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ABSTRACT To accommodate the trend toward mass customization launched by intelligent manufacturing
in the era of Industry 4.0, this paper proposes the combination of model-driven engineering and knowledge-
driven engineering during the development process of self-reconfigurable machine control systems. The
complete tool chain for model development, execution, and reconfiguration is established. For the design
phase, a machine-control-domain-specific modeling language and the supporting design environment are
developed. With regard to the execution stage, a runtime framework compliant with the IEC 61499 standard
is proposed. On the ground of the modeling environment and the reconfigurable run-time framework,
a self-adaptive control module is developed to establish the close-loop self-reconfiguration infrastructure.
The ontological representation of knowledge base toward this end is described, along with extendable
SQWRL rules specified to automatically initiate the reconfiguration process in the cases of external user
demands and internal faults. A prototype motion control kernel in the low-level layer of machine control
system architecture is developed with the proposed modeling language and is then deployed to the run-
time framework. Two case studies on self-reconfiguration of the proof-of-concept motion control kernel are
demonstrated, which prove the feasibility of our proposal.

INDEX TERMS Reconfiguration, machine control system, domain-specific modeling language, ontology,
IEC 61499.

I. INTRODUCTION
Industry 4.0 has been boosting the manufacturing paradigm
shift from sole mass production to mass customization, lead-
ing to increasing adoptions of the intelligent production
mode. In this emerging scenario, manufacturing cells are
required to be self-adaptive to changeable processing tasks
within shorter transition cycles, compared with the tradi-
tional plants. The requirement on self-adaptiveness covers
the communication infrastructure, control system as well as
the physical components [1]. As the basic software units of
manufacturing cells, machine control systems should be able
to flexibly or even automatically reconfigure its structures
and functions in the case of occurrences of external user
demands and/or internal faults. Therefore, reconfigurable
machine control system is one of the critical enabling tech-
nologies for the vision of intelligent manufacturing to become
reality.

Typically, software for a machine control system is devel-
oped to provide stringent real-time performance under highly
hardware-dependent architecture. However, manual coding,
as the traditional software development pattern, is error-prone
and time-consuming due to its low abstraction level. On the
one hand, considerations on real-time behavioral diversities,
such as the co-existence of cyclic position sampling and dis-
crete event handling, complicate the process to a great extent.
On the other hand, agile reconfiguration requires reusability
and modularity of machine control software, which is usually
built as a monolithic artifact. Therefore, innovative design
philosophy and run-time architecture should be put forward
to cope with the aforementioned challenges.

The concept of model-driven engineering (MDE) is con-
sidered as a critical solution to modern software development
since it can ensure a high abstraction level, maintainability as
well as flexibility. Model-integrated computation (MIC) is a
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widely adopted model-based design paradigm for embedded
real-time system, firstly put forward in [2]. MIC paradigm
adopts domain-specific modeling language (DSML) instead
of Unified Modeling Language (UML) for application devel-
opers who may have little knowledge of software ngineering.
Definitions of DSML are based on proper conceptualizations
and architectural abstractions of the target domain. In this
paper, the IEC 61499 standard [3] is regarded as an appro-
priate guideline for this purpose. IEC 61499 complements
the dominant IEC 61131 standard [4] mainly via introducing
event-triggered function blocks (FB) as the basic model arti-
facts and amanagement model for reconfiguration of applica-
tion logics. Therefore, although IEC 61499 is the standard for
industrial automation applications running on the upper layer
of machine control systems, the features it provides make this
standard applicable for developing low-level reconfigurable
machine control system.

MDE can pave the way to reconfigurable machine con-
trol systems. Then, intelligent systems can further require
to minimize or eliminate human intervention during recon-
figuration. Therefore, self-reconfigurability is necessitated.
However, to achieve such a property, autonomy of the soft-
ware should be implemented, which is beyond the scope
of MDE. Therefore, other enabling technologies should be
investigated. Recently, the academic and industrial com-
munity of industrial control has been directed towards an
emerging tendency about applying knowledge engineering in
the industrial software systems for achieving intelligences,
flexibilities, etc. To utilize knowledge-driven approaches in
the control software, an ontology being focused on specific
application domain should be developed as a formal and
machine-understandable knowledge base for the interacting
software modules. New facts, such as reconfiguration plans,
can be inferred by a decision-making module during runtime
according to the ontology and collected information, includ-
ing external user requests or internal state changes. In this
way, self-adaptiveness can be realized. However, existing
work has been mainly concerned with the higher layer of
machine controls, such as the application logics or coordina-
tion tasks. Functions in the low-level layer, such as motion
control, real-time communication, still rely on rigid and
closed structure. This layer usually integrates various kinds
of pre-defined configuration options which may be rarely
utilized and hardly extended. These drawbacks will limit the
self-reconfigurability of the whole system.

This article is an extended version of our previous work
published in [5]. This extended version has the new con-
tributions by introducing the combination of model-driven
and knowledge-driven approaches as a holistic solution to
implementing self-reconfigurability of low-level machine
control systems. In addition, OPC UA, the standard indus-
trial information modeling and communication protocol,
is adopted for bridging the real-time control modules and self-
reconfiguration modules in our proposal.

The remaining part of the article is structured as follows:
Section II provides literature reviews on self-reconfigurable

control systems. The overall architecture of our proposal
targeting low-level machine control system is introduced
in Section III. Following that, the meta-model definitions and
the supporting run-time framework as the basis for reconfig-
uration are described in Section IV. Section V elaborates the
ontological presentation of the meta-models as well as the
process of self-reconfiguration based on knowledge-driven
information collection and analysis. Section VI concludes the
paper and outlines future work.

II. LITERATURE REVIEW
The paradigm of reconfigurable manufacturing sys-
tem (RMS) is introduced in the 1990s [6], [7]. Since then,
the industrial and academical community has seen several
explorations on adopting RMS for higher level of flexibility
and intelligence in response to fluctuating market conditions.
Pritschow et al. identify in [8] the critical requirements
for reconfigurable control systems from the perspectives of
communication interfaces and architecture. In their opinion,
software modules and communication protocol supporting
the plug-and-play feature are regarded as the fundamental
elements in RMS. They also clarify the necessary extensions
of basic reconfigurable control system for realizing self-
adaptability, including the modules of monitoring, decision
and evaluation. Their work provides the general principles in
the direction toward self-reconfigurable control systems.

Most of the existing related research concerns with
the process control aspect in manufacturing systems.
Feldmann et al. [9] present the pros and cons of respectively
applying model-based engineering and semantic web service
orchestration in automation control systems. Combinations
of both two approaches to increase agility during the engi-
neering and run-time phases are discussed as well. However,
since their control systems are developed on the basis of
IEC 61131-3 solution, dynamic reconfiguration of functions
and structures during run-time may not be supported.

In [10] an agent-based approach is proposed to facilitate
self-reconfiguration of automation control systems. A multi-
layer architecture for automation agents containing low-level
real-time process control and high-level coordination control
is presented. The high-level control relies on a knowledge
base, which is an ontological representation of physical sit-
uations and component functions. The low-level control is
based on the IEC 61499 architecture, and this layer inter-
acts with physical control process directly. The high-level
layer observes the environment of the system and initiates
reconfiguration process when needed, by translating recon-
figuration steps into IEC 61499 management commands. The
reconfiguration steps are inferred by specific reasoners in
the high-level layer, while the commands are executed in the
low-level layer. In this way, the proposed system can self-
adjust dynamically when failures occur. A similar approach
is proposed by Lepuschitz et al. [11]. They further take timing
constraints into accounts during the reconfiguration process.

Dai et al. [12] apply autonomic service management in
the context of service-oriented IEC 61499 function block
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run-time environment for baggage handling systems.
On-the-fly self-reconfigurability is achieved by the closed
loop structure between a function block execution environ-
ment and a rule-based query engine. Integrations of service-
oriented architecture and mapping FBs as services enable
reconfiguration of the application logics in a platform-
agnostic way, although performances may be deteriorated.

The related work reviewed above mainly focuses on the
application logics layer of control systems. In the low-level
control layer for motion control or real-time communication,
more stringent timing constraints should be meet, which
complicates the implementations of reconfigurability in this
layer. Usually various kinds of pre-defined configurations
may be integrated in the software to achieve limited reconfig-
urability. Regulin et al. [13] present a multi-master approach
for dynamical reconfiguration of EtherCAT-based communi-
cation process. Different possible configurations of control
devices are integrated in the corresponding masters. Then,
these masters are hard-wired in the communication layer.
When reconfiguration is required, the corresponding master
will be activated in accord with the current physical layout of
control devices. Such an approach is straightforward whereas
has little extendibility and adaptability.

Lesi et al. [14] propose a plug-n-play numerical control
architecture as the foundation for implementing RMS. In their
architecture, the complete numerical control functions are
identically duplicated in decentralized axis controllers. In this
way, new axis modules can be introduced dynamically with-
out affecting other working controllers. In their implemen-
tations, these axis controllers coordinate via regular wireless
network. Therefore, timing constraints of multi-axis motion
control may not be guaranteed.

Other related work in the low-level reconfigurable control
system can be seen in [15] and [16]. To sum up, these works
usually place the emphasis on the architectural design and
the specification of component models. The development
methodology, however, still remains quite primary from the
perspective of abstraction and automation level. This con-
tribution aims to address the problem of design methodol-
ogy for low-level machine control systems. A model-based
developing language is presented. Then, supporting tools and
run-time architecture should be developed. Since knowledge-
driven approach has been proved to be promising in enhanc-
ing self-adaptiveness in the domain of process control, our
architecture will integrate such an approach for achieving
higher level of intelligence.

We propose our solution on the ground of the MIC
paradigm and its supporting toolkits. Reference [17] presents
a model based integration framework to cover the entire
life-cycle of CNC system. Their framework is conformed to
the MIC paradigm. The modeling language of the proposed
framework, CNCML, takes into account domain features and
formal behavioral semantics synthetically. In [18] a similar
DSML for cyber-physical robot control system is proposed
according to the MIC pradigm. However, the final systems of
these work rely on generated code, which can not be modified

during execution. Lack of built-in mechanism for dynamic
reconfiguration in these DSMLs lowers the flexibility of the
framework. Thramboulidis [19] proposes a model-integrated
mechatronics (MIM) paradigm for manufacturing systems
developments. The proposed paradigm facilitates concurrent
design of mechanical, electrical and software components
of mechatronic systems by utilizing models as the center
artifacts of system development. Runtime deployment and re-
deployment of models are implemented to achieve dynamic
reconfigurability. Although the MIM paradigm has several
similarities with the MIC paradigm, it does not explicitly
consider formal semantics definitions.

III. OVERVIEW OF METHODOLOGY
For the vision of self-reconfigurable machine control sys-
tems to become reality, several critical modules covering
the different phases of the systems should be considered.
Firstly, a modeling language and its supporting development
environment should be established for the design stage. Then,
with regard to the execution stage, a run-time framework
is required for supporting dynamical reconfiguration. With
these elementary modules available, the knowledge-driven
self-adaptive control module can be developed and integrated
in the run-time framework. In this way, self-reconfigurability
can be achieved. The overall architecture of our proposal is
illustrated in Fig. 1.

We firstly explore the model-based design approach to
machine control systems for reconfigurability through the
MIC paradigm. Application of MIC paradigm for the devel-
opment of machine control system needs considerations on
both design layer and execution layer. In the design phase,
developers construct logics and functions of the machine con-
trol system by means of domain-specific models. The con-
structed system model can be translated into analyzable input
models of other verification tools to find out design issues and
system defects in early stage. Therefore, modeling language
tailored to machine control domain should be defined to
facilitate such amodel-based development process. Structural
and behavioral abstractions are the primary tasks during the
specification of a DSML since they are corresponding to
the syntactical and semantical definitions, respectively. Then,
a runtime framework is indispensable for bridging design
phase and runtime phase. In the runtime stage, models are
executed and coordinated under non-functional and func-
tional constraints.

According to the requirements for the two layers stated
above, we introduce an executable architecture for realizing
MIC based development of machine control system, as shown
in Fig. 2. The design-phase implementation is correspond-
ing to the part of modeling environment in Fig. 1, and
the execution-phase implementation is related to the real-
time control module deployed in machine controllers. The
architecture focuses on the design- as well as execution-
phase implementation of the MIC paradigm. For design-
phase implementation, a modeling language specific to
the machine control domain is defined, both syntactically
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FIGURE 1. The overall architecture for self-reconfigurable machine control systems.

FIGURE 2. The architecture for realizing MIC paradigm based
development of machine control system.

and semantically. Syntactical specification is achieved with
meta-modeling language while semantical specification is
done by model transformations to other formal models in
third-party tools. In this paper, the semantical specifications
will not be elaborated since they are out of the scope.

With regard to the implementation of runtime framework,
we firstly propose a general, domain-independent execution
environment which realizes reference models and architec-
ture of the IEC 61499 standard. Management model is imple-
mented to allow run-time creation, deletion of IEC 61499 FB
types/instances and other primary elements. Decoupling of
design-time and run-time FBs container based on resource
model and the concept of function block chain model
are put forward to integrate various applicable execution
semantics. Besides, event connections are extended with the
annotation of priority to enhance runtime determinacy of
FB execution sequence. Based on the achieved execution

environment, libraries of algorithms, FBs and resources for
low level motion control tasks are developed. The motion
control FBs play the role of primary units during the devel-
opment and execution of machine control system.

Depending on the proposed architecture, developers can
conduct model composition and synthesis for implement-
ing machine control system on a higher abstraction level.
Model deployment is carried out after the design process to
construct the final system with reconfigurability, flexibility
and robustness. Such an architecture can pave the way to
the self-reconfigurability. A self-adaptive control module can
be further developed and integrated on top of the runtime
framework. As shown in Fig. 1, this module contains a
knowledge base represented with ontology, a database and
a reasoner. In addition, a communication interface is also
required to collect information from the real-time control
modules. In our current work, OPC UA is employed to this
end. To implement such a module, counterparts of the meta-
models for our proposed DSML should be represented with
ontology in the knowledge base. Besides, triggering condi-
tions of a reconfiguration process are also defined in the
knowledge base, in the form of rules attached to the ontology.
In this contribution, two types of scenarios are considered for
triggering reconfigurations in the real-time control modules.
The first type is changing of user demands on functionali-
ties of machine controls, while the second type is internal
errors regarding the communication process. The triggering
conditions in these scenarios are termed as symptoms in the
following section. The symptoms are collected via OPC UA
and will be analyzed to generate corresponding reconfigura-
tion action requests. Such an approach has been proved to be
feasible in related work concerning the layer of application
logics [11], [12].

After describing the overall architecture of our proposal,
we apply it in the development of low-level machine control
systems to accomplish self-reconfigurability on the layer of
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motion control and real-time communication. Such a layer is
the common infrastructure in the control kernel of CNC, robot
and other mechatronic devices. Usually, this layer requires
several indispensable components shown in Fig. 3.

FIGURE 3. The functional modules of machine control system.

We focus on the functions regarding motion control
of the low-level kernel in the machine control systems,
including trajectory generation and drive communication.
In distributed motion control system based on real-time
ethernet, drive communication is responsible to the con-
trol loop in traditional centralized systems. As for the
trajectory generation component, a set-point interpola-
tor and velocity planner are required. Depending on
the execution order of these two functions, two differ-
ent trajectory generation algorithms can be defined [20]:
Acceleration/Deceleration-After-Interpolation (ADCAI) and
Acceleration/ Deceleration-Before-Interpolation (ADCBI).
ADCBI is usually adopted in the scenarios where more pre-
cise and smooth movements of axes are demanded. On the
contrary, ADCAI is less computation-intensive but it will
introduce machining errors inevitably. We adopt ADCBI in
the development of machine control kernel, with supporting
two types of velocity profiles for reconfiguration. In the fol-
lowing sections, the drive communication and trajectory gen-
eration modules will be developed with our proposed DSML.
Then, the model artifacts are deployed to the proposed run-
time framework.

IV. MODELING LANGUAGE AND SUPPORTING
RUN-TIME RECONFIGURABLE FRAMEWORK
In this section, we elaborate on the meta-model defini-
tions of the machine control specific modeling language and
the supporting engineering and runtime environment. Then,
we utilize these achievements to construct a proof-of-concept
machine control kernel with basic reconfigurability.

A. DEFINITIONS OF MODELING LANGUAGE
We firstly provide the meta-model definitions of our
machine control specific modeling language according to the

MIC paradigm. The meta-models are defined using the
Generic Modeling Environment (GME) [21], which is a
meta-programmable environment. The defined meta-models
are encoded as an external rule file of GME in the format
of extensible markup language (XML). Therefore, the pro-
posed meta-models can be flexibly modified, extended
and upgraded without affecting the modeling environment.
Therefore, modeling efficiency can be enhanced compared
with traditional dedicated tools.

Specifically, in the GME tool, syntax is defined with
the built-in meta-modeling language called MetaGME.
MetaGME provides facilities for meta-modeling based on
UML-style class diagrams, including Model, Atom,
FCO, Connection, Proxy, Reference and so
on [22]. Atom is the elementary meta-model artifact, which
can be contained in Model. FCO (First Class Object) is
the generic abstraction of other meta-modeling concepts.
Reference is the concept similar to pointer in some pro-
gramming languages, such as C/C++. Proxy is an auxiliary
concept for describing the identical objects in the complicated
meat-models.

FIGURE 4. The meta-models of our DSML in MetaGME notation
(core parts).

The root element in the DSML definitions is the system
model, as shown in Fig. 4. The system model is composed of
device models, application models, communication segments
and the relations between these models. Such definitions are
compliant with the IEC 61499 standard. The device model
can contain multiple resource models and task models. The
resource model is the abstraction of a hardware computing
unit onwhich several tasks are executed. In this sense, the def-
inition of resource model in our DSML is different from
what it is in the IEC 61499 standard. The task model is the
extension of the IEC 61499 standard for describing schedul-
ing objects and for capturing timing constraints during the
design process. The task models should be assigned to a
specific resourcemodel by developers. The applicationmodel
in the system layer consists of function block network inter-
acted via event and data connections. The FBs and related
connections will be allocated to specific tasks, as defined in
the configuration model. Some constraints are simply defined
as attributes of the models, such as the timing parameters
for tasks (deadline, worst-case execution time, etc.), while
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more complicated requirements can be specified with the
atom called constraints in Fig. 4. Finally, meta-models for
the function block model, are described in Fig. 5. Since the
definitions of FB have been extensively studied, they will not
be elaborated in this section.

FIGURE 5. The meta-models of FB in our DSML in MetaGME notation
(core parts).

On completing the meta-model definitions of the DSML
for machine control system, the corresponding domain mod-
eling environment can be set up automatically via built-in
meta-model interpreter of GME. Developers can compose
their machine control applications in the environment in
a more intuitive and effective manner. A proof-of-concept
motion control kernel is developed with the proposed DSML
and the supporting environment, as shown in Fig. 6. The ker-
nel runs on common hardware platform instead of proprietary
embedded solutions. In our case, an industrial personal com-
puter (i.e., the SoftMotionControllermodel in Fig. 6)
and the X86 platform (the MotionControlCore model
in Fig. 6) are employed, where the operating system is
Windows 8 patched with real-time extensions (RTX64 3.0)
from the Interval Zero Inc. The control kernel interacts
with three servo drives directly via the EtherCAT protocol,
which is a widely adopted real-time ethernet protocol in
the industrial automation domain. We model a basic motion
control task in this case, which contains the PROFILE FB
for trajectory planning based on the S-shaped velocity con-
trol algorithm, as well as the CSP FB for cyclic synchro-
nized position control via EtherCAT. The ECAT_MN FB
represents the EtherCAT master, and the STATUS port of
ECAT_MN is connected to the SD_1 port of the publisher
FB PUBLISHER_3. The publisher FB PUBLISHER_3 will
transmit the values of SD_1, SD_2 and SD_3 to other
subscribers via OPC UA. In this case, the subscriber is corre-
sponding to the communication interface of the self-adaptive
control modules. The example models will be deployed to
our proposed run-time framework for implementing machine
control functions.

FIGURE 6. Models for implementing motion control kernel. (a) The
system model and device models. (b) The application model.

B. DESIGN OF RUN-TIME RECONFIGURABLE
FRAMEWORK
In this section, a run-time framework compliant with the
IEC 61499 standard is presented for implementing the MIC
paradigm in execution phase. Firstly, a domain-independent
IEC 61499 execution environment is implemented. Then,
an extended framework containing algorithms, libraries of
FB types and resource types specific to the machine control
domain are integrated. Reconfigurability is realized through
implementing the IEC 61499 management model. The archi-
tecture of the proposed framework is illustrated in Fig. 7.
The framework contains IEC 61499 model execution layer,
algorithm libraries, EtherCAT master stack and OS-specific
layer. The IEC 61499 model execution layer is responsi-
ble for implementing the reference models of IEC 61499.
The algorithm library provides various kinds of algorithms
for motion controls, such as trajectory planning, kinematics,
control law, etc., which are invoked by FBs in the upper
IEC 61499 model execution layer. The OS layer is defined to
provide a programming interface with consistent style across
multiple platforms for algorithm layer, through encapsulating
hardware-dependent functions.

The execution environment implements the referencemod-
els defined by IEC 61499 along with several extensions,
including FB chain model and event priority. The concept
of FB chain model is corresponding to the task model in the
design phase, which is proposed as the dynamic information
container of FB models while the IEC 61499 resource model
being the static information container. Besides, priority-
denoted event connection is proposed to enhance determi-
nacy. The binary-heap based priority queue is adopted for
implementing event propagation mechanism among FB net-
work. Furthermore, integration of various existing execution
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FIGURE 7. The architecture of the proposed run-time framework.

semantics is considered to tame behavioral heterogene-
ity after applying machine control domain specific con-
straints. Preliminary implementation of the standard run-time
IEC 61499 management functions is also achieved, which
makes reconfigurability possible in the final system.

In our proposal, the FB chain model acts as the container
of dynamic information, such as the ID of instance name,
active event and execution state of FB instances. The FB chain
model contains a series of inter-connected FBs which starts
from Event Source FB (ESFB) and ends with Event Sink
FB (ESKFB), forming an independent execution task during
the scheduling process. Each FB model is assigned to only
one FB chain for avoiding possible concurrent triggering.

On the other hand, static information of FB and FB net-
works resides in the resource model, including the ID of type
name, interface definition, internal structure, etc. In partic-
ular, the type information of FB chain model is also stored
in the resource model. Several types of FB chain model are
defined to respectively implement a specific kind of execution
semantics. Correspondingly, various kinds of resource model
are established and each kind of resource model maintains
a pointer list referring to specific type of FB chain model.
Therefore, multiple FB chain instances with identical execu-
tion semantics can exist in one resource model while different
kinds of resource models may vary in execution behaviors.
In this sense, integration of multiple execution semantics in a
single framework can be achieved. Currently, the cyclic-scan
based semantics and sequential event-trigger based semantics
are integrated in the runtime environment.

Implementation of the management function is another
critical part of the execution environment since it enables
dynamic reconfigurability. The execution environment
supports all basic management commands defined in
IEC 61499, except operations on data type. Developers can
deploy designed models to the environment using these
XML-formatted commands, and the execution environment
interprets the commands to carry out related operations
dynamically. With respect to dynamic creation of FB types,

the paper presents an interpreter-based proposal. During
design-phase process, the design tool translates user defined
algorithms in FB type definition file to C language and then
the processed file is deployed to the execution environment
for interpreting. The proposal is implemented through the
adoption of a high-performance and portable C language
interpreter: Tiny C Compiler (TCC).

The extended framework for machine control domain is
based on the IEC 61499 execution environment. On the
OS layer, hardware-specific axis objects and axes group
objects are defined for interacting with drives or stepper
motors directly. On the upper layer, algorithms for motion
control tasks, including control law (such as adaptive PID
control), trajectory planning (such as trapezoidal/S-shaped
velocity profiling), kinematics, etc., are encapsulated in port-
based modules.

A resource model for low level motion control and several
resource models for high level applications are integrated
on the IEC 61499 model execution layer. The former model
concerns about motion commands interpreting, trajectory
planning and drive controlling. The specific functions are
implemented in various FB chains. The latter model forms
the user-specific application layer of machine control system,
containing automation tasks defined by the users, which are
usually related to dedicated manufacturing processes. These
types of resources are modeled in the same modeling envi-
ronment, but they adopt different kinds of FB type libraries.
In our case, the designed models shown in Fig. 6 are deployed
to the run-time framework to implement low-level motion
control functions.

V. KNOWLEDGE BASE DEFINITIONS AND SELF-
RECONFIGURATION IMPLEMENTATION
The proposed knowledge-driven self-adaptive control mod-
ule is introduced in this section. Firstly, the meta-models
defined in Section IV-A will be mapped to the Terminologi-
cal box (TBox) in the knowledge base ontologically, while
the example application in Section IV-B is mapped to the
Assertional box (ABox). Status of the run-time framework
deployed in the controllers will be collected by in-house
developed OPC UA historian client, which stores the col-
lected information in rational database. The self-adaptive
control module will periodically monitor the status via query-
ing database and mapping retrieved values to data proper-
ties of individuals in the knowledge. The monitoring results
are analyzed to generate symptom assertions. The generated
symptoms will be further inferred to figure out correspond-
ing reconfiguration requests in the knowledge base. These
requests are forwarded to the modeling environment for fig-
uring out themanagement commands, which will be executed
in the run-time environments for reconfiguration. In this way,
self-reconfiguration of low-level machine control system can
be achieved.

The ontological models defined in this section include the
IEC 61499 library elements, the extension of task model as
well as the concepts for self-adaptive controls. Fig. 8 shows
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FIGURE 8. The ontological models corresponding to the meta-models of
system/device/resource/task.

the ontological models corresponding to the meta-models
defined in Fig. 4, while Fig. 9 illustrates the concepts for self-
adaptive control. Fig. 10 represents the ontological models of
function block. Due to space limit, only critical parts of these
ontology are given. With regarding to the self-adaptive con-
trol elements, we define two main concepts: symptom and
action request. The concept of symptom is proposed
to summarize possible situations where reconfigurations are
required, while action request is for describing the
concrete solutions in the case of specific symptoms. The
requests will be interpreted by the modeling environment as
sequences of IEC 61499 management commands.

FIGURE 9. The ontological models of concepts involved in the process of
self-reconfiguration.

A. EXTRACTION OF SYMPTOMS
The concept of symptom in our ontology models is expressed
as the following axiom in the description logic:

Symptom v (= 1 Has_Symptom_Name.String

u = 1 Has_Symptom_Source.SourceObj

u = 1 Has_Symptom_SourceObjName.String)

Where SourceObj refers to the object (e.g., FB,
resource or device models) which needs to be reconfigured.

In our current proposals, two types of typical symptoms are
defined: UserRequest and CommunicationFailure.
The former symptom stands for external changes of user
demand regarding functions ofmachine control systems, such
as changing from trapezoid velocity profiling algorithm to
S-shaped profile in the trajectory planning FB. The latter

one concerns with the failures occurring during the com-
munication process, such as break down of communication
link, or topology modifications of field devices.

Currently, user request symptoms are inserted into knowl-
edge manually. On the other hand, the symptoms regard-
ing communication can be extracted automatically by the
monitoring function in the self-adaptive control module.
We propose an extendable approach to extract and ana-
lyze such symptoms from the run-time environment. Firstly,
the concerned information of machine control kernel will
be configured during the design process by connecting the
corresponding data ports of specific FBs to communication
FBs (for example, PUBLISHER_3 in Fig. 6). These com-
munication FBs publish the values of connected ports via
OPC UA. An in-house developed OPC UA historian client
will subscribe to these value nodes and store the collected
values to rational database.

When the developed models are deployed to the run-time
environment, the self-adaptive control module can be started,
which will repeatedly execute monitoring and analyzing
functions. The basic procedure of monitoring and analyzing
is illustrated in Fig. 11. The monitoring function will query
the database at the interval of 50 milliseconds. In details,
it retrieves values from the database with external SQL
rule files. Then, the monitoring function executes SPARQL
queries on the knowledge and updates the corresponding data
properties of individuals in the knowledge base according
to the results. The mapping relations are defined as external
rules with theOntop platform1 and reasoner, which provides a
configurable way to relate counterpart information in knowl-
edge base and data base. After updating the knowledge with
retrieved information from the database, new symptoms are
inferred according to the current facts using SQWRL query
rules. In this way, the monitoring function can be application-
agnostic since all of the rules are defined externally and can
be modified without reprogramming the module.

An example for demonstrating this procedure is described
as follow. Regarding the models defined in Fig. 6, when break
down of communication link occurs, the STATUS port of
ECAT_MN FB will report an error message with the string
value ‘‘SLAVELOST ’’, which is configured to be published
via OPC UA and stored in database. The monitor function
firstly relates this value to the data property of corresponding
individual in the knowledge though the rule defined in List. 1.
The second step is to execute externally pre-defined SQWRL
queries. The rule for extracting the symptom of communica-
tion failure is defined in List. 2. The antecedent part of this
rule can query all the individuals which have a output variable
named ‘‘STATUS’’ whose string value is ‘‘SLAVELOST’’.
The results of the query are provided according to the con-
sequent part of the rule, which will be used for inserting
the symptom of communication failure by the monitoring
function. The inferred symptoms will be further analyzed to
generate appropriate action requests for reconfiguration.

1http://ontop.inf.unibz.it/
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FIGURE 10. The ontological models corresponding to the meta-models of FB.

FIGURE 11. The execution procedure of modeling environment and
self-adaptive control module during reconfiguration.

List. 1. The mapping rule for correlated value of STATUS in database and
data property of STATUS individual in knowledge base.

B. GENERATION OF ACTION REQUESTS
The concept of action request in our ontology models is
expressed as the following axiom in the description logic:

ActionRequest v (

≥ 1 Has_ActionRequest_ActionType.ActionType

u ≥ 1 Has_ActionRequest_ActionTarget.ActionTarget)

WhereActionType={CREATE, DELETE, RESTART,
REPLACE}, and ActionTarget refers to the object (e.g., FB,
resource or device models) which needs to be
reconfigured.

List. 2. The SQWRL query example for extracting the symptom of
communication failure.

The analyze function in the self-adaptive control module
will execute another group of SQWRL queries to generate
action requests for specific symptoms. Based on the query
results, the self-adaptive control module insert new facts of
action requests in the knowledge and notify the modeling
environment to generate the corresponding IEC 61499 man-
agement commands. In the way, the close-loop structure
among the run-time framework, modeling environment as
well as the self-adaptive control module can be realized.

Two cases for automatically generating action requests are
discussed in this section. The first one concerns with the
previous symptom of communication failure, while the sec-
ond deals with the symptom of user request of changing
velocity profile algorithm. The SQWRL query example for
the communication failure symptom is given as List. 3 shows.
The name of symptom source in this case is the name of FB
ECAT_MN. The third parameter in the consequent part of the
rule in List. 3 indicates the following additional parameters
in this part. For communication failure, the solution in the
context of our example models is to restart the FB ECAT_MN.
This action on the FBECAT_MNwill reset the EtherCAT state
machines of the master and connected slave devices. In this
way, new configuration for the communication process can
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List. 3. The SQWRL query example for generating the reconfiguration
action requests in the case of communication failure.

FIGURE 12. Information reported by the servo drive and run-time
framework during reconfiguration. (a) The states of the servo drive.
(b) The logged information of the run-time environment.

be generated and the slaves can resume to be operational.
We conduct the experiment of self-reconfiguration in the case
of communication failure with the servo drive from Delta
Inc., of which the product type is ASDA2-E. The results are
demonstrated in Fig. 12. Fig. 12(a) presents the states of the
tested servo drive during various stages of the reconfiguration
process. When the drive is in the operational state, the current
position of themotor will be displayed.When the link is break
down, an error code ‘‘AL.185’’ will be reported. After apply-
ing the reconfiguration process wehen the link is resumed,
the servo can be recovered.

As for the second case, the SQWRL query example is
given as List. 4. This action request contains two steps: firstly
delete the existing FB with the type of ‘‘VELPROFILE’’,
then a new FB instance with the type of ‘‘T_VELPROFILE’’
is created. The modeling environment will accordingly deal
with the other related operations, such as delete/create nec-
essary connections for these FBs. We sample the calculated
results of these two profiling algorithms, as Fig. 13 shows.
The S-shaped profile is the default option in the FB with the

List. 4. The SQWRL query example for generating the reconfiguration
action requests in the case of user request on changing velocity profile.

FIGURE 13. The sampled velocity profiles before/after reconfiguration.

type of ‘‘VELPROFILE’’. By replacing the FB with the one
which adopts trapezoid profile according to the correspond-
ing action requests, the machine control kernel will be more
suitable to deal with simple point-to-point movements with
higher computation efficiency.

VI. CONCLUSION
In this paper, we propose a complete set of tools covering
the whole process of model-based design and implementa-
tion of knowledge-driven self-reconfigurable machine con-
trol system, with a bias toward the low level motion control
kernel. A domain-specific modeling language compliant to
the IEC 61499 standard is put forward, along with the sup-
porting modeling environment. The modeling language and
the supporting tool are constructed according to the MIC
paradigm. Several extensions of IEC 61499 are introduced
to meet the non-functional constraints in this domain, such
as the task model for capturing timing requirements and
priority-based event connection. The underlying reconfig-
urable run-time framework is implemented to execute the
domain models. Dynamically extendable FB type libraries
are constructed through runtime interpreting of FB type def-
inition files. On the basis of the modeling environment and
the run-time framework, a knowledge-driven self-adaptive
control module is developed. The ontological models for
IEC 61499 elements and self-adaptive control are designed
as the knowledge. The concepts of symptom and action
request are specified to summarize possible situations where
reconfigurations are required as well as the concrete steps.
The symptoms and action requests can be automatically
inferred based on SQWRL queries on the knowledge base.
A prototype motion control kernel is developed with our
proposed tool sets. Two case studies on self-reconfiguration
in the cases of user request and communication failure are
demonstrated, which prove the feasibility of our proposal.
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Future work in this direction is envisaged as follows:
• Considerations on the influences of the reconfiguration
process on the performance of the system;

• Model-based specification of user requirements to facil-
itate automatic extractions of the symptoms of user
requests.
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