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ABSTRACT We consider the resource allocation for the virtualized OFDMA uplink cloud radio access
network (C-RAN), where multiple wireless operators (OPs) share the C-RAN infrastructure and resources
owned by an infrastructure provider (InP). The resource allocation is designed through studying tightly
coupled problems at two different levels. The upper-level problem aims at slicing the fronthaul capacity
and cloud computing resources for all OPs to maximize the weighted profits of OPs and InP considering
practical constraints on the fronthaul capacity and cloud computation resources. Moreover, the lower-level
problems maximize individual OPs’ sum rates by optimizing users’ transmission rates and quantization
bit allocation for the compressed I/Q baseband signals. We develop a two-stage algorithmic framework to
address this two-level resource allocation design. In the first stage, we transform both upper-level and lower-
level problems into corresponding problems by relaxing underlying discrete variables to the continuous
ones. We show that these relaxed problems are convex and we develop fast algorithms to attain their optimal
solutions. In the second stage, we propose twomethods to round the optimal solution of the relaxed problems
and achieve a final feasible solution for the original problem. Numerical studies confirm that the proposed
algorithms outperform two greedy resource allocation algorithms and their achieved sum rates are very
close to sum rate upper-bound obtained by solving relaxed problems. Moreover, we study the impacts of
different parameters on the system sum rate, performance tradeoffs, and illustrate insights on a potential
system operating point and resource provisioning issues.

INDEX TERMS Cloud radio access network, resource management, platform virtualization, computational
efficiency.

I. INTRODUCTION
Next-generation wireless cellular systems are expected to
provide significantly higher capacity in a cost-efficient man-
ner to support the tremendous growth of wireless traffic and
services [1], [2]. Some recent studies have indicated that the
traditional model of single ownership of network architecture
can be inefficient because the average load demand is usually
much lower than the designed peak demand [1]–[3], [7], [8].
Therefore, advanced access techniques for C-RAN and wire-
less virtualization to support multiple OPs (also called ‘‘wire-
less network virtualization (WNV)’’) have attracted a lot of
attention from both industry and academia [1]–[8], [13].

By realizing various communications and processing func-
tions in the cloud, C-RAN enables more efficient utiliza-
tion of network resources, which results in better network
throughput and reduced network deployment and oper-
ation costs. With WNV, multiple OPs can efficiently
share various network resources such as radio spec-
trum, computation resources, backhaul/fronthaul capacity;

hence, the capital expenditures (CAPEX) and operating expe-
nses (OPEX) can be reduced significantly [8], [7]. To attain
the potential benefits of the C-RAN and WNV technolo-
gies, one has to address many technical challenges [4], [8].
Resource allocation, which determines the allocation of cen-
tralized computation resource [5], [6], fronthaul capacity [9],
radio spectrum and power allocation in C-RAN [4], and the
slicing/allocation of infrastructure resources for different OPs
to optimize desired design objectives in WNV are among the
major research challenges [8].

A. RELATED WORKS
Recent literature on C-RAN and WNV has tackled some of
these technical problems which are described in the follow-
ing. In particular, the authors in [10] consider the spectrum
sharing problem in a heterogeneous wireless network where
small-cell base stations are optimally matched with OPs.
In [11], the virtual resource slicing problem, which aims
at maximizing the system utility as a function of achieved
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cumulative rates and assigned resource slots while meeting
the requirement of each slice is studied. The slicing prob-
lem for different OPs is also considered in [12] where a
fairness-based dynamic resource allocation scheme is pro-
posed. Recently, a novel energy-efficient resource alloca-
tion strategy is proposed for C-RAN virtualization with
optical fronthaul [13] where the matching problem between
cells, users, baseband units (BBUs), and a number of wave-
lengths in optical links is investigated. Two heuristic meth-
ods, namely static and dynamic ones, are presented to solve
this problem. However, these works do not study potential
strategies to share computation resources among OPs and
efficiently utilize the fronthaul transport network.

Resource allocation for efficient utilization of the C-RAN
fronthaul capacity has been studied in [14]–[19]. The
works [14]–[16] address the precoding problem for remote
radio heads (RRHs) to minimize the total power consumption
where [15], [16] consider the downlink while [14] addresses
both downlink and uplink communications. In [14] and [15],
the authors optimize the utilization of fronthaul links account-
ing for the power consumption of fronthaul links while we
consider the downlink joint transmission design for RRHs to
minimize the total transmission power under the fronthaul
capacity constraint in [16]. Moreover, the data compression
issue for reduction of fronthaul capacity utilization has been
addressed in [17] and [18] where [17] focuses on minimizing
the amount of data transmitted over the fronthaul transport
network while [18] jointly designs signal quantization and
power control to maximize the system sum rate. The authors
in [19] study the joint fronthaul signal compression and signal
recovery in the uplink C-RAN; however, this work does not
consider transmission design aspects.

A few existing works have considered the cloud com-
putation complexity for processing users’ data, which is
a major challenge in large-scale C-RAN deployment. The
works [20]–[23] study the optimization of C-RAN compu-
tational resources. Specifically, [20] models the computation
complexity in downlink communication considering com-
putational requirement of electrical circuits for processing
the base-band signals where the computation complexity
is a non-linear function of different parameters including
the number of antennas, modulation bits corresponding to
FFT blocks, the coding rate, and the number of data streams.
The work [21] then applies this model to quantify the C-RAN
energy-efficiency benefits. The authors in [22] propose a dif-
ferent computation complexity model for the uplink C-RAN
system, which accounts mainly for the decoding process of
turbo-encoded uplink data streams of all users. This work is
motivated by the fact that the power utilized in the decoding
process is much higher than that in the encoding process.
Based on this model, the authors address the rate allocation
for uplink transmissions to maximize the system sum rate
considering the cloud computational capacity constraint [23].
This work, however, assumes unlimited fronthaul capacity
and does not address the resource allocation. All these papers
have not studied the problem of end-to-end network slicing

of radio, fronthaul, and cloud computational resources for
C-RAN, which is studied in our current paper.

B. RESEARCH CONTRIBUTIONS
To the best of our knowledge, uplink C-RAN design
considering constraints on limited fronthaul capacity and
cloud computation resources has not been studied except
our previous work [25], which, however, relies on an
over-simplified computational complexity model and does
not consider the C-RAN virtualization issue. This paper
aims to fill this gap in the existing C-RAN litera-
ture where the virtualized OFDMA-based uplink C-RAN
design is addressed. In particular, we make the following
contributions.
• We consider the virtualized resource allocation design
for the uplink OFDMA-based C-RAN where an InP
leases its resources to different OPs to support their
mobile users. This design boils down to solving two-
level coupled problems where the upper-level problem
aims to determine the resource slicing solution for the
computation resource and fronthaul capacity to maxi-
mize the weighted profits of the InP and OPs while the
lower-level problems model the resource allocation of
individual OPs for their users. Specifically, each lower-
level problem must be solved by the corresponding
OP to maximize the sum rate of its users by determin-
ing the optimal rate and quantization bit allocations for
the resource slicing solution given by the upper-level
problem.

• We develop a two-stage solution framework to solve
the tightly coupled two-level problems. In stage one,
we study the relaxed problems of the corresponding
upper-level and lower-level problems to deal with the
discrete rate and quantization bit allocation variables.
We show that the relaxed problems in both levels are
convex and we describe how to solve these problems
optimally. Specifically, by employing the dual-based
approach, we derive the optimal rate and quantization bit
allocation solution for a given dual point, which enables
us to develop a fast algorithm to solve the relaxed lower-
level (RLL) problem optimally. Importantly, the optimal
solution of the RLL problem is employed to tackle the
relaxed upper-level (RUL) problem. In the second stage,
we propose two rounding methods which are applied to
the optimal solutions of the relaxed problems to attain a
feasible solution for the original problem.

• For performance evaluation of the developed algo-
rithms, we also describe two greedy resource allocation
algorithms. Extensive numerical studies are conducted
where we examine the convergence and efficiency of the
proposed algorithms as well as the impacts of different
system parameters on the system sum rate. In addition,
we also study different tradeoffs, which characterize
the relations of available resources, resource provision-
ing, and the corresponding benefits achieved by the
InP and OPs.
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Some preliminary results of this work have been pub-
lished in [24]. However, the work in [24] only studies the
optimization of transmission rate and quantization bit allo-
cation, which corresponds to the lower-level problem inves-
tigated in this journal paper. Specifically, the current journal
paper studies the more complicated and coupled problems in
two different levels which optimize the slicing of fronthaul
and computation resources as well as transmission rate and
quantization bit allocation. Therefore, the algorithm design
and development in this journal version are more extensive
compared to those in the conference work [24]. Moreover,
numerical results in this journal version are different from
those in the conference work [24] since the two-level end-
to-end network slicing design in the current paper is more
general than the one-level resource allocation engineering
in [24].

The remaining of this paper is organized as follows.
We describe the system model and formulations of two-level
problems in Section II. In Section III, we characterize the con-
vexity of these relaxed problems. Then, we develop the opti-
mal algorithms to solve these relaxed problems and present
the proposed rounding methods in Section IV. The greedy
resource allocation algorithm is presented in Section V.
Numerical results are presented in Section VI followed by
conclusion in Section VII. Key notations used in the paper
are summarized in Table 2 given at the end of the paper.

II. SYSTEM MODEL
We consider the C-RANwhich consists of BBUs in the cloud,
K RRHs, and the fronthaul transport network connecting
RRHs to the cloud. The C-RAN is owned by an InP which
leases network resources to O OPs to serve their own users.1

The uplink OFDMA transmission based on the 3GPP LTE
standard with full frequency reuse (frequency reuse factor
of one) is assumed. Specifically, each cell utilizes the whole
spectrum comprising S physical resource blocks (PRBs)
where each PRB corresponds to 12 sub-carriers (180 kHz)
in the frequency domain and a slot duration of ts = 0.5 ms,
which is equivalent to 7 OFDM symbols [6]. We denote the
set of all PRBs and OPs as S and �, respectively.
We assume that the PRB allocations to individual OPs

in each cell have been predetermined by any existing
algorithm.2 Moreover, let Sok denote the set of PRBs assigned
to OP o in cell k . We assume that ∪o∈�Sok = S and Sok
∩ Smk = ∅ for any two different OPs o and m. Therefore,
there is only inter-cell interference on a specific PRB if

1For the more general setting with multiple InPs, one must con-
sider how different InPs compete or cooperate in providing fronthaul
and computing resources for different OPs. The joint problem of InPs’
competition/cooperation and OPs’ resource allocation is certainly interesting
but challenging, which is reserved for study in our future work.

2The proposed design for optimized fronthaul capacity and computation
resource allocation can be realized for a given PRB solution, which can
be obtained by any existing PRB allocation algorithm such as that in [12].
In general, the fronthaul capacity and cloud computing resource allocation
can be optimized jointly with the PRB allocation; however, this joint alloca-
tion problem is more complex, which will be studied in our future work.

concurrent transmissions from different cells occur on the
underlying PRB. We assume that each RRH upon receiv-
ing users’ baseband signals of different OPs quantizes these
signals and forwards them to the cloud for decoding. In the
following, we refer to RRH k and its corresponding coverage
area as cell k . We further assume that both RRHs and users
are equipped with single antenna.
Let x(s)k ∈ C represent the baseband signal transmitted on

PRB s in cell k and we assume that the signal x(s)k has unit
power. Then, the signal received at RRH k on PRB s can be
written as

y(s)k =
∑
j∈K

h(s)k,j

√
p(s)j x

(s)
j + η

(s)
k , (1)

where K denotes the set of cells, p(s)j represents the trans-

mission power corresponding to x(s)j , h(s)k,j is the channel gain

from the user assigned PRB s in cell j to RRH k , and η(s)k ∼

CN
(
0, σ (s)2

k

)
denotes the complex Gaussian thermal noise.

A. SIGNAL QUANTIZATION AND PROCESSING
We assume that all baseband signals y(s)k must be quantized
and then forwarded to the cloud for further processing and
decoding, which are performed by the BBUs. Moreover,
RRH k uses b(s)k bits to quantize the real and imaginary parts
of the received symbol y(s)k . Then, according to the results
in [26], the quantization noise power can be approximated
as

q(s)k (b(s)k ) ' 2Q(y(s)k )/2b
(s)
k , (2)

where Q(y) =
(∫
∞

−∞
f (y)1/3dy

)3
/12, and f (y(s)k ) is the prob-

ability density function of both the real and imaginary
parts of y(s)k,u. Assuming a Gaussian distribution of the signal
to be quantized, we have [27]

q(s)k (b(s)k ) '

√
3π

22b
(s)
k +1

Y (s)
k , (3)

where Y (s)
k is the power of received signal y(s)k , which is equal

to

Y (s)
k =

∑
j∈K
|h(s)k,j|

2p(s)j + σ
(s)2
k = D(s)

k + I
(s)
k , (4)

where D(s)
k = |h

(s)
k,k |

2 p(s)k and I (s)k =
∑

j∈K/k |h
(s)
k,j|

2 p(s)j +

σ
(s)2
k . Then, the total number of quantization bits required by

all users of OP o which are forwarded from RRH k to the
cloud in one second (measured in bit-per-second (bps)) can
be expressed as3

Bok = 2NRE
∑
s∈So

k

b(s)k , (5)

3The total number of quantization bits Bok for each OP o is normalized to
one second; therefore, the number of resource elements NRE is defined for
each second. Note that the normalization of these quantities to one second
is performed just for calculation while the number of quantization bits for
individual users and subcarriers b(s)k must be re-optimized once the wireless
channel gains vary.
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where NRE is the number of resource elements (REs) in
one second and one subchannel of a PRB (corresponding to
12 subcarriers). Then, NRE can be calculated as NRE = 12×
7/ts [6] since each LTE slot spans an interval ts = 0.5mswith
7 symbols. Let b denote the vector whose elements represent
the numbers of quantization bits allocated to all users in the
network. For a given b, the quantized version of y(s)k can be
written as

ỹ(s)k = y(s)k + e
(s)
k , (6)

where e(s)k represents the quantization error for y(s)k , which
has zero mean and variance q(s)k (b(s)k ). The SINR of the signal
corresponding to PRB s in cell k can be expressed as

γ
(s)
k (b(s)k ) =

D(s)
k

I (s)k + q
(s)
k (b(s)k )

'
D(s)
k

I (s)k +
√
3πY (s)

k

22b
(s)
k +1

. (7)

B. DECODING COMPUTATIONAL COMPLEXITY
We assume that a data rate r (s)k (in ‘‘bits per channel use
(bits pcu)’’) on PRB s is chosen from a given discrete
set with MR different rates (i.e., different predetermined
modulation and coding schemes) R = {R1,R2, . . . ,RMR}.
Moreover, the chosen rate is set smaller than the link
capacity to ensure satisfactory communication reliability and
manageable decoding complexity, i.e., r (s)k ≤ log2(1 +
γ
(s)
k (b(s)k )). We assume that the capacity-achieving turbo code

is employed, then the computation effort required to suc-
cessfully decode information bits depends on the number of
turbo-iterations. According to the results [22], the required
computation effort expressed in ‘‘bit-iterations (bi)’’ for
decoding the transmitted signal on PRB s in cell k is a
function of γ (s)

k (b(s)k ) and r (s)k which can be expressed as4

C (s)
k = χ

(s)
k (r (s)k , b

(s)
k )

= Ar (s)k
[
B− 2 log2

(
log2

(
1+ γ (s)

k (b(s)k )
)
− r (s)k

)]
,

(8)

where A = 1/ log2(ζ − 1), B = log2 ((ζ − 2)/(ζT (εch))),
ζ is a parameter related to the connectivity of the deco-
der, T (εch) = −T ′/log10(εch), T ′ is another model param-
eter, and εch is the target computational outage probability.
Note that the computational outage probability occurs when
there is not sufficient computational resources to correctly
decode the received signal. The set

{
T ′, ζ

}
can be selected

by calibrating (8) with an actual turbo-decoder implemen-
tation or a message-passing decoder. Let ro and bo denote
the vectors whose elements represent the data rates and num-
bers of quantization bits selected for all users from OP o,
respectively. Then, the total computation effort required by
the cloud to successfully decode the signals for all users from
OP o (calculated in ‘‘bi per second (bips)’’) can be expressed

4This required fronthaul capacity for each OP depends on all wireless
channel gains.

as [6]

Co(ro,bo) = NRE
∑
k∈K

∑
s∈So

k

C (s)
k . (9)

C. BI-LEVEL RESOURCE ALLOCATION FORMULATION
We now present the bi-level problem formulation that models
the interactions among the C-RAN InP, the OPs, and mobile
users. Specifically, the OPs must pay the InP to rent net-
work resources, which are then utilized to provide services
to the mobile users. Moreover, such problem formulation
must account for limited cloud computational effort and fron-
thaul capacity. The upper-level problem aims to maximize
the weighted sum profit of the InP and OPs through slic-
ing the fronthaul and computational resources for different
OPs while the lower-level problems for individual OPs opti-
mize the rate and quantization bit allocation to achieve their
maximum sum rates. By solving these two-level problems,
we can obtain an equilibrium, which would be desirable for
the InP and all OPs.

In the considered bi-level problem formulation, the per-
formance measure of interest is the profits achieved by the
InP and OPs which are modeled as follows. Let Co and
Bok denote the computational effort and the total quantization
bits per second corresponding to RRH k that OP o requires
from the C-RAN InP (i.e., the required amount of fronthaul
capacity). Moreover, the prices corresponding to one unit of
computational effort and fronthaul capacity are denoted as
ψo (¢/bips) and βok (¢/bps), respectively. We assume that the
profit obtained by the InP is equal to the total payment from
all OPs (i.e., we omit the operation cost since it simply adds
a constant term to underlying optimization objective), which
can be calculated as

GInP
=

∑
o∈�

GInP
o =

∑
o∈�

(
ψoCo

+

∑
k∈K

βokB
o
k

)
, (10)

where GInP
o is the payment from OP o to the InP for using the

amount of cloud computational resource Co and the amount
of fronthaul capacity Bok for RRH k , i.e., GInP

o = ψoCo
+∑

k∈K
βokB

o
k . For convenience, let us define B

o
= [Bo1, . . . ,B

o
K ].

Let us define Ro(Co,Bo) =
∑

k∈K
∑

s∈So
k
r (s)k as the total

rate of all users from OP o, which is achieved by using the
amount of computational resource Co and the amount of
fronthaul capacity Bo. Then, the profit achieved by OP o,
which is equal to revenue minus cost, can be expressed
as

GOP
o = ρ

oNRERo(C
o,Bo)− GInP

o , (11)

where ρo (¢/bps) is the price per rate unit that OP o obtains
by providing services to its users. The upper-level problem
aims to maximize the weighted sum profit of the InP and OPs,
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which can be mathematically stated as5

max
{Co,Bo}

υ InPGInP
+

∑
o∈�

υoGOP
o (12a)

s. t.
∑
o∈�

Co
≤ C̄cloud, (12b)

∑
o∈�

Bok ≤ B̄k , ∀k ∈ K, (12c)

where υ InP and υo represent the weights corresponding to the
InP and OP o, respectively, which can be used to control the
desirable profit sharing between the InP andOPs. In fact, only
relative values of these weights are important in determining
the slicing solution for the cloud computing and fronthaul
capacity resources (i.e., Co,Bo). In some implementation,
we can normalize these weights so that their sum is equal
to 1, i.e., ῡ InP

+
∑
o∈�

ῡo = 1. Moreover, C̄cloud describes the

available computational resource in the cloud and B̄k denotes
the capacity of the fronthaul link connecting RRH k with the
cloud.

In the lower level, each OP is interested in maximizing
the sum rate through optimizing transmission rates and the
numbers of quantization bits allocated to individual users.
Because the SINR γ

(s)
k (b(s)k ) is a complicated function of

quantization bits b(s)k , we present a tight lower bound of
the SINR in the following proposition. This SINR lower
bound enables us to focus on a good signal quantization
regime, which will be incorporated in the lower-level prob-
lems to have tractable design. Moreover, the SINR γ (s)

k (b(s)k )
can be upper-bounded by γ̄ (s)

k = D(s)
k /I

(s)
k , which can be

obtained by setting the quantization noise q(s)k (b(s)k ) = 0 in
the SINR expression.
Proposition 1: If the number of quantization bits b(s)k sat-

isfies q(s)k (b(s)k ) ≤
√
Y (s)
k I (s)k , then we have the following lower

bound for the SINR γ (s)
k (b(s)k )

γ
(s)
k (b(s)k ) ≥ γ (s)

k
=

√
γ̄
(s)
k + 1− 1. (13)

In addition, we have the following relations between the
SINR upper and lower bounds

γ (s)
k
'

√
γ̄
(s)
k when γ̄ (s)

k � 1, (14)

γ (s)
k
' γ̄

(s)
k /2 when γ̄ (s)

k � 1. (15)

Proof: The proof is given in Appendix A. �

5In general, both InP and OPs would like to maximize to their profits.
By maximizing the weighted sum profit of InP and OPs, we aim to reach a
Pareto-optimal solution, which can be desirable for both the InP and all OPs.
Here, the weights in the objective function can be pre-determined by all
stakeholders to reflect their priorities and/or contract agreements.

The requirement q(s)k (b(s)k ) ≤
√
Y (s)
k I (s)k in Proposition 1 is

indeed equivalent to b(s)k ≥ db
(s)
k e where

b(s)k =
1
2

log2

√3π
√√√√Y (s)

k

I (s)k

− 1

, (16)

and d∗e stands for the ceiling operation.
The lower-level problem for OP o (Po) can be formally

stated as

max
ro,bo

∑
k∈K

∑
s∈So

k

r (s)k (17a)

s. t.
∑
k∈K

∑
s∈So

k

C (s)
k ≤ C

o/NRE, (17b)

r (s)k ≤ log2
(
1+ γ (s)

k (b(s)k )
)
, ∀k ∈ K, ∀s ∈ Sok ,

(17c)∑
s∈So

k

b(s)k ≤ B
o
k/(2NRE), ∀k ∈ K, (17d)

b(s)k ≥ db
(s)
k e, ∀k ∈ K, ∀s ∈ Sok , (17e)

b(s)k is integer, ∀k ∈ K, ∀s ∈ Sok , (17f)

r (s)k ∈ R, ∀k ∈ K, ∀s ∈ Sok . (17g)

Constraint (17b) requires that the total computation effort
required by all users of OP o should not exceed the sliced
computational resource for this OP, Co, which is determined
from the upper-level problem. The second constraint (17c)
is the standard capacity constraint for PRB s while con-
straint (17d) ensures that the amount of fronthaul capacity
allocated for RRH k of OP o is upper bounded by Bok ,
which is also determined from the upper-level problem.
Constraints (17e) capture the good quantization regime with
the lower bound of quantization bits b(s)k given in (16).
This two-level resource allocation design is difficult to

tackle because we have to optimize the discrete variables
related to the rate and quantization bit allocation ro,bo

in the lower-level problem as well as the continuous vari-
ables Co,Bo in the upper-level problem. Moreover, compu-
tational complexity C (s)

k = {χ
(s)
k (r (s)k , b

(s)
k )} in the lower-level

problems is a complex function of the optimization variables
r (s)k , b

(s)
k . Finally, the lower-level and upper-level problems are

tightly coupled since the variables Co,Bo in the later are the
parameters in the former.
Remark 1: The objective function of the upper-level prob-

lem represents the weighted profits of the InP and all OPs.
If the weights of InP and OPs are the same (i.e., υ InP

=

υo,∀o), then the upper-level problem will optimize

max
{Co,Bo}

∑
o∈�

ρoNRERo(C
o,Bo), (18)

where recall that ρo (¢/bps) is the price per rate unit that
OP o obtains by providing services to its users. The objective
function in this case is the weighted sum of the total rates of
individual OPs. On the other hand, the lower-level problems
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aim to maximize the sum rates of OPs individually. Specifi-
cally, the OP o optimizes the sum rate of its users as

max
ro,bo

Ro(Co,Bo) =
∑
k∈K

∑
s∈So

k

r (s)k . (19)

Therefore, the upper-level problem and lower-level problems
even in this special case still optimize different objectives;
therefore, we have to solve all these problems to obtain the
final network slicing solution.

III. PROBLEM TRANSFORMATION AND
CONVEXITY CHARACTERIZATION
We propose a two-stage solution framework to solve the
bi-level resource allocation formulation where we solve the
relaxed problems in the first stage and develop rounding
methods to find an efficient and feasible solution for the
original design problems in the second stage.

A. PROBLEM RELAXATION
The lower-level problem with discrete optimization vari-
ables bo and ro plays an important role in our design. Since
optimization discrete variables are highly complex, we adopt
the natural relaxation approach to tackle the lower-level prob-
lems where the discrete variables are relaxed into the contin-
uous ones. Specifically, the constraint (17g) is relaxed to

Rmin ≤ r
(s)
k ≤ Rmax, ∀k ∈ K, ∀s ∈ S, (20)

where Rmin = R1 and Rmax = RMR represent the lowest
and highest rates in the rate set R, respectively. With this
relaxation, we study the following relaxed lower-level (RLL)
problem6

max
ro,bo

∑
k∈K

∑
s∈S

r (s)k s. t. (17b)-(17e) and (20). (21)

Let R̄o(Co,Bo) denote the optimal total rate of all users from
OP o obtained by solving this RLL problem. It is clear that
R̄o(Co,Bo) is the upper bound of Ro(Co,Bo). Based on the
obtained rates R̄o(Co,Bo), we consider the following relaxed
upper-level (RUL) problem

max
{Co,Bo}

∑
o∈�

9o(Co,Bo)

= υ InPGInP
+

∑
o∈�

υo
(
ρoNRER̄o(C

o,Bo)− GInP
o

)
s. t. (12b), (12c), (22)

where9o(Co,Bo) = (υ InP
−υo)GInP

o +υ
oρoNRER̄o(Co,Bo).

Remark 2: Note that the feasible regions of the relaxed
problems are larger than those of the corresponding original
problems. Hence, the upper-level and lower-level problems
are infeasible if the RUL and RLL problems are infeasible,
respectively.

6Constraints (17f) are not needed after relaxation.

B. CONVEXITY CHARACTERIZATION
1) CONVEXITY OF RLL PROBLEM
To solve the RLL problem, we first characterize the con-
vexity of the computational complexity function C (s)

k =

{χ
(s)
k (r (s)k , b

(s)
k )} in the following theorem.

Theorem 1: χ (s)
k,u(r

(s)
k , b

(s)
k ) is a jointly convex function with

respect to variables (r (s)k , b
(s)
k ) if

q(s)k (b(s)k ) ≤
√
Y (s)
k I (s)k . (23)

Proof: The proof is given in Appendix B. �
Based on the result in this theorem, we state the convexity

of the RLL problem in the following proposition.
Proposition 2: The RLL problem (21) is convex.
Proof: Note that the condition required to have the

SINR lower bound (13) in Proposition 1, which is cap-
tured in constraint (17e), is exactly the requirement in (23).
Hence, the constraint (17b) is convex if b(s)k satisfies the
constraint (17e). In addition, the constraint function in (17c)
is convex due to the fact that log2

(
1+ γ (s)

k (b(s)k )
)
is a concave

function with respect to b(s)k . Moreover, the objective function
and other constraints of the RLL problem (21) are in linear
form. Therefore, the RLL problem (21) is convex. �

2) CONVEXITY OF RUL PROBLEM
We characterize the convexity of the RUL problem in the
following theorem and proposition.
Theorem 2: R̄o(Co,Bo) is a concave function with respect

to Co and Bo.
Proof: The proof is given in Appendix C. �

Based on the result in this theorem, we have the following
proposition.
Proposition 3: The RUL problem (22) is convex.
Proof: Due to the result in Theorem 2, the objective

function of the RUL problem is concave with respect to vari-
ables Co and Bo. In addition, all the constraint functions are
in linear form. Therefore, the RUL problem (22) is convex.

�

IV. RESOURCE ALLOCATION ALGORITHMS
A. PROPOSED ALGORITHM TO SOLVE RLL PROBLEMS
According to the result in Proposition 2, the RLL problem
is convex and it can be verified that Slater’s conditions hold;
hence, it can be solved optimally by tackling the correspond-
ing dual problem. Specifically, the dual function g(λ) of the
RLL problem can be defined as

go(λo) = max
ro,bo

8o(λo, ro,bo) s. t. (17c)-(17e) and (20),

(24)

where 8o(λo, ro,bo) is the Lagrangian obtained by relaxing
the constraint (17b), which can be expressed as

8o(λo, ro,bo) =
∑
k∈K

∑
s∈So

k

r (s)k

−λo

∑
k∈K

∑
s∈So

k

C (s)
k −

Co

NRE

 , (25)
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8o
k (λ

o, rok ,b
o
k ) =

∑
s∈So

k

r (s)k − λ
o
∑
s∈So

k

C (s)
k =

∑
s∈So

k

[
(1− λoAB)r (s)k + 2λoAr (s)k log2

(
log2

(
1+ γ (s)

k (b(s)k )
)
− r (s)k

)]
(29)

where λo denotes the Lagrange multiplier. Then, the dual
problem can be written as

min
λo

go(λo) s. t. λo ≥ 0. (26)

Since the dual problem is always convex, go(λo) can be
minimized by using the standard sub-gradient method where
the dual variable λo can be iteratively updated as follows:

λo(l+1) =

λo(l) + δo(l)
∑
k∈K

∑
s∈So

k

C (s)
k −

Co

NRE

+, (27)

where l denotes the iteration index, δo(l) represents the step
size, and [x]+ is defined as max(0, x). This sub-gradient
update guarantees to converge to the optimal value of λo

for given primal point (ro,bo) if the step-size δo(l) is chosen
appropriately so that δo(l) → 0 when l → ∞ such as δo(l) =
1/
√
l [28].

To solve the RLL problem optimally, one can iteratively
solve problem (24) for a given dual point λo and employ
the sub-gradient method to update λo as in (27). There-
fore, the remaining step is to solve the optimization problem
in the right-hand-side of (24). We will show that this can
be accomplished by decoupling this problem into K sub-
problems corresponding to K cells and iteratively solving
these sub-problems optimally. It can be verified that the
Lagrangian function (25) can be rewritten as

8o(λo, ro,bo) =
∑
k∈K

8o
k (λ

o, rok ,b
o
k )+ λ

o C
o

NRE
, (28)

where 8o
k (λ

o, rok ,b
o
k ) is expressed in (29) at the top of this

page and rok ,b
o
k represent the vectors of all rates and numbers

of quantization bits corresponding to cell k and OP o. There-
fore, we can decouple the RLL problem into K independent
sub-problems, (Po

k )’s, which are given as

(Po
k ) max

rok ,b
o
k

8o
k (λ

o, rok ,b
o
k ) (30a)

s. t. r (s)k ≤ log2
(
1+ γ (s)

k (b(s)k )
)
, ∀s ∈ Sok ,

(30b)∑
s∈So

k

b(s)k ≤ B
o
k/(2NRE), (30c)

b(s)k ≥ db
(s)
k e, ∀s ∈ Sok , (30d)

Rmin ≤ r
(s)
k ≤ Rmax, ∀s ∈ Sok . (30e)

This problem is still convex due to the result in
Proposition 2. In the following, we solve problem (Po

k ) opti-
mally by alternately optimizing over one variable in rok and b

o
k

while keeping the other fixed.

1) SOLVING (Po
k ) FOR GIVEN bo

k
For a given bok , problem (Po

k ) becomes

max
rok

∑
s∈So

k

[
E (s)
k r (s)k + 2λoAr (s)k log2

(
1−

r (s)k
t(b(s)k )

)]
(31a)

s. t. Rmin ≤ r
(s)
k ≤ min

(
t(b(s)k ),Rmax

)
,∀s ∈ Sok , (31b)

where E (s)
k =

(
1− λoAB+ 2λoA log2 t(b

(s)
k )
)
and t(b(s)k ) =

log2
(
1+ γ (s)

k (b(s)k )
)
.

The optimal solution of this problem is described in the
following proposition.
Proposition 4: The optimal solution to problem (31) can

be expressed as

r (s)?k = max
[
Rmin,min

(
t(b(s)k ),Rmax, r| ∂w(r)

∂r =−E
(s)
k

)]
,

(32)

where w(r) = 2λoAr log2
(
1− r/t(b(s)k )

)
.

Proof: The proof is given in Appendix D. �

2) SOLVING (Po
k ) FOR GIVEN ro

k
For given rok , problem (Po

k ) becomes equivalent to

max
bok

∑
s∈So

k

z
(
b(s)k
)

(33a)

s. t. b(s)k ≥ max
(
db(s)k e, t

−1
(
r (s)k
))
, ∀s ∈ Sok , (33b)∑

s∈So
k

b(s)k ≤ B
o
k/(2NRE), (33c)

where z(b(s)k ) = G(s)
k log2

(
log2

(
1+ γ (s)

k (b(s)k )
)
− r (s)k

)
,

G(s)
k = 2λAr (s)k , and t−1(r) is the inverse function of t(b).

The objective function of this problem is concavewith respect
to bok . Hence, this problem is a convex one whose opti-
mal solution can be obtained by studying the Karush-Kuhn-
Tucker optimality conditions. The optimal solution of this
problem is summarized in the following proposition.
Proposition 5: The optimal solution of problem (33) can

be expressed as

b(s)?k = max
(
db(s)k e, t

−1
(
r (s)k
)
, b| ∂z(b)

∂b =µ

)
, (34)

where µ is a constant so that
∑

s∈So
k
b(s)?k = Bok/(2NRE).

Proof: The proof is given in Appendix E. �
Remark 3: It can be verified that if (ro?k ,b

o?
k ) is the optimal

solution of the RLL problem, then (romin,b
o?
k ) is a feasible

solution where romin has the same size as rok and all of its
elements are equal Rmin. Therefore, the feasibility of the
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RLL problem can be verified by solving problem (33) with
rok = romin, which is indeed employed in the initialization step
of Algorithm 1 presented in the following.

3) PROPOSED ALGORITHM
We summarize how to solve the RLL problem in Algorithm 1.
In this iterative algorithm, we alternatively update one of the
two variables bok and rok while keeping the other fixed until
convergence. Because the optimal solution for each variable
can be obtained, the objective value increases over iterations
which ensures fast convergence for this algorithm. We then
update the dual variable λo as in (27) in the outer loop.

Algorithm 1 Algorithm to Solve RLL Problem

1: Initialization: Set r (s)k = Rmin ∀(k, s), λo(0) = 0 and l = 0.
Choose a tolerance parameter ε for convergence.

2: repeat
3: for k ∈ K do
4: repeat
5: Fix rok and update b

o
k as in (34) with λ

o
(l).

6: Fix bok and update rok as in (32) with λ
o
(l).

7: until Convergence.
8: end for
9: Calculate all C (s)

k with new rok and bok .
10: Update λo(l+1) as in (27).
11: Set l = l + 1.
12: until |λo(l) − λ

o
(l−1)| < ε.

B. PROPOSED ALGORITHM TO SOLVE RUL PROBLEM
Since the RUL problem is convex according to Proposition 3,
its optimal solution can be found efficiently by standard
convex optimization techniques. It appears non-tractable to
derive the closed-form optimal solution of the RUL prob-
lem. Therefore, we employ the sub-gradient method to solve
this problem based on the sub-gradient ∇R̄o(Co,Bo) of
R̄o(Co,Bo). Specifically, the sub-gradient method to itera-
tively update Co,Bo can be performed as follows:

[Co,Bo](l+1) = P
[
[Co,Bo](l) + τ o(l)∇9

o(Co,Bo)
]
, (35)

where [Co,Bo](l) denotes the vector formed from the opti-
mization variables Co and Bo, τ o(l) represents step size in

the iteration l, ∇9o(Co,Bo) =
[
∂9o(Co,Bo)

∂Co
∂9o(Co,Bo)

∂Bo1
. . .

∂9o(Co,Bo)
∂BoK

]T
.Moreover,P [Co,Bo] represents the projection

of Co,Bo to the feasible region, which is achieved by solving
the following quadratic problem

min
[Co,Bo]

‖[Co,Bo]− [Ĉo, B̂o]‖2 s. t. (12b), (12c), (36)

where Ĉo
= Co

(l) + δ
o
(l)∂9

o(Co,Bo)/∂Co and B̂ok = Bok,(l) +
δo(l)∂9

o(Co,Bo)/∂Bok , ∀k ∈ K are updated [Co,Bo] given
by (35). The sub-gradient based updates guarantee to con-
verge to the optimal values of Co,Bo if the step-size τ o(l) is

chosen appropriately to satisfy τ o(l) → 0 when l → ∞ such
as τ o(l) = 1/

√
l [28].

The remaining issue is to determine the value of
∇9o(Co,Bo), which can be expressed as

∇9o(Co,Bo)

= νoρoNRE


∂R̄o(Co,Bo)/∂Co

∂R̄o(Co,Bo)/∂Bo1
. . .

∂R̄o(Co,Bo)/∂BoK

+ (υ InP
− υo)


ψo

βo1
. . .

βoK

,
(37)

where ∂R̄o(Co,Bo)/∂Co and ∂R̄o(Co,Bo)/∂Bok , ∀k ∈ K, can
be approximated as

∂R̄o(Co,Bo)
∂Co '

R̄o(Co
+1Co,Bo)− R̄o(Co,Bo)

1Co , (38a)

∂R̄o(Co,Bo)
∂Bok

'
R̄o(Co,Bo +1Bok )− R̄o(C

o,Bo)
1Bok

, (38b)

where 1Bok is the vector of size K × 1 whose elements
are zero except that the k th element equals to 1Bok . In (38),
the values of 1Co and 1Bok , ∀k ∈ K are chosen sufficiently
small. We summarize the procedure to update [Co,Bo]’s in
Algorithm 2 which is employed to solve the RUL problem.

Algorithm 2 Algorithm to Solve RUL Problem

1: Initialization: Set Co
(0) = C̄cloud/O, and Bok,(0) = B̄k/O

for all (o, k) ∈ �×K, νo(0) = 0 for all o ∈ �, and l = 0.
2: repeat
3: Run Algorithm 1 to obtain {R̄o(Co,Bo)} with
{[Co,Bo](l)} for all o ∈ �.

4: Run Algorithm 1 to obtain R̄o(Co
+ 1Co,Bo) and

R̄o(Co,Bo +1Bok ).
5: Calculate ∇9o(Co,Bo) as in (37) by using

R̄o(Co
+ 1Co,Bo) and R̄o(Co,Bo + 1Bok ) to

determine ∂R̄o(Co,Bo)/∂Co, and ∂R̄o(Co,Bo)/∂Bok
for all (k, o) ∈ K ×� as in (38).

6: Update [Co,Bo](l+1) for all o ∈ � as in (35).
7: Set l = l + 1.
8: until Convergence.

C. ROUNDING DESIGN
After running Algorithm 2, we obtain a feasible solution
{Co,Bo} and their corresponding

{
r (s)Fk

}
and

{
b(s)Fk

}
of the

relaxed problems, which take real values. To obtain a feasi-
ble and discrete solution that satisfies the constraints (17e),
(17f), (17g), the continuous variables must be appropriately
rounded to the corresponding discrete values.7 This rounding
design must be conducted carefully because the resulting dis-
crete results may not satisfy the original cloud computation
and fronthaul constraints. Toward this end, we propose two
rounding methods which are described in the following.

7It is possible that no feasible discrete variables can be found from the
relaxed solutions

{
r (s)Fk

}
and

{
b(s)Fk

}
if the constraints of the original

problems are very tight.
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1) ROUNDING (IR) METHOD
For each OP, we iteratively run Algorithm 2 and perform the
following task in each iteration. We choose one value of r (s)Fk
(or b(s)Fk ), which is closest to one rate value in R (or an
integer) and fix it to that value in following iterations. This
one-by-one rounding process is repeated until convergence.

2) ONE-TIME ROUNDING AND ADJUSTING (RA) METHOD
This method has two phases for each OP. First, we round
all
{
r (s)Fk

}
and

{
b(s)Fk

}
to their closest values in R and the

set of integers, respectively in the first phase. Then, if any
constraints are violated, we round down the corresponding
variables one-by-one where the variable that affects the vio-
lated constraints the most is chosen in each rounding-down
step in the second phase.

V. GREEDY ALGORITHMS AND COMPLEXITY ANALYSIS
A. GREEDY ALGORITHMS
To the best of our knowledge, there is no existing resource
allocation algorithm for the end-to-end network slicing
design studied in this paper. For performance evaluation of
the developed algorithm, we present two greedy one-level
resource allocation algorithms as referencing benchmarks
in this section. Hence, the one-level benchmark approaches
will be considered by easing one of two challenges of bi-
level problem, i.e., network resource slicing among OPs
and resource allocation optimization for users of each OP.
Specifically, the C-RAN network resources InP are shared
directly to all OPs in the first approach, named ‘‘Slicing-
Relaxed Greedy Algorithm’’ (Algorithm 3) while resources
are allocated directly with respect to each user in the
second one, named ‘‘Resource-Allocation-Relaxed Greedy
Algorithm’’ (Algorithm 4).

1) SLICING-RELAXED GREEDY ALGORITHM
This algorithm includes two stages. In stage one, the network
resources of InP are fully sliced to OPs based on their upper
bound values of achievable rates. Then, each OP will allocate
the rate and quantization bits to its users. In particular, we first
estimate the upper bound of the rate r (s)k on every PRB s and

cell k as log2
(
1+ γ̄ (s)

k

)
where γ̄ (s)

k = D(s)
k /I

(s)
k . We then

allocate the computational and fronthaul capacity resources
for different OPs based on the upper bound of the sum rate of
each OP o as follows:

Co
ga = R̂oC̄cloud/

∑
o∈�

R̂o, (39)

Bok,ga = R̂ok B̄k/
∑
o∈�

R̂ok , ∀k ∈ K, (40)

where R̂ok =
∑

s∈So
k
log2

(
1+ γ̄ (s)

k

)
and R̂o =

∑
k∈K R̂ok .

In stage two, we propose a simple method to solve the
RLL problem for OP o with Co

ga and Bok,ga. Specifically,
we optimize the quantization bit allocation to maximize the

Algorithm 3 Slicing-Relaxed Greedy Algorithm
1: Define the network resource for each OP as in (39)–(40).
2: for OP o do
3: Calculate {b(s)′k }k∈K,s∈So

k
as in (42).

4: Set b(s)k = bb
(s)′
k c, for all (k, s) ∈ K × Sok .

5: Set r (s)k = maxr∈R r s. t. r ≤ t(b(s)k ), for all (k, s).
6: while Co

tt(r
o,bo) > Co

ga do
7: Find (k∗, s∗) = argmaxC (s)

k .
8: Reduce r (s

∗)
k∗ to the nearest value in R.

9: end while
10: end for

sum rate of all users by relaxing the underlying variables to
continuous ones and solving the following problem

max
b

∑
k∈K

∑
s∈S

log2
(
1+ γ (s)

k (b(s)k )
)

s. t.
∑
s∈So

k

b(s)k ≤ B
o
k,ga/(2NRE), ∀k ∈ K. (41)

Similar to problem (31), it can be shown that this problem is
convex because its objective function is concave. By studying
the KKT optimality conditions, we can obtain the optimal
solution as follows:

b(s)′k = max
(
0, b| ∂t(b)

∂b =ν

)
, (42)

where ν is a constant which must be set to satisfy∑
s∈S b

(s)′
k = Bok,ga/(2NRE). Then, we can obtain the feasible

vector b by applying the flooring operation to b′.
The remaining task is to determine the users’ rates that

satisfy constraints (17b) and (17c) which can be accom-
plished by applying the ‘‘Complexity Cut-Off’’ method [23].
Specifically, we start by setting each r (s)k to the highest value

in the rate set R which is smaller than log2
(
1+ γ (s)

k (b(s)k )
)
.

Then, we iteratively reduce the rate variable that requires
the highest computation effort if the cloud computation con-
straint is violated (i.e., the required computation effort of
OP o,Co

tt(r
o,bo), is greater than the assigned valueCo

ga). This
iterative process is performed until all cloud computation
constraints are satisfied.

2) RESOURCE-ALLOCATION-RELAXED GREEDY ALGORITHM
In this approach, we ease the difficulty of resource allocation
for each operator by setting the equal rate and quantization
bits for all users of each operator in each cell, i.e., r (s)k =

rok and b(s)k = bok = Bok/2NRE|Sok | if s ∈ Sok . Then,
the total CE required by the cloud to successfully decode
the signals for all users from OP o in cell k can be given
as Co

k (r
o
k , b

o
k ) = NRE

∑
s∈So

k
χ
(s)
k

(
rok , b

o
k

)
. Considering the

constraints (17c) and (17e) of the lower level problem, we can
rewrite the bi-level problem for given values of rok ’s into a
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Algorithm 4 Resource-Allocation-Relaxed Greedy
Algorithm
1: Choose rok as the largest value in R so that r ≤

mins∈So
k
log2

(
1+ γ̄ (s)

k

)
, ∀ (o, k).

2: repeat
3: Solve problem (43).
4: if Solution of (43) is infeasible then
5: Choose rok (r

o
k > Rmin) corresponding to the highest

value of
∑

s∈So
k
χ (rok , b

(s)
k ) and reduce its value to

the lower one in R.
6: end if
7: until Solution of (43) is feasible.

one-level problem as follows.

max
{bok }

NRE
∑
o∈�

[
υoρo

∑
k∈K
|Sok |r

o
k +

(
υ InP
− υo

)

×

∑
k∈K

2βok |S
o
k |b

o
k +

∑
s∈So

k

ψoχ
(s)
k

(
rok , b

o
k
) (43a)

s. t. NRE
∑
(o,k)

∑
s∈So

k

χ
(s)
k

(
rok , b

o
k
)
≤ C̄cloud, (43b)

∑
o∈�

2NRE|Sok |b
o
k ≤ B̄k , ∀k ∈ K, (43c)

rok ≤ log2
(
1+ γ (s)

k (bok )
)
, ∀ (o, k, s) ∈ �×K × Sok ,

(43d)
bok ≥ db

(s)
k e, ∀ (o, k, s) ∈ �×K × Sok . (43e)

Thanks to Theorem 1, one can see that the problem (43) is
convex if υ InP

≤ υo. Hence, this relaxed one-level problem
can be solved easily to obtain the network slices for all OPs
when rok ’s are given. When υ InP > υo, the problem (43)
aims to maximizing a convex function which can be solved
by linearising the objective function as shown in Frank-Wolfe
Algorithm [29]. Based on these interesting results, we devise
a heuristic approach to solve (12) which is summarized in
Algorithm 4. Specifically, we will search the values of rok ’s
from high to low to indicate the good ones for which the
problem (43) is feasible.

B. COMPLEXITY ANALYSIS
In this section, we investigate the complexities of our pro-
posed solution approach, e.g., Algorithms 2 integrating with
Algorithms 1 and two rounding methods, and two greedy
algorithms.

1) COMPLEXITY OF OUR PROPOSED ALGORITHMS
a: COMPLEXITY OF ALGORITHM 1
As can be observed, Algorithms 1 applies the ‘‘alternative
direction method’’ whose convergence rate is 1/m where m
is the number of iterations [30]. Additionally, based on the
Propositions 4 and 5, the complexity of each iteration of
Algorithms 1 mainly depends on that due to ‘‘water filling’’

process to calculate b(s)k , i.e.,O(|Sok | log(|S
o
k |)) [31] where |A|

stands for the cardinal number of setA. Hence, the complex-
ity of Algorithms 1 can be estimated as

XRLL = O(S log(S)F−1
fa (ζ−1

RLL)), (44)

where F−1
fa (.) is the inverse function of factorial function and

ζRLL is the solution accuracy of Algorithm 1.

b: COMPLEXITY OF ALGORITHM 2
It is observed that Algorithms 2 includes employing
Algorithms 1 several time to determine the the sub-gradient
values. In addition, Algorithm 2 employs the Sub-Gradient
Descent method [32]. Hence, the complexity of Algorithm 2
can thus be expressed as

XRUL = 2 O(K + 1)XRLL ×O(ζ−2RUL), (45)

where ζRUL is the solution accuracy of Algorithm 2.

c: COMPLEXITY OF IR METHOD
For IR method, each OP performs the one-by-one rounding
process and iteratively runs Algorithm 2 until convergence.
Therefore, the complexity of IR method can be estimated as
following.

XIR =
∑
o∈�

∑
s∈So

k

∑
k∈K

(2So + XRLL) , (46)

where So =
∑

k∈K |Sok |.

d: COMPLEXITY OF RA METHOD
For RA process, each OP rounds all its corresponding r (s)k ’s
and b(s)k ’s in the first phase and then one-by-one rounds down
the variable affecting the violated constraint the most. Thus,
the complexity of RA method can be calculated as

XRA = 2KS + 2R
B

2NRE
K 2S2XC, (47)

where XC is the complexity of calculating C (s)
k for specific

values of r (s)k and b(s)k .

2) COMPLEXITY OF GREEDY ALGORITHMS
a: COMPLEXITY OF ALGORITHM 3
As can be observed, Algorithms 3 employs the‘‘water filling’’
process to solve the problem (41) and to calculate b(s)k ’s after
fully slicing the network resource of InP to all OPs. Then,
it step-by-step reduces the value of r (s)k to the next smaller one
setR until the computation constraint is satisfied. Therefore,
the complexity of this algorithm can be determined as follows

XSl−Rlxed = O(KS log(KS))+ RK 2S2XC. (48)

b: COMPLEXITY OF ALGORITHM 4
In order to analyse the complexity of this algorithm, we first
consider how to duel with the problem (43). According
to [33], this problem can be solved by employing the duality
method. Specifically, the problem is solved by iteratively
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FIGURE 1. Simulation model.

FIGURE 2. Variations of sum rates over iterations.

solving the dual problem and updating Lagrange multiplier.
Obtained by moving the constraint (43a) into the objective
function, the dual problem is then similar to the problem (33).
Hence, the complexity of solving the dual problem in each
iteration is O(KS log(KS)) [31]. Based on the result in [33]
the number of iterations is O(ζ−24 ) where ζ4 is the solution
accuracy of Algorithm 4.

In addition, Algorithm 4 is proposed in the way that the
(43) is solved again whenever the value of rok ’s adjusted as in
Step 4-6. Therefore, the complexity of this algorithm can be
estimated as follows

XRa−Rlxed = ROKO(KS log(KS)ζ−24 ). (49)

VI. NUMERICAL RESULTS
We consider the 7-cell network for performance evaluation
where the distance between the centers of any two nearest
RRHs is 400m as shown in Fig. 1. In each cell, we ran-
domly place users so that the distance from the cell center
to every user is d (m) (i.e., all users have the same distance
to their corresponding RRHs in this simulation setting). The
channel gains are generated by considering both Rayleigh
fading and path-loss. The path-loss is modeled as Lkj,u =

36.8log10(d
k
j,u) + 43.8 + 20log10(

fc
5 ) where d

k
j,u denotes the

distance from user u in cell j to RRH k and fc = 2.5GHz. This
path-loss model is chosen according to the general form of
the path-loss formula (4.23) in [34], which is recommended
by the WINNER II channel modeling project. We set the
noise power σ 2

= 10−13 W and the power p(s)k = 0.1 W .

TABLE 1. Simulation Parameters.

FIGURE 3. Sum rate vs number of PRBs (S).

Moreover, we set T ′ = 0.2, ζ = 6 and εch = 10% for
the computation complexity model. The rate set R is chosen
corresponding to 27 distinct MCSs with turbo coding as in
the LTE standard [35]. In fact, the data rate corresponding to
each MCS can be calculated as TBS × 103/NRE where the
transport block size (TBS) for each MCS can be determined
as in [35, Table 7.1.7.2.1] with NPRB = 1. Key simulation
parameters are summarized in Table 1.

We assume that there are three OPs (O = 3) to obtain
results in all simulations. Except for the results in Fig. 3 and 9,
the numbers of PRBs assigned for these three OPs are set
equal to 5, 10, 15 in each cell, which means S = 30. In each
simulation, we allocate the PRBs to the users in each cell
randomly so that the assigned number of PRBs for each OP is
satisfied. In all simulations, we set the same fronthaul capac-
ity limit for different cells. To obtain the results in Figs. 2-4,
we set υ InP

= υo for all o ∈ �.
We illustrate the convergence of our proposed algorithms

in Fig. 2 where the variations of system sum rate and the
rates of individual OPs over iterations by using Algorithm 1
and Algorithm 2 to solve the relaxed problem are shown.
Note that the iterations in this figure correspond to the outer
loop of these algorithms. To obtain results in this figure,
B̄k is set equal to 120 Mbps for each cell k ∈ K and
C̄cloud = 90 Mbips. As can be seen, the system sum rate
increases over the first 25 iterations before settling down at
the maximum value. The third OP, who is assigned the largest
number of PRBs, achieves low sum rate at the beginning then
reaches the higher rate at convergence compared to the rates
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TABLE 2. Summary of Key Notations.

of other OPs. This is because OP 3 is assigned more network
resources than those for OPs 1 and 2.

In Fig. 3, we show the system sum rate obtained by differ-
ent schemes, namely our proposed algorithms without round-
ing (Relaxed Prop. Alg.), with IR-rounding and RA-rounding
methods (Prop. Alg. with IR and Prop. Alg. with RA),
and two greedy algorithms, i.e., Slicing-Relaxed Algorithm
(Sl-Rlxed Greedy Alg.) and Resource-Allocation-Relaxed
Algorithm (Ra-Rlxed Greedy Alg.), versus the number of

PRBs in each cell. To obtain these results, we sequentially
add one more PRB to each OP in each cell to obtain dif-
ferent points on each curve. The Relaxed Prop. Alg. gives
the upper-bound of the system sum rate of any resource
allocation algorithm. The fact that the sum rates achieved
by the Prop. Alg. with IR and Prop. Alg. with RA are very
close to that achieved by the Relaxed Prop. Alg. confirms the
efficiency of our proposed two-stage algorithms. Moreover,
our proposed algorithms outperform the greedy algorithms in

18686 VOLUME 5, 2017



V. N. Ha, L. B. Le: End-to-End Network Slicing in Virtualized OFDMA-Based C-RAN

FIGURE 4. Sum rate vs distance from RRHs to their users.

all studied scenarios and the Sl-Rlxed Greedy Alg. achieves
higher total sum rate than the Ra-Rlxed Greedy Alg. does.
In addition, the proposed algorithm with IR rounding results
in slightly better sum rate than the RA rounding based coun-
terpart. Interestingly, the system sum rate increases and then
decreases as number of PRBs in each cell increases. This is
because we focus on keeping the quality of the quantized
signal so that every user can achieve at least Rmin rate on
its assigned PRB. This also means that limited computation
and fronthaul capacity resources can indeed hurt the system
performance if the bandwidth provisioning is not properly
provisioned.

Fig. 4 shows the variations of the system sum rate due to
the Prop. Alg. with IR and Greedy Alg. versus the user-RRH
distance d under two different parameter settings, namely
C̄cloud = 150 Mbips and B̄k = 200 Mbps and C̄cloud =

90 Mbips and B̄k = 120 Mbps. We also present the upper
bound of the system sum rate, which is obtained by using the
SINR upper bound γ̄ (s)

k by setting the quantization noise on
all PRB s and cell k to zero. This rate upper bound is equal to∑
∀ (k,s) log2(1+ γ̄

(s)
k ) and it is denoted as ‘‘Shannon Limit’’

in this figure. For smaller d , the received signal becomes
stronger in combating the multi-cell interference leading to
higher link SINR γ̄ (s)

k , which explains the higher sum rate for
smaller d . It can also be observed that the achieved system
sum rate tends to the rate upper bound (i.e., the ‘‘Shannon
Limit’’) as the cloud computation and fronthaul capacity
limits increase. Moreover, the Prop. Alg. with IR outperforms
the greedy algorithms in all studied scenarios, which confirms
the excellent performance of our proposed design.

To illustrate the impacts of limited network resources,
we show the system sum rate upper-bound, which is the out-
come of Algorithm 2, versus the computation limit (C̄cloud)
and fronthaul capacity from the cloud to each cell B̄k in Fig. 5.
We can see that the higher cloud computation limit and
larger fronthaul capacity result in the greater sum rate as
expected. In addition, the sum rate becomes saturated as the
cloud computation limit or fronthaul capacity become suffi-
ciently large. These results imply that the proposed design
framework can be employed for provisioning the cloud com-
putation limit or fronthaul capacity and for analyzing the

FIGURE 5. Sum rate vs C̄cloud and B̄k .

FIGURE 6. OPs’ revenue/cost/profit vs service price ρo for users where
υ1 = υ2 = υ3 = 1.

FIGURE 7. OPs’ profits vs weighting parameter υ2 for υ1 = υ3 = 1.

provisioned network resources and performance tradeoffs.
This figure also illustrates the infeasible region of the bi-level
problem where this infeasible region can be defined by the
boundaries with C̄cloud less than around 30Mbips and B̄k less
than around 50 Mbps.

In Fig. 6 and 7, we study the profits achieved by the OPs by
setting υ InP

= 0. By setting υo = 1 for all o ∈ �, the upper-
level problem becomes the profit maximization problem for
all OPs whose results are illustrated in Fig. 6. In this figure,
the OPs’ cost (payment from all OPs to the InP), the OPs’
revenue (payment of all users to the OPs), and OPs’ profit
(revenue minus cost) obtained by different schemes, Prop.
Alg. with IR, Sl-Rlxed Greedy Alg. and Ra-Rlxed Greedy
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FIGURE 8. Satisfaction indexes of InP and OPs. (a) Tradeoff between
satisfaction indexes of InP and OPs. (b) Satisfaction indexes of InP and
OPs versus υop.

Alg., are shown versus ρo while ψo and βok = βo,∀k are
set equal to one for all o ∈ �. As can be seen, the OPs can
attain higher profit as the price per data rate unit ρo increases.
This is because the OPs’ cost tends to saturate at sufficiently
high ρo while the revenue scales linearly with the service
price. Once again, the performance of our proposed design is
demonstrated when the Prop. Alg. with IR gains higher prof-
its in comparison to the greedy algorithms at all values of ρo.
Interestingly, the Slicing-Relaxed Algorithm always utilize
the total fronthaul capacity and computation resource fully
where the corresponding total cost of all OPs are unchanged.
Hence, we can see in this simulation, our proposed algorithm
and Ra-Rlxed Greedy Alg. require more network resource
when ρo increase, but they do not utilize the total network
resource fully.

In Fig. 7, we study the impact of the weighting parame-
ters on the OPs’ profits. Specifically, we fix two weighting
parameters as υ1 = υ3 = 1 while varying the value of υ2

to obtain the curves in this figure. As expected, the profit of
OP 2 increases while those of remaining OPs decrease with
increasing υ2. In addition, the total profit of all OPs is also
presented and this figure indicates that the maximum profit
can be achieved when υ1 = υ2 = υ3 = 1.
We now study a satisfaction index for InP and OPs which

is defined as the ratio between the achieved profit and the
maximum potential profit in Fig. 8 where ρo is set equal to
5 (¢/Mbps) and ψo and βo are set equal to 1 (¢/Mbips and
¢/Mbps) for all OPs. Note that the maximum InP’s profit
can be calculated as ψoC̄cloud + β

o∑
k∈K B̄k (¢) while the

maximum profit of all OPs can be obtained by the same
method employed to obtain results in Fig. 6. Fig. 8a illustrates
the trade-off between the satisfaction indices of the InP and
all OPs for υ InP

= 1 and υ1 = υ2 = υ3 = υop as we vary the

FIGURE 9. Running time vs number of PRBs (S).

value of υop while Fig. 8b shows these satisfaction indexes
versus υop. As can be observed, when the satisfactory index
of InP equals to one, the OPs utilize all network resources.
It happens when υop

≤ 1 which leads to the minimum OPs’
satisfaction. Inversely, when the index corresponding to InP
is less than one, i.e. υop > 1, the total fronthaul capacity
and computational resources are not fully used and OPs’
satisfaction index increases. The presented tradeoff results
indicate that one can determine an operating point of the two-
level design framework where both the InP and OPs find it
satisfactory.

We study the complexities of the proposed algorithms
where we show their average running times versus the num-
ber of PRBs in Fig. 9. These running time values are obtained
by averaging over 1000 runs. It can be seen that the proposed
algorithms, Prop. Alg. with IR and Prop. Alg. with RA,
require much longer running time in comparison with the
two greedy algorithms, Sl-Rlxed Greedy Alg. and Ra-Rlxed
GreedyAlg.. Moreover, the Prop. Alg. with IR has the longest
running time while the Ra-Rlxed Greedy Alg. has the shortest
one. In addition, the required running time increases as the
number of PRBs in each cell increases as expected.

VII. CONCLUSION
We have proposed a novel algorithmic framework for uplink
wireless virtualization of the C-RAN supporting multiple
OPs via joint rate and quantization bit allocation for users
served by each OP. This design aims to maximize the
weighted sum profits of the InP andOPs considering practical
constraints on the fronthaul capacity and cloud computation
limits. Numerical results have illustrated that our proposed
algorithms outperform the greedy resource allocation algo-
rithms and achieve the sum rate very close to the sum rate
upper-bound obtained by solving relaxed problems. We have
also studied the impacts of various parameters on the system
sum-rate and relevant performance tradeoffs.

APPENDIX A
PROOF OF PROPOSITION 1
If b(s)k is selected so that q(s)k (b(s)k ) ≤

√
Y (s)
k I (s)k , we have

γ
(s)
k (b(s)k ) =

D(s)
k

I (s)k + q
(s)
k (b(s)k )

≥
D(s)
k

I (s)k +
√
Y (s)
k I (s)k

. (50)
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Substituting Y (s)
k = D(s)

k + I
(s)
k into this equality, we attain

γ
(s)
k (b(s)k ) ≥

D(s)
k /I

(s)
k

1+
√
D(s)
k /I

(s)
k + 1

=
γ̄
(s)
k√

γ̄
(s)
k + 1+ 1

=

√
γ̄
(s)
k + 1− 1 = γ (s)

k
. (51)

In addition, it can be verified that

• When γ̄ (s)
k � 1, we have

√
γ̄
(s)
k + 1 '

√
γ̄
(s)
k � 1.

Thus, we have γ (s)
k
'

√
γ̄
(s)
k .

• When γ̄ (s)
k � 1, we have

√
γ̄
(s)
k + 1 ' 1 + γ̄ (s)

k /2.

Hence, it can be implied that γ (s)
k
' γ̄

(s)
k /2.

This concludes the proof for Proposition 1.

APPENDIX B
PROOF OF THEOREM 1
To prove that χ (s)

k (r, b) is a convex function with respect
to variables (r, b), we will show that the Hessian matrix of
χ
(s)
k (r, b) is positive definite. For simplicity, we omit the

superscripts and subscripts in all notations, i.e., χ (r, b), D,
I and Y stand for χ (s)

k (r, b), D(s)
k , I (s)k and Y (s)

k , respectively.
First, we derive the Hessian matrix of χ (r, b). Let H =
[H11H12,H21H22] be the Hessian matrix of χ (r, b), its ele-
ments can be written as

H11 =
∂2χ (r, b)
∂r2

=
2Ar

(ln 2) (Z − r)2
, (52)

H12 =
∂2χ (r, b)
∂r∂b

= −
2
√
3πADYr

(ln 2)22bX (X + D)(Z − r)2
, (53)

H21 =
∂2χ (r, b)
∂b∂r

= −
2
√
3πADYr

(ln 2)22bX (X + D)(Z − r)2
, (54)

H22 =
∂2χ (r, b)
∂b2

=
6π2AD2Y 2r

(ln 2)24bX2(X + D)2(Z − r)2

+

2
√
3πADYr

[
22b+1X (X+D)−

√
3πY (2X + D)

]
24bX2(X + D)2(Z − r)

,

(55)

where X = I +
√
3πY

22 b+1 and Z = log2

(
1+ D

I+
√
3πY

22 b+1

)
. Let

q =
√
3πY

22 b+1 , then we have X = I + q, X + D = Y + q, and
√
3πY = 22 b+1q. Substituting these results into (55) yields

H22 =
6π2AD2Y 2r

(ln 2)24bX2(X + D)2(Z − r)2

+
4
√
3πADYr

(
IY − q2

)
22bX2(X + D)2(Z − r)

. (56)

Then, if IY ≥ q2, we will have H11,H22 > 0, and

det |H| = H11H22 − H12H21

=
8
√
3πA2DYr2

(
IY − q2

)
ln(2)22bX2(X + D)2(Z − r)3

≥ 0. (57)

Hence, the Hessian matrix of χ (r, b) is positive definite.
Thus, we can conclude that χ (r, b) is jointly convex with
respect to (r, b) if IY ≥ q2.

APPENDIX C
PROOF OF THEOREM 2
We will prove this theorem by using the definition of a
concave function, i.e., f (φx1 + (1− φ)x2) ≥ φf (x1)+ (1−
φ)f (x2) for all 0 ≤ φ ≤ 1. Let us consider two possible values
of the involved variables, (Co

1 ,B
o
1) and (Co

2 ,B
o
2). We assume

that there exists the optimum solutions for the lower-level
problems (17) corresponding to these two values of variables.
Moreover, the optimal sum rates for these cases are denoted
as R̄(Co

1 ,B
o
1) and R̄(C

o
2 ,B

o
2), respectively with {r

(s)
k,1, b

(s)
k,1} and

{r (s)k,2, b
(s)
k,2} being the optimal rates and number of quantiza-

tion bits, respectively. Then, {r (s)k,i, b
(s)
k,i} must satisfy all the

constraints of (17) corresponding to (Co
i ,B

o
i ) for i = 1 or 2.

For any value of φ such that 0 ≤ φ ≤ 1, we define {r (s)k,3, b
(s)
k,3}

as

r (s)k,3 = φr
(s)
k,1 + (1− φ)r (s)k,2, ∀ (k, s) ∈ K × Sok , (58)

b(s)k,3 = φb
(s)
k,1 + (1− φ)b(s)k,2, ∀ (k, s) ∈ K × Sok . (59)

Since all constraint functions of problem (17) are convex, it is
easy to see that {r (s)k,3, b

(s)
k,3} satisfy all the constraints of (17)

corresponding to
(
Co
3 ,B

o
3

)
, where Co

3 = φCo
1 + (1 − φ)Co

2
and Bo3 = φBo1 + (1 − φ)Bo2. Therefore, {r

(s)
k,3, b

(s)
k,3} is a

feasible solution of problem (17) corresponding to (Co
3 ,B

o
3).

Consequently, we have

R̄(Co
3 ,B

o
3) ≥

∑
k∈K

∑
s∈So

k

r (s)k,3

=

∑
k∈K

∑
s∈So

k

(
φr (s)k,1 + (1− φ)r (s)k,2

)
= φR̄(Co

1 ,B
o
1)+ (1− φ)R̄(Co

2 ,B
o
2), (60)

for any value of φ such that 0 ≤ φ ≤ 1. Hence, R̄(Co,Bo)
must be a concave function with respect to (Co,Bo) and we
have completed the proof for Theorem 2.

APPENDIX D
PROOF OF PROPOSITION 4
It can be verified that the second derivative of the objective
function of (31) is the same as that of w(r (s)k ) which can be
expressed as

∂2w(r (s)k )

∂r (s)2k

= −

2λAr (s)k + 4λA
(
t(b(s)k )− r (s)k

)
(ln 2)

(
t(b(s)k )− r (s)k

)2 , (61)

which is less than zero if t(b(s)k ) ≥ r (s)k . Hence, this function
is concave. Therefore, the optimum rate r (s)k can be obtained
by studying the KKT conditions. Taking the first derivative
of the objective function and setting it to zero results in

∂w(r)
∂r
= −E (s)

k . (62)

VOLUME 5, 2017 18689



V. N. Ha, L. B. Le: End-to-End Network Slicing in Virtualized OFDMA-Based C-RAN

Using the constraint (31b), the optimal solution to
problem (31) can be written as

r (s)?k = max
[
Rmin,min

(
t(b(s)k ),Rmax, r| ∂w(r)

∂r =−E
(s)
k

)]
.

(63)

Therefore, we have completed the proof of Proposition 4.

APPENDIX E
PROOF OF PROPOSITION 5
The Lagrangian of problem (33) can be expressed as

L
(
bok , µ

)
=

∑
s∈So

k

z
(
b(s)k
)
− µ

∑
s∈So

k

b(s)k − B
o
k/(2NRE)

 ,
(64)

where µ is the Lagrangian multiplier associated with the
fronthaul capacity constraint of problem (33). In addition,
the dual function of problem (33) can be written as

g(µ) = max
bok

L
(
bok , µ

)
s. t. b(s)k ≥ J

(s)
k , ∀s ∈ Sok , (65)

where J (s)k = max
(
db(s)k e, t

−1
(
r (s)k
))

. This problem can be
decoupled into S parallel sub-problems each of which corre-
sponds to one PRB. In addition, all these sub-problems have
the same structure. Since its objective function is concave,
each sub-problem can be solved by using the KKT condition
∂L

(
bok , µ

)
/∂b(s)k = 0, which is equivalent to

∂z(b(s)k )/∂b(s)k = µ. (66)

Using the constraint (33b), the optimal solution of b(s)k must
satisfy (34). In addition, the objective function is an increas-
ing function with respect to bok ; hence, the fronthaul capacity
constraint (33c) must be met with equality. Therefore, µ can
be determined to satisfy

∑
s∈So

k
b(s)k = Bk/(2NRE). There-

fore, we have completed the proof of Proposition 5.
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