysis of the above two algorithms, a new

algorithmwhich combines the traditional SVD algorithm and
the Toeplitz algorithm is proposed.The signals considered
here are low SNR signals, and the number of signal sources
can be obtained according to the steps of the following new
algorithm:

1) Calculating the covariance matrix of data collected
R̃X = XXH/L, it is known by Eq(6) that R̃X contains all the
information of the signals.

2) R̃X contains all the information of the signals.Combining
the conjugate symmetry of covariance matrix in Toeplitz
algorithm, the observation matrix is reconstructed by Eq (12).

3) The eigenvalue decomposition of the reconstructed
matrix is calculated. Ideally, the number of singular values
of the reconstructed matrix is m.

4) Calculating the ratio between adjacent singular values.
Let λk = µk/µk+1, (k = 1, 2, ...,M − 1). If p satisfices
λp = max (λ1, λ2, ..., λM−1). The number of signal source
is equal to p.

III. SIMULATION ANALYSIS
The gear is the key part of rotating machinery, and the gear
signal is a non-stationary signal source. Amplitude modula-
tion is common in gear faults, and its vibration signal model
is as follows:

s(t) =
N∑
k=1

Ak (t) cos (2πkfmt + φk )

where fm is the meshing frequency, and N is the order of
harmonic components. Ak (t) and φk are the amplitude and
phase of harmonic components, respectively.

To verify the validity of the algorithm, three simulation
experiments are carried out. The fault signal of the gear is
simulated by the amplitudemodulation signal. The first simu-
lation experiment is to verify the accuracy of the algorithm in
the case of a low SNR and independent incoherent signals by
comparison. The second simulation experiment is to estimate
the accuracy of the new algorithm in the case of coherent
signals. Comparing the results of the experiments proves
the validity of the solution. The third simulation verifies the
sensitivity of the algorithm to the sampling points. To verify
the sensitivity of the algorithm to SNR, the success ratio of
the detection is defined as the ratio between the number of
correct estimates and number of simulations.

A. OBSERVATION SIGNAL SIMULATION
The number of sensors is assumed to be six, and the sensors
receive data from two fault source signal data sources. The
number of sampling points is set 200 (that is, themixedmatrix

FIGURE 1. Gearbox model.

A is 6 × 2 matrix, and the source signal S is a matrix of
2× 200).The sampling frequency is set to 1500 Hz.

Gear failures are used as examples for simulation analysis,
and the gearbox model is shown in Fig. 1. Z1 and Z4 are
the sources of the fault, and ¬–± demonstrate the sensor
placements.

The source signals S1 and S2 are sine signals and simulate
the simple harmonic motion of a mechanical system. The
effect of the mixed matrix A is to perform sinusoidal ampli-
tude modulation of sine signal with a frequency of 10Hz.
At the same time, random linear superposition for the mod-
ulation signal is performed to simulate the amplitude modu-
lation characteristics of the gear fault signal. The mechanical
structural and environmental noise with white noise signal are
simulated as well.
s1(t) can be given as follows:

s1(t) = sin (200π t)

The coherent signal s2(t) is as follows:

s2(t) = sin (200π t + 0.1)

In the other case, the incoherent signal s2(t) can be given as
follows:

s2(t) = sin (300π t)

The observation signal, which is added noise with the change
of SNR, is modulated by the source signal.

Fig. 2 and Fig. 3 show the simulated signals in the case of
coherent and incoherent for SNR = −10 dB.

B. PERFORMANCE ANALYSIS OF THE DETECTION
SUCCESS RATE OF DIFFERENT ALGORITHMS
SNR is progressively changed by 1 dB from -14 dB to 0 dB,
Monte Carlo experiments are carried on 100 timeswith differ-
ent SNR values. The signal is defined as a weak signal when
the SNR is between -14 dB and 0 dB.

The success rate of signals of the TopSVD algorithm and
information theory method (including MDL algorithm and
AIC algorithm) [11], [23], SSR algorithm and SVD algo-
rithm [25] were compared and are commonly used in the
literature in the case of incoherent signal source and cor-
related signal source. The accuracy of the commonly used
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FIGURE 2. Observation signal of coherent signal when SNR is −10 dB.

FIGURE 3. Observation signal of an incoherent signal when SNR is
−10 dB.

FIGURE 4. Change of the detection success rate of algorithms with SNR
for an incoherent signal.

algorithms in the simulation experiments is consistent with
the corresponding literature.

1) DETECTION SUCCESS RATE VERSUS SNR FOR THE
INCOHERENT SIGNAL
In the simulation test, the acquired signals are independent
incoherent signal sources, and several algorithms are affected
by the SNR. The simulation results are shown in Fig. 4.

Fig. 4 presents the simulation results of the new algorithm,
the AIC algorithm and MDL algorithm for estimation of the
number of signal sources with a change of SNR. Compared

FIGURE 5. Change of the detection success rate of the algorithms with
SNR for the coherent signal.

with the traditional SVD algorithm, the success rate of the
new algorithm is always higher. In the case of a high SNR,
the same as in the MDL algorithm, the new algorithm has
good asymptotic consistency. However, in the case of a low
SNR, especially when the SNR is less than -8 dB, the new
algorithm still has a good success rate, but the success rate of
other algorithms is not high.

2) DETECTION SUCCESS RATE VERSUS SNR FOR A
COHERENT SIGNAL
In the simulation experiment, the acquired signal is a sig-
nificant coherent signal source with a correlation coefficient
of 0.8 and the SNR is from -13 dB to 0 dB. The signal
source number estimation experiment uses the new algo-
rithms, the AIC algorithm and MDL algorithm. The perfor-
mance of the three algorithms is observed with the change of
SNR, and the simulation results of the three algorithms are
compared. The results are shown in Fig. 5.

As seen in Fig. 5, in the case of a coherent signal source,
the success rate of the AIC, MDL and SVD algorithms is
significantly reduced or even fails; however, for the new
algorithm, its performance is still good at a low SNR and has
the ability to decorrelate the coherent signals. Compared with
the traditional SVD algorithm, especially when the SNR is
larger than -12dB, the success rate of the new algorithm is
obviously improved.

Comparing the curves of Fig. 4 with Fig. 5, when the
signal source is coherent signal sources, the curve of the new
algorithm is similar to that of the incoherent signal source.

3) SUCCESS RATE OF DETECTION VARIES WITH THE
NUMBER OF SAMPLING POINTS
The detection success rate is less when using the SVD algo-
rithm when the SNR is below -12 dB; however, the accuracy
of the estimation is studied with the effect of sampling num-
ber when the SNR is -10 dB. The sampling points are from
10 to 3000 with a change of 20 points. one-hundred Monte
Carlo experiment iterations are conducted for each sampling
point.

In the simulation experiment, the signals are independent
incoherent signal sources; the new algorithm, information
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FIGURE 6. Change of the detection success rate with sampling points.

theory, SVD and SSR algorithms are used to estimate the
number of signals.

The performance is observed of the five algorithms with
the change of sampling points, and the simulation results of
the five algorithms are compared. The simulation results are
shown in Fig. 6.

The experimental results show that the new algorithm is
better than other algorithms with a low SNR. The success rate
of the new algorithm is consistently higher than the traditional
SVD. In the case of fewer sampling points, the new algorithm
shows some advantages. When the sampling point number
is above 500, the success rate is close to 100%; however,
the MDL and SSR algorithms fail in the case of few sampling
points.

IV. CONCLUSIONS
In this paper, a new method to estimate the source number
under the condition of a low SNR is presented. The simulation
results show that the new algorithm is more accurate than
the SVD, AIC, MDL and SSR algorithms under low SNR
conditions. The new method can estimate the source number
under the condition of a coherent signal source. Compared
with the eigenvalue decomposition method, the success rate
of the new algorithm is obviously improved. Compared with
the SSR method with a higher SNR, the new algorithm better
estimates the coherent signal source.

The source signal of a mechanical system has both coher-
ent and incoherent signals, especially when a fault signal
occurs in the system. The method proposed in this paper can
effectively estimate the number of sources of the mechanical
system over a certain range. For example, the source numbers
are fewer and SNR is less than zero; however, in practice, due
to the differences of fault types, fault locations and damage
extent at different mechanical system locations, estimation of
the source fault number from blind source separation requires
further study.
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