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ABSTRACT Filtering or state estimation plays an important role in the cyber-physical systems (CPSs). This
paper aims to solve the data-driven non-fragile filtering problem for the cyber-physical system. Randomly
occurring gain variations are considered so as to account for the parameter fluctuations occurring during
the filter implementation. The data-driven communication mechanism is utilized to reduce the measurement
transmission frequency and save energy for the CPSs. Therefore, a unified H∞ filtering framework that
combines the data-driven communication mechanism and the non-fragility of filters is constructed. Based
on this unified framework, the influence of the simultaneous presence of networked-induced packet dropouts,
quantization, randomly occurring nonlinearities and randomly occurring parameter uncertainties in the CPS
is investigated. A modified dropouts model is proposed under the data-driven communication mechanism.
By utilizing stochastic analysis and Lyapunov functional theory, sufficient conditions guaranteeing the
filtering performance are derived. The H∞ filter is obtained through the proposed algorithm. Last, a
simulation is given to demonstrate the filtering method for CPS in this paper.

INDEX TERMS Cyber-physical systems (CPS), data-driven communication mechanism, ROGVs,
data-driven non-fragile filter, quantization effects, packet dropouts.

I. INTRODUCTION
In recent years, the cyber-physical systems which consist of
not only computing and communication technologies, but
also physical processes, have become an attractive research
area [1], [2]. Moreover, the filtering or state estimation prob-
lem for cyber-physical systems has attracted considerable
attention due to its importance in theory and comprehensive
existence in a variety of cyber-physical systems, such as
signal processing, smart grid, control engineering and target
tracking [3], [4]. As such, many filtering methods have been
proposed, for example, Kalman filtering and H∞ filtering.
Kalman filter has been widely applied in practical engineer-
ing since it was proposed in 1960. However, it is necessary
to point out that, the Kalman filtering is not useful for sys-
tems with parameter uncertainties or noises whose statistics
are unknown or only partially known. Fortunately, the H∞
filtering that doesn’t need statistical information of the noise
signal can be well applied for systems with parameter uncer-
tainties [5]. Moreover, the H∞ filter is more robust than the
Kalman filer [6]. Therefore, the H∞ filtering technique has
attracted persistent research attention. For example, H∞ fil-
tering problems have been solved in [7] and [8] for time-delay

systems, in [9] for linear uncertain systems, in [10] and [11]
for stochastic systems, in [12] for fuzzy systems, and in [13]
and [14] for nonlinear systems, etc. Also, H∞ performance
index has been studied for fault diagnosis problem for two-
dimensional systems in [15]. As such, we will design theH∞
filter for cyber-physical system in this paper.

As is known to all, CPSs contain colossal but redundant
system information which is exchanged between different
units through the communication network. It is of great sig-
nificance to design effective strategies capable of reducing the
data transmission frequency. In recent years, the data-driven
strategy has attracted a lot of attention. Compared with the
conventional time-driven communicationmechanism that has
been implicitly adopted by most filter algorithms, the data-
driven strategy could reduce the signal communication fre-
quency while maintaining guaranteed filtering performance.
Thus, when the limited channel bandwidth is concerned, the
data-driven communication mechanism is particularly signif-
icant for cyber-physical systems due to its advantage of reduc-
ing the communication burden and saving energy. So far,
the data-driven strategies have been successfully applied in
various cyber-physical objects, for example, network-based
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control systems [16], [17], sensor systems [19], neural net-
works [20] and multi-agent systems [21], [22]. However, in
the field of filtering problem, the corresponding data-driven
filter design for cyber-physical systems is relatively few.

It has been well known that, in practical cyber-physical
systems, limited channel bandwidth and complex net-
work circumstance inevitably cause random network-
induced phenomena, for example, data missing or packet
dropouts [23]–[25], signal quantization [8], [26], [27],
RONs [28], [29], ROUs [30], [31], etc. It is worth pointing
out that, if not properly coped with, these network-induced
phenomena will seriously degrade the performance of CPSs.
As such, significant research about filtering problem
for cyber-physical systems with various network-induced
phenomena has been carried out. Unfortunately, when the
data-driven communication mechanism is adopted, the corre-
sponding data-based filter design for cyber-physical systems
with RONs, packet dropouts, quantization effect and ROUs
hasn’t been fully investigated. Therefore, we desire to exam-
ine how the simultaneous presence of these four phenomena
affects the data-based filtering performance for CPSs.

Note that all the above filter algorithms implicitly assume
that the devised filter could be precisely executed. However,
fluctuations and uncertainties may happen during filter work-
ing, which are resulted from the finite word length of digital
systems, numerical roundoff errors, and so on. In [32], Keel
has proved that a tiny perturbation in the implementation of
controller may have a significant impact on system perfor-
mance. Therefore, the filter should be designed to tolerate
some level of perturbation in its gain, that is to say, the
filter is resilient or non-fragile. Also, some attention has
been attracted to filter gain variations issue and relevant
results have appeared (see, e.g. [33]–[38]). Furthermore, in
networked circumstance, the filter gain may vary randomly.
For example, filter parameters transmitted by network chan-
nel may be randomly varied because of limited bandwidth
and complex network environmental circumstances. As such,
ROGVs will be considered in the filter design problem. Very
recently, in [39], the ROGVs phenomenon has begun to be
investigated for H∞ filter problem. Unfortunately, up to now,
relative filtering study that considers non-fragility of filter
and data-driven transmission mechanism in a unified frame-
work has seldom been done. Therefore, researching the data-
driven non-fragile finite-horizon filtering for cyber-physical
systems is an attractive question.

Motivated by the above discussions, we will study the
data-driven non-fragile H∞ filtering problem for a class of
cyber-physical systems which will be described in Section II.
Both the data-driven communication mechanism and the
non-fragility of filters are considered in a unified frame-
work. Under constructed unified framework, several common
network-induced phenomena, i.e., packet dropouts, ROUs,
RONs and quantization effects are investigated about their
influence on filtering performance. Sufficient conditions are
derived for filtering issue of proposed cyber-physical sys-
tems. The main contributions are listed below:

1) The data-driven communication mechanism is intro-
duced into the non-fragile filtering problem for cyber-
physical systems. Thus, a unified H∞ filtering framework
combining the data-driven communication mechanism and
the non-fragility of filters is constructed, which could reduce
the communication burden and decrease conservatism of fil-
ter design.

2) The considered cyber-physical system is fairly compre-
hensive, which is subject to ROUs, packet dropouts, quan-
tization effects and ROGVs. The corresponding data-driven
non-fragile filter algorithm is properly addressed.

3) The developed data-driven non-fragile filter design algo-
rithm is suitable for online application due to its recursive
characteristic.

The cyber-physical system is introduced and the problem
is formulated in Section II. In Section III, sufficient condition
for the data-driven filter is derived. The filter design algo-
rithm is proposed in Section IV and an example is provided
in Section V. Finally, we summarize in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES
Here, the physical process defined on κ ∈ [0,N ] will be
studied:

χ (κ + 1) = (G(κ)+ ρ(κ)1G(κ))χ (κ)
+ %(κ)P(κ, χ(κ))
+ (1− %(κ))Q(κ, χ(κ))
+W1(κ)ν(κ)

ỹ(κ) = H(κ)χ (κ)+W2(κ)ϑ(κ)
z(κ) = Z(κ)χ (κ)

(1)

where χ (κ) ∈ Rn is the state vector, ỹ(κ) ∈ Rr is the process
output, z(κ) ∈ Rm is the signal to be estimated, ν(κ) ∈ Rp and
ϑ(κ) ∈ Rq are the external disturbance signals that belong to
l2[0,N−1],P(., .) : R+×Rn→ Rn andQ(., .) : R+×Rn→
Rn are nonlinear functions that represent the nonlinearity of
the system. G(κ),H(κ),W1(κ),W2(κ)andZ(κ) are known
matrices.
1G(κ) represents the norm-bounded parameter uncertainty

described as

1G(κ) = HG(κ)FG(κ)EG(κ) (2)

whereHG(κ) andEG(κ) are known time-varyingmatrices and
FG(κ) is an unknown matrix satisfying

FTG (κ)FG(κ) ≤ I (3)

The mutually independent Bernoulli distributed stochastic
variables ρ(κ) and %(κ) in (1) are used to describe ROUs and
RONs, which take values on 0 or 1 with

Prob{ρ(κ) = 1} = E{ρ(κ)} = ρ̄
Prob{ρ(κ) = 0} = 1− ρ̄

Prob{%(κ) = 1} = E{%(κ)} = %̄
Prob{%(κ) = 0} = 1− %̄ (4)
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respectively, where ρ̄ ∈ [0, 1] and %̄ ∈ [0, 1] are known
constants.

P(κ, χ(κ)) and Q(κ, χ(κ)) are nonlinear functions,
assumed to satisfy P(κ, 0) = 0,Q(κ, 0) = 0 and∥∥∥P(κ, χ(κ)+ δ(κ))− P(κ, χ(κ))

∥∥∥ ≤ ∥∥∥E1(κ)δ(κ)∥∥∥∥∥∥Q(κ, χ(κ)+ δ(κ))−Q(κ, χ(κ))
∥∥∥ ≤ ∥∥∥E2(κ)δ(κ)∥∥∥ (5)

where δ(κ) is a vector, and E1(κ) and E2(κ) are known matri-
ces.
Remark 1: It is well known that nonlinearity is a common

phenomenon for most practical plant and it has significant
influence on system. In the networked systems, nonlinearity
may experience abrupt changes and usually occurs randomly
arising from the networked-induced problem, such as ran-
dom changes and failures in the environmental circumstance.
In this paper, P(., .),Q(., .) are used to depict the phe-
nomenon of RONs. Random variable %(κ) is employed to
govern their random nature and switch between each other.

In a cyber-physical system, the measurement signals are
often quantized during the transmission process. Here, quan-
tization is considered. Choose the similar logarithmic quan-
tizer in [41] denoted as

L(ỹ(κ)) =
[
L1(ỹ(1)(κ)) L2(ỹ(2)(κ)) · · · Lr (ỹ(r)(κ))

]T
Define 1(κ) = diag{1(1)(κ),1(2)(κ) · · · ,1(r)(κ)} and

1̄ = diag{δ1, δ2, · · · , δr } (δj =
1−χj
1+χj

, χj(j = 1, 2, · · · , r)

is called the quantization density, |1(j)(κ)| ≤ δj). Similar
to the analysis in [41], we can obtain an unknown real-
valued time-varying matrix F(κ) = 1(κ)1̄−1 satisfying
F(κ)FT (κ) ≤ I [41].

Then the quantized signals are described as

ȳ(κ) = L(ỹ(κ)) = (I +1(κ))ỹ(κ)

= (I +1(κ))(H(κ)χ (κ)+W2(κ)ϑ(κ)) (6)

Considering the limited bandwidth of network in cyber-
physical systems, it has great significance to reduce data
communication frequency. In this paper, the data-driven com-
munication mechanism is adopted. For this purpose, such an
data-driven function e(·, ·) is defined as:

e(r(κ), δ) = rT (κ)�r(κ)− δȳT (κ)�ȳ(κ) (7)

Here, r(κ) = ȳ(κi) − ȳ(κ), where ȳ(κi) is quantized sensor
output at the latest transition time κi and ȳ(κ) is the current
measurement. � is a symmetric positive-definite matrix and
δ ∈ [0, 1) is the threshold [18].
The execution (i.e., ȳ(κ) is transmitted to the filter) condi-

tion is

e(r(κ), δ) > 0 (8)

When the phenomenon of packet dropouts is considered,
the information received by the filter is

y(κi) = ς (κ)ȳ(κi)+ (1− ς (κ))y(κi−1) (9)

The stochastic variable ς (κ) in (9) is introduced to account
for network-induced phenomenon of packet dropouts in
cyber-physical systems. It is Bernoulli distributed white
sequence uncorrelated to ρ(κ) and %(κ) taking values on 0
or 1 with

Prob{ς (κ) = 1} = E{ς (κ)} = ς̄
Prob{ς (κ) = 0} = 1− ς̄ (10)

where ς̄ ∈ [0, 1] is known constants.
Remark 2: The dropout model (9) is a modification of the

model in [40] due to the adoption of the data-driven commu-
nication mechanism. When data-driven strategy replaces the
conventional time-triggered strategy, the modification could
well describe the measurement missing. For instance, when
ς (κ) = 1, it means that the signal which satisfies the data-
driven condition at time point k is successfully transmit-
ted to the filter. If ς (κ) = 0, it means that the measured
output which satisfies the data-driven condition is missing.
Compared with the traditional dropout model, such a dropout
model is certainly more reasonable and easier to realize for
cyber-physical systems. This is due to that, when data-driven
strategy is adopted for signal transmission, if the filter doesn’t
receive any measurement at time point k, there is no way
to determine whether a packet loss occurs or the data-driven
condition is not satisfied. Thus, the modified dropout model
is easier to implement in cyber-physical engineering applica-
tions and is less conservative.

Many filtering results usually assume that the filter could
be implemented exactly. However, in cyber-physical sys-
tems, the filter is realized through a communication network.
For instance, when filter parameters are transferred to filter
through a channel, the networked circumstance may induce
the change of filter gain parameters in a randomway. Consid-
ering the phenomenon of ROGVs, the filter is constructed as:

χ̂ (κ + 1) = G(κ)χ̂ (κ)+ %̄P(κ, χ̂ (κ))
+ (1− %̄)Q(κ, χ̂ (κ))
+ (z(κ)+ ψ(κ)1z(κ))

[y(κi)− ς̄H(κ)χ̂ (κ)]
ẑ(κ) = Z(κ)χ̂ (κ)

(11)

where χ̂ (κ) ∈ Rn represents the estimate of χ (κ), ẑ(κ) ∈ Rm

is the estimate of z(κ), and z(κ) is an filter gain matrix.
1z(κ) representing the phenomenon of ROGVs is defined
as: 1z(κ) = Hkk(κ)Fk (κ)Ek (κ). In this case, Hk (κ) and
Ek (κ) are known matrices, and Fk (κ) is an unknown matrix
satisfying FTk (κ)Fk (κ) ≤ I .
The Bernoulli sequence ψ(κ) uncorrelated to ρ(κ), %(κ)

and ς (κ) is defined as:

Prob{ψ(κ) = 1} = E{ψ(κ)} = ψ̄
Prob{ψ(κ) = 0} = 1− ψ̄ (12)

where ψ̄ ∈ [0, 1] is known constants.
Remark 3: Here, a unified H∞ filtering framework com-

bining the data-driven communication mechanism and the
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non-fragility of filters is constructed and investigated. As far
as I know, in the field of filtering, the non-fragile filtering
problem that adopts data-driven transmission mechanism is
still an open one. However, it is often the case that, with
the development of network technologies, the components
are located at different places in cyber-physical systems. Due
to the limited communication ability of network, frequent
signal transmission will increase the traffic burden of net-
work, causing network congestion and reducing the stability
of the system. Thus, the non-fragile filtering problem that
adopts data-driven transmission mechanism has more advan-
tage for cyber-physical systems. On one hand, the design of
filter takes ROGVs into consideration, better revealing the
actual situation of the network filtering. On the other hand,
in data-driven transmission mechanism, signal transmission
frequency will decrease for cyber-physical systems.

By letting η(κ) = [χT (κ) χ̂T (κ) y(κi−1)]T , y(κi−1)
being the measurement received by the filter at event time
κi−1, z̃(κ) = z(κ) − ẑ(κ), ν̄(κ) = [νT (κ) ϑT (κ)]T , ρ̃(κ) =
ρ(κ) − ρ̄, %̃(κ) = %(κ) − %̄, ς̃ (κ) = ς (κ) − ς̄ , ψ̃(κ) =
ψ(κ)− ψ̄ , we obtain the augmented system:

η(κ + 1) = Ḡ(κ)η(κ)+31R(κ, η(κ))
+ z̄(κ)r(κ)+ W̄(κ)ν̄(κ)
+ ρ̃(κ)G̃1(κ)η(κ)
+ ς̃ (κ)G̃2(κ)η(κ)
+ ψ̃(κ)G̃3(κ)η(κ)
+ ψ̃(κ)ς (κ)G̃4(κ)η(κ)
+ %̃(κ)32R(κ, η(κ))
+ ς̃ (κ)z̃1(κ)r(κ)
+ ψ̃(κ)ς (κ)z̃2(κ)r(κ)
+ ς̃ (κ)W̃1(κ)ν̄(κ)
+ ψ̃(κ)ς (κ)W̃2(κ)ν̄(κ)

z̃(κ) = Z̄(κ)η(κ)

(13)

where

G̃1(κ) =

1G(κ) 0 0
0 0 0
0 0 0

 ,

Ḡ(κ) =


G(κ)+ ρ̄1G(κ)
ς̄z(κ)H(κ)

+ς̄z(κ)1(κ)H(κ)
+ψ̄ς̄1z(κ)H(κ)
+ψ̄ς̄1z(κ)1(κ)H(κ)
ς̄H(κ)+ ς̄1(κ)H(κ)

0 0

G(κ)− ς̄z(κ)H(κ)
−ψ̄ς̄1z(κ)H(κ)

(1− ς̄ )z(κ)
+ψ̄1z(κ)
−ψ̄ς̄1z(κ)

0 (1− ς̄ )I

 ,

G̃3(κ) =

 0 0 0
0 −ς̄1z(κ)H(κ) 1z(κ)
0 0 0

 ,

G̃2(κ) =


0

z(κ)H(κ)+z(κ)1(κ)H(κ)
+ψ̄1z(κ)1(κ)H(κ)+ ψ̄1z(κ)H(κ)

H(κ)+1(κ)H(κ)

0 0
0 −z(κ)− ψ̄1z(κ)
0 −I

 ,
G̃4(κ) =

 0 0
1z(κ)H(κ)+1z(κ)1(κ)H(κ) 0

0 0

0
−1z(κ)

0

 ,
31 =

 %̄I (1− %̄)I 0 0
0 0 %̄I (1− %̄)I
0 0 0 0

 ,
32 =

 I −I 0 0
0 0 0 0
0 0 0 0

 ,
R(κ, η(κ)) = [PT (κ, χ(κ)) QT (κ, χ(κ))

PT (κ, χ̂ (κ)) QT (κ, χ̂ (κ))]T ,

z̄(κ) =


0

ς̄z(κ)
+ψ̄ς̄1z(κ)

ς̄ I

 ,

z̃1(κ) =

 0
z(κ)+ ψ̄1z(κ)

I

 ,
z̃2(κ) =

 0
1z(κ)

0

 ,
W̄(κ) =

W1(κ)
0
0

0
ς̄z(κ)W2(κ)+ ς̄z(κ)1(κ)W2(κ)

+ψ̄ς̄1z(κ)W2(κ)
+ψ̄ς̄1z(κ)1(κ)W2(κ)
ς̄W2(κ)+ ς̄1(κ)W2(κ)

 ,

W̃1(κ) =



0 0

0

z(κ)W2(κ)
+z(κ)1(κ)W2(κ)
+ψ̄1z(κ)W2(κ)
+ψ̄1z(κ)1(κ)W2(κ)

0 W2(κ)+1(κ)W2(κ)

 ,

W̃2(κ) =


0 0

0
1z(κ)W2(κ)

+1z(κ)1(κ)W2(κ)
0 0

 ,
Z̄(κ) =

[
Z(κ) −Z(κ) 0

]
.
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Our aim is to design a filter for proposed cyber-physical
systems satisfying the following H∞ filtering performance:

J := E
{
‖z̃(κ)‖22 − γ

2
‖ν̄(κ)‖22

}
− γ 2ηT (0)Uη(0) < 0,

∀({ν̄(κ)}, η(0)) 6= 0 (14)

where

‖z̃(κ)‖22 =
N−1∑
k=0

|z̃(κ)|2 , ‖ν̄(κ)‖22 =
N−1∑
k=0

|ν̄(κ)|2

III. ANALYSIS OF H∞ PERFORMANCES
First of all, several useful lemmas are introduced.
Lemma 1 (Schur Complement, [42]): Given constant

matrices P,Q and U , where P = PT and 0 < Q = QT ,
then P+ UTQ−1U < 0 if and only if[

P UT

U −Q

]
< 0 or

[
−Q U
UT P

]
< 0 (15)

Lemma 2 (S-Procedure, [42]): Let M = MT ,P and Q be
real matrics of appropriate dimensions, and XTX ≤ I . Then
inequalityM +PXQ+ (PXQ)T < 0 if and only if there exists
a positive scalar α such that M + αPPT + α−1QTQ < 0 or,
equivalently,  M αP QT

αPT −αI 0
Q 0 −αI

 < 0 (16)

Theorem 1: Consider the cyber-physical systems
described in Section II. Let the disturbance attenuation level
γ > 0, the data weighted matrix� > 0, the scalar δ ∈ [0, 1),
a positive definite matrix U > 0, and the filter gain matrix
z(κ)κ∈[0,N−1] be given. For the cyber-physical systems, the
H∞ performance requirement defined in (14) is achieved for
all nonzero ν̄(κ) if there exists a sequence of positive definite
matrices {5(κ)}κ∈[0,N ] and positive scalars {τ1(κ)}κ∈[0,N−1]
and {τ2(κ)}κ∈[0,N−1] satisfying the following recursivematrix
inequalities:

8(κ) =


811(κ) ∗

821(κ) 822(κ)
831(κ) 3T

15(κ + 1)W̄(κ)
841(κ) 842(κ)

∗ ∗

∗ ∗

833(κ) ∗

z̄T (κ)5(κ + 1)31 844(κ)

 < 0 (17)

with the initial condition

5(0)− γ 2U < 0 (18)

where

S =
[
I −I 0

]
,

Ḡ2 =

[
0

WT
2 (κ)(I +1

T (κ))

]
,

E(κ) =


E1(κ) 0 0
E2(κ) 0 0
0 E1(κ) 0
0 E2(κ) 0

 ,
Ḡ1 =

CT (κ)(I +1T (κ))
0
0

 ,
8̃11(κ) = ḠT (κ)5(κ + 1)Ḡ(κ)

+ ρ̄(1− ρ̄)G̃T1 (κ)5(κ + 1)G̃1(κ)
+ ς̄ (1− ς̄ )G̃T2 (κ)5(κ + 1)G̃2(κ)
+ ψ̄(1− ψ̄)(1+ ς̄ )G̃T3 (κ)5(κ + 1)G̃3(κ)
+ 3ψ̄(1− ψ̄)ς G̃T4 (κ)5(κ + 1)G̃4(κ)−5(κ),

8̃22(κ) = W̄T (κ)5(κ + 1)W̄(κ)

+ ς̄ (1− ς̄ )W̃T
1 (κ)5(κ + 1)W̃1(κ)

+ 2ψ̄(1− ψ̄)ς̄W̃T
2 (κ)5(κ + 1)W̃2(κ),

8̃44(κ) = z̄T5(κ + 1)z̄(z)

+ ς̄ (1− ς̄ )z̃T
1 (κ)5(κ + 1)z̃1(κ)

+ ψ̄(1− ψ̄)ς̄z̃T
2 (κ)5(κ + 1)z̃2(κ),

811(κ) = 8̃11(κ)+ STZT (κ)Z(κ)S

+ τ1(κ)ET (κ)E(κ)+ 2τ2(κ)δḠ1�ḠT1 ,

821(κ) = 8̃21(κ) = W̄T (κ)5(κ + 1)Ḡ(κ)
+ ς̄ (1− ς̄ )W̃T

1 (κ)5(κ + 1)G̃2(κ)
+ ψ̄(1− ψ̄)ς̄W̃T

2 (κ)5(κ + 1)G̃3(κ),
822(κ) = 8̃22(κ)− γ 2I + 2τ2(κ)δḠ2�ḠT2 ,

831(κ) = 3T
15(κ + 1)Ḡ(κ),

833(κ) = 3T
15(κ + 1)31

+ %̄(1− %̄)3T
25(κ + 1)32 − τ1(κ)I ,

841(κ) = 8̃41(κ) = z̄T5(κ + 1)Ḡ(z)

+ ς̄ (1− ς̄ )z̃T
1 (κ)5(κ + 1)G̃2(κ)

+ ψ̄(1− ψ̄)ς̄z̃T
2 (κ)5(κ + 1)G̃3(κ)

+ ψ̄(1− ψ̄)ς̄z̃T
2 (κ)5(κ + 1)G̃4(κ),

842(κ) = 8̃42(κ) = z̄T5(κ + 1)W̄(κ)

+ ς̄ (1− ς̄ )z̃T
1 (κ)5(κ + 1)W̃1(κ)

+ ψ̄(1− ψ̄)ς̄z̃T
2 (κ)5(κ + 1)W̃2(κ),

844(κ) = 8̃44(κ)− τ2(κ)�,
Proof: Construct the following Lyapunov function

V (η(κ)) := ηT (κ)5(κ)η(κ) (19)

The difference of V (η(κ)) is:

1V (η(κ)) := V (η(κ + 1))− V (η(κ)). (20)

Calculating the difference of V (η(κ)),

E {1V (η(κ))}
= E

{
ηT (κ + 1)5(κ + 1)η(κ + 1)

−ηT (κ)5(κ)η(κ)
}

≤ E
{
ξT (κ)8̃(κ)ξ (κ)

}
(21)
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where

ξ (κ) =
[
ηT (κ) ν̄T (κ) RT (κ, η(κ)) rT (κ)

]T
,

8̃(κ) =


8̃11(κ) ∗

8̃21(κ) 8̃22(κ)
3T

15(κ + 1)Ḡ(κ) 3T
15(κ + 1)W̄(κ)

8̃41(κ) 8̃42(κ)

∗ ∗

∗ ∗

3T
15(κ + 1)31

+%̄(1− %̄)3T
25(κ + 1)32

∗

z̄T (κ)5(κ + 1)31 8̃44(κ)

 .
According to nonlinear constraint (5), we have∥∥∥R(κ, η(κ)

∥∥∥ ≤ ∥∥∥E(κ)η(κ)∥∥∥ (22)

Then, substituting (22) into (21) results in

E {1V (κ)}
≤ E

{
ξT (κ)8̃(κ)ξ (κ)

− τ1(κ)[RT (κ, η(κ))R(κ, η(κ))

−ηT (κ)ET (κ)E(κ)η(κ)]
}

(23)

Adopting the data-driven condition (8), we obtain

E {1V (κ)} ≤ E
{
ξT (κ)8̃(κ)ξ (κ)

−τ2(κ)[rT (κ)�r(κ)− δȳT (κ)�ȳ(κ)]

−τ1(κ)[RT (κ, η(κ))R(κ, η(κ))

−ηT (κ)ET (κ)E(κ)η(κ)]
}

(24)

where

ȳT (κ)�ȳ(κ) = [(I +1(κ))H(κ)χ (κ)

+ (I +1(κ))W2(κ)ϑ(κ)]T�

[(I +1(κ))H(κ)χ (κ)

+(I +1(κ))W2(κ)ϑ(κ)]

≤ 2ηT (κ)Ḡ1�ḠT1 η(κ)

+ 2ν̄T (κ)Ḡ2�ḠT2 ν̄(κ) (25)

Adding z̃T (κ)z̃(κ) − γ 2ν̄T (κ)ν̄(κ) − z̃T (κ)z̃(κ) +
γ 2ν̄T (κ)ν̄(κ) to E {1V (κ)} results in
E{1V (κ)}
≤ E{ξT (κ)8(κ)ξ (κ)− z̃T (κ)z̃(κ)+ γ 2ν̄T (κ)ν̄(κ)} (26)

Summing up (26) on both sides from 0 toN−1with respect
to κ , we obtain

E {V (η(N ))} − V (η(0))

= E
{
ηT (N )5(N )η(N )

}
− ηT (0)5(0)η(0)

≤ E

{
N−1∑
κ=0

ξT (κ)8(κ)ξ (κ)

}

−E{
N−1∑
κ=0

(z̃T (κ)z̃(κ)− γ 2ν̄T (κ)ν̄(κ))t} (27)

According to the above inequality, one has

J ≤ E{
N−1∑
κ=0

ξT (κ)8(κ)ξ (κ)}

−E{ηT (N )5(N )η(N )}

+ ηT (0)(5(0)− γ 2U )η(0) (28)

Noting that 8(κ) < 0, 5(N ) > 0 and 5(0) 6 γ 2U , there is
J < 0. End of proof.

IV. DATA-DRIVEN ROBUST NON-FRAGILE FILTER DESIGN
Theorem 2: Consider the cyber-physical systems in

Section II with non-fragile filter (11). For given γ > 0,
� > 0, the scalar δ ∈ [0, 1) and U > 0, the filter error
z̃(κ) satisfies the H∞ performance criterion (14) if there exist
families of positive definite matrices {5(κ)}κ∈[0,N ], positive
scalars {τ1(κ)}κ∈[0,N−1],{τ2(κ)}κ∈[0,N−1], {ε1(κ)}κ∈[0,N−1],
{ε2(κ)}κ∈[0,N−1], {ε3(κ)}κ∈[0,N−1], {ε4(κ)}κ∈[0,N−1], and
real-valued matrices {X (κ)}κ∈[0,N−1] satisfying the following
recursive linear matrix inequalities (RLMIs):[

211 ∗

221 222

]
< 0 (29)

with the initial condition

5(0)− γ 2U < 0 (30)

where

211 =

2
(1,1)
11 ∗ ∗

2
(2,1)
11 2

(2,2)
11 ∗

2
(3,1)
11 0 2

(3,3)
11

 ,

221 =


2

(1,1)
21

2
(2,1)
21

2
(3,1)
21

2
(4,1)
21

 ,
222 = diag{−ε1(κ)I ,G(κ),−ε3(κ),−ε4(κ)},

2
(1,1)
11 =


Eφ11 ∗

0
−γ 2I + ε2(κ)W̌T (κ)1̄T 1̄W̌(κ)
+ε3(κ)W̌T (κ)ET (κ)E(κ)W̌(κ)

0 0
0 0

∗ ∗

∗ ∗

φ33 ∗

0 −�+ ε3(κ)ETk (κ)Ek (κ)


Eφ11 = φ11 + ε1(κ)ĒTA (κ)ĒG(κ)+ ε2(κ)Ȟ

T (κ)Ȟ(κ)

+ ε3(κ)ĒTc1(κ)Ēc1(κ)+ ε4(κ)Ē
T
c2(κ)Ēc2(κ)

φ11 = −5(κ)+ τ1(κ)ET (κ)E(κ)+ STZT (κ)Z(κ)S,
E011 = 2

(1,1)
11

φ33 = %̄(1− %̄)3T
25(κ + 1)32 − τ1(κ)I

VOLUME 5, 2017 19673



M. Lyu et al.: Data-Driven Robust Non-Fragile Filtering for CPSs

2
(2,1)
11 = 0̂21 =

 3̂11 3̂12 313 3̂14

3̂21 3̂22 0 3̂24

3̂31 3̂32 0 3̂34

 ,
3̂11 =

[
5(κ + 1)Ḡ0(κ)+5(κ + 1)R1z(κ)Ĥ1(κ)

0

]
3̂21 =

[√
ς̄ (1− ς̄ )5(κ + 1)(G̃20(κ)+R1z(κ)Ĥ2(κ))

0

]
3̂12 =

[
5(κ + 1)W̄0(κ)+ ς̄5(κ + 1)R1z(κ)W̌(κ)

0

]
3̂22 =

[√
ς̄ (1− ς̄ )5(κ+1)(W̃10(κ)+R1z(κ)W̌(κ))

0

]
,

3̂14 =

[
ς̄5(κ + 1)R2 + ς̄5(κ + 1)R1z(κ)

0

]
3̂24 =

[√
ς̄ (1− ς̄ )5(κ + 1)(R2 + R1z(κ))

0

]
,

3̂31 = 3̂32 = 3̂34 =


0
0
0
0

 ,
313 =

[
5(κ + 1)31

0

]
,

2
(3,3)
11 = 033 =

[
−τ2(κ)�−1 0

0 −τ2(κ)�−1

]

2
(2,2)
11 = 022 = diag

−5(κ + 1), · · · ,−5(κ + 1)︸ ︷︷ ︸
8


2

(3,1)
11 = 0̃31 =

[
τ2(κ)
√
2δḠT11 0 0 0
0 τ2(κ)

√
2δW̌(κ) 0 0

]
,

EHT
A (κ) = 2

(1,1)
21

2
(1,1)
21 =

[
0 0 0 0 ( ρ̄5(κ + 1)H̄G(κ))T

(
√
ρ̄(1− ρ̄)5(κ + 1)H̄G(κ))T 0 · · · 0︸ ︷︷ ︸

8

]
2

(2,1)
21 = ĤT (κ) =

[
0 0 0 0 ĤT

1 (κ)

0 0 0 0 0 ĤT
2 (κ)

]
,

Ĥ1(κ) =

 ς̄5(κ + 1)R1z(κ)
0

√
ς̄ (1− ς̄ )5(κ + 1)(R1z(κ)+ R2)

ς̄5(κ + 1)R1z(κ)+ ς̄5(κ + 1)R2
0

√
ς̄ (1− ς̄ )5(κ + 1)(R1z(κ)+ R2)


Ĥ2(κ) =

[
τ2(κ)
√
2δI 0

0 τ2(κ)
√
2δI

]
2

(3,1)
21 = EHT

k1(κ) =
[
0 0 0 0 EHT

k11(κ)

0 EHT
k12(κ) 0 0

]T

EHk11(κ) =

 ψ̄ς̄5(κ + 1)H̄k (κ)
0

ψ̄
√
ς̄ (1− ς̄ )5(κ + 1)H̄k (κ)

0
ψ̄ς̄5(κ + 1)H̄k (κ)

0
ψ̄
√
ς̄ (1− ς̄ )5(κ + 1)H̄k (κ)√

ς̄ ψ̄(1− ψ̄)5(κ + 1)H̄k (κ)
ψ̄ς̄5(κ + 1)H̄k (κ)

0
ψ̄
√
ς̄ (1− ς̄ )5(κ + 1)H̄k (κ)√

ς̄ ψ̄(1− ψ̄)5(κ + 1)H̄k (κ)


EHk12(κ) =

 √
ς̄ ψ̄(1− ψ̄)5(κ + 1)H̄k (κ)√
2ς̄ ψ̄(1− ψ̄)5(κ + 1)H̄k (κ)

0
0
0√

ς̄ ψ̄(1− ψ̄)5(κ + 1)H̄k (κ)√
ς̄ ψ̄(1− ψ̄)5(κ + 1)H̄k (κ)

0
0


2

(4,1)
21 = EHT

k2(κ) =
[
0 0 0 0 EHT

k21(κ)

0 0 EHT
k22(κ) 0 0 0 0 0

]T
EHk21(κ) = ψ̄ς̄5(κ + 1)H̄k (κ),

EHk22(κ) =
[√

ψ̄(1− ψ̄)ς̄5(κ + 1)H̄k (κ)√
ψ̄(1− ψ̄)5(κ + 1)H̄k (κ)

]
G(κ) =

[
−ε2(κ)I + ε3(κ)ETk (κ)Ek (κ)

0

0
−ε2(κ)I + ε3(κ)ETk (κ)Ek (κ)

]
Ḡ0(κ) =

[ G(κ) 0 0
0 G(κ) 0

ς̄H(κ) 0 (1− ς̄ )I

]
,

H̄G(κ) =

[
HG(κ)

0
0

]
,

R1 =

[
0
I
0

]
, R2 =

[
0
0
I

]
,

Ēc1(κ) =
[
Ek (κ)H(κ) 0 −Ek (κ)

]
,

ĒG(κ) =
[
EG(κ) 0 0

]
,

Ȟ(κ) =
[
1̄H(κ) 0 0

]
,

Ēc2(κ) =
[
0 −ς̄Ek (κ)H(κ) Ek (κ)

]
,

Ĥ1(κ) =
[
ς̄H(κ) −ς̄H(κ) (1− ς̄ )I

]
,

Ĥ2(κ) =
[
H(κ) 0 −I

]
,

W̌(κ) =
[
0 W2(κ)

]
, ḠT11 =

[
H(κ) 0 0

]
Furthermore, if ( {5(κ)}, {τ1(κ)},{τ2(κ)}, {ε1(κ)}, {ε2(κ)},
{ε3(κ)}, {ε4(κ)}, {X (κ)} ) is a feasible solution of (29) and
(30), then filter matrices can be obtained as follows

z(κ) = (RT15(κ + 1)R1)−1RT1 X (κ) (31)
Proof: From Theorem 1, we know that the filter in

the form of (11) achieves the guaranteed H∞ performance
if LMIs (17) and (18) are feasible. By the Schur complement,
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(17) is equivalent to011 ∗ ∗

021 022 ∗

031 0 033

 < 0 (32)

where

011 = diag{φ11,−γ 2I , φ33,−�},

021 =

311 312 313 314
321 322 0 324
331 332 0 334

 ,
031 =

[
τ2(κ)
√
2δḠT1 0 0 0

0 τ2(κ)
√
2δḠT2 0 0

]
311 =

[
5(κ + 1)Ḡ(κ)

√
ρ̄(1− ρ̄)5(κ + 1)G̃1(κ)

]
,

312 =

[
5(κ + 1)W̄(κ)

0

]
313 =

[
5(κ + 1)31

0

]
, 314 =

[
5(κ + 1)z̄(κ)

0

]
321 =

[ √
ς̄ (1− ς̄ )5(κ + 1)G̃2(κ)√
ψ̄(1− ψ̄)ς̄5(κ + 1)G̃3(κ)

]
,

322 =

[ √
ς̄ (1− ς̄ )5(κ + 1)W̃1(κ)√
ψ̄(1− ψ̄)ς̄5(κ + 1)W̃2(κ)

]

324 =

[ √
ς̄ (1− ς̄ )5(κ + 1)z̃1(κ)√
ψ̄(1− ψ̄)ς̄5(κ + 1)z̃2(κ)

]
,

331 =


√
ψ̄(1− ψ̄)5(κ + 1)G̃3(κ)√
ψ̄(1− ψ̄)ς̄5(κ + 1)G̃4(κ)√
2ψ̄(1− ψ̄)ς̄5(κ + 1)G̃4(κ)

0



332 =


0
0
0√

ψ̄(1− ψ̄)ς̄5(κ + 1)W̃2(κ)

 ,

334 =


0√

ψ̄(1− ψ̄)ς̄5(κ + 1)z̃2(κ)
0
0


Next, the parameters in Theorem 1 are rewritten as follows:

Ḡ(κ) = Ḡ0(κ)+ ρ̄H̄G(κ)FG(κ)ĒG(κ)
+ ς̄R1z(κ)F(κ)Ȟ(κ)+ R1z(κ)Ĥ1(κ)
+ ψ̄ς̄H̄k (κ)Fk (κ)Ek (κ)F(κ)Ȟ(κ)+ς̄R2F(κ)Ȟ(κ)
+ ψ̄ς̄H̄k (κ)Fk (κ)Ēc1(κ)+ ψ̄H̄k (κ)Fk (κ)Ēc2(κ)

G̃1(κ) = H̄G(κ)FG(κ)ĒG(κ)
G̃2(κ) = G̃20(κ)+ R1z(κ)F(κ)Ȟ(κ)

+ ψ̄H̄k (κ)Fk (κ)Ek (κ)F(κ)Ȟ(κ)+ R1z(κ)Ĥ2(κ)
+R2F(κ)Ȟ(κ)+ ψ̄H̄k (κ)Fk (κ)Ēc1(κ)

G̃3(κ) = H̄k (κ)Fk (κ)Ēc2(κ)
G̃4(κ) = H̄k (κ)Fk (κ)Ek (κ)F(κ)Ȟ(κ)

+ H̄k (κ)Fk (κ)Ēc1(κ)

z̄(κ) = ς̄R2 + ψ̄ς̄H̄k (κ)Fk (κ)EK (κ)+ ς̄R1z(κ)
z̃1(κ) = R2 + ς̄H̄k (κ)Fz(κ)Ek (κ)+ R1z(κ),

z̃2(κ) = H̄k (κ)Fk (κ)Ek (κ)

W̄(κ) = W̄0(κ)+ ς̄R1z(κ)F(κ)1̄W̌(κ)

+ ς̄R2F(κ)1W̌(κ)+ ς̄R1z(κ)W̌(κ)

+ ψ̄ς̄H̄k (κ)Fk (κ)Ek (κ)F(κ)1̄W̌(κ)

+ ψ̄ς̄H̄k (κ)Fk (κ)Ek (κ)W̌(κ)

W̃1(κ) = W̃10(κ)+ R1z(κ)F(κ)1̄W̌(κ)

+R2F(κ)1W̌(κ)+ R1z(κ)W̌(κ)

+ ψ̄H̄k (κ)Fk (κ)Ek (κ)F(κ)1̄W̌(κ)

+ ψ̄H̄k (κ)Fk (κ)Ek (κ)W̌(κ)

W̃2(κ) = H̄k (κ)Fk (κ)Ek (κ)F(κ)1̄W̌(κ)

+ H̄k (κ)Fk (κ)Ek (κ)W̌(κ)

ḠT1 = ḠT11+F(κ)Ȟ(κ), ḠT2 =W̌(κ)+ F(κ)1W̌(κ)

Rewriting (32) to eliminate1G(κ):

N (κ)+ EHG(κ)FG(κ)EEG(κ)+ ( EHG(κ)FG(κ)EEG(κ))
T < 0

(33)

where

N (κ) =

011 ∗ ∗

0̄21 022 ∗

031 0 033

 ,
EEG(κ) =

[
ĒG(κ) 0 · · · 0︸ ︷︷ ︸

13

]
,

0̄21 =

 3̄11 312 313 314
321 322 0 324
331 332 0 334



3̄11 =



5(κ + 1)Ḡ0(κ)
+ς̄5(κ + 1)R1z(κ)F(κ)Ȟ(κ)

+ψ̄ς̄5(κ + 1)H̄k (κ)Fk (κ)Ek (κ)F(z)Ȟ(κ)
+ς̄5(κ + 1)R2F(κ)Ȟ(κ)

+ψ̄ς̄5(κ + 1)H̄k (κ)Fk (κ)Ēc1(κ)
+ψ̄5(κ + 1)H̄k (κ)Fk (κ)Ēc2(κ)
+5(κ + 1)R1z(κ)Ĥ1(κ)

0


Then, from S-procedure, we can obtain N (κ) ∗ ∗

EHT
A (κ) −ε1(κ)I ∗

ε1(κ)EEG(κ) 0 −ε1(κ)I

 < 0 (34)

by using the Schur Complement, (34) is equivalent to

[
N (κ) ∗

EHT
A (κ) −ε1(κ)I

]
+ε1(κ)

[
EETA (κ)
0

] [
EEG(κ) 0

]
=

[
N (κ)+ ε1(κ)EETA (κ)EEG(κ) ∗

EHT
A (κ) −ε1(κ)I

]
< 0 (35)
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Taking a similar way, we can easily eliminate 1(κ) and
1z(κ) in (35) and obtain
EN (κ) ∗ ∗ ∗ ∗

EHT
A (κ) −ε1(κ)I ∗ ∗ ∗

ĤT (κ) 0 G(κ) ∗ ∗

EHT
k1(κ) 0 0 −ε3(κ)I ∗

EHT
k2(κ) 0 0 0 −ε4(κ)I

<0

(36)

where

EN (κ) =

 E011 ∗ ∗

0̂21 022 ∗

0̃31 0 033

 ,
G(κ) =

[
−ε2(κ)I + ε3(κ)ETk (κ)Ek (κ)

0

0
−ε2(κ)I + ε3(κ)ETk (κ)Ek (κ)

]
Then, it is easy to see that (36) is equivalent to (29). Thus,

according to Theorem 1, the H∞ performance requirement
for the cyber-physical systems is satisfied with initial condi-
tions (30). The proof is complete.
Remark 4: For the considered cyber-physical systems, the

sufficient conditions guaranteeing the designed data-driven
robust non-fragile filter are derived in Theorem 1 such that the
H∞ performance is satisfied. Besides, the data-driven robust
non-fragile filter design method is addressed in Theorem 2.
It can be observed from Theorem 2 that all information of
the considered cyber-physical systems is contained in RLMIs,
including the systems parameters, network-induced phenom-
ena, data-driven parameters and ROGVs.

By means of Theorem 2, we can summarize the data-
driven H∞ non-fragile finite-horizon filter design algorithm
(NFHFD) as follows.

Algorithm 1 NFHFD

Step 1. Given the disturbance attenuation level γ > 0,
the event weighted matrix � > 0, the scalar
δ ∈ [0, 1) and the positive definite matrixU > 0,
choose the initial value for matrice 5(0) to sat-
isfy the condition (30) and set κ = 0.

Step 2. Obtain the values of matrices {5(κ + 1),X (κ)}
and the desired filter parameters z(κ) for
the sampling instant κ by solving the LMIs
(29), (31).

Step 3. Set κ = κ + 1 and then 5(κ) = 5(κ + 1).
Step 4. If κ < N ,then go to Step 2, else go to Step 5.
Step 5. Stop.

V. NUMERICAL SIMULATIONS
Next, a simulation is given to demonstrate the filter-
ing method for cyber-physical systems. The considered

TABLE 1. Rescusive process.

FIGURE 1. The communication times.

cyber-physical system is given as follows:

χ (κ + 1) =



0.5+ 0.1 sin (3κ) 0

0.1 0.45

0 0.2+ 0.1 sin (κ)

0.15+ 0.1 sin (0.2κ)

0

0.4


+ρ(κ)1G(κ)) χ (κ)+ %(κ)P(κ, χ(κ))

+ (1− %(κ))Q(κ, χ(κ))

+



0.3

−0.1 sin (0.3κ)
0.35

−0.25 0.2

0.15
−0.2

+0.05 cos (κ)


ν(κ)

ỹ(κ) =

 0.5 0.3+ 0.15 cos (0.5κ) 0.1

0.2 0.2− 0.1 sin (κ) −0.4

χ (κ)
+

 0.25 −0.4+ 0.2 sin (2κ)

0.3 0.2

ϑ(κ)
z(κ) =

[
0.15 0.2 0.1+ 0.05 sin (κ)

]
χ (κ)
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FIGURE 2. State vector x(κ) and its estimate. (a) State χ1(κ) and its
estimate. (b) State χ2(κ) and its estimate. (c) State χ3(κ) and its estimate.

The nonlinear functionsP(., .),Q(., .) and disturbance sig-
nals ν(κ), ϑ(κ) are chosen as

P(κ, χ(κ)) =


(0.3χ1(κ))

1+ 2χ2
3 (κ)

0.2 sin (χ2(κ))√
χ2
1 (κ)+ 2

0.2χ3(κ)

 ,

FIGURE 3. Output z(κ), its estimate and estimation error z(κ)− ẑ(κ).
(a) Output z(κ) and its estimate. (b) Estimation error z(κ)− ẑ(κ).

Q(κ, χ(κ)) =


χ1(κ)

5+ 3χ2
1 (κ)

0.3χ2(κ)

χ2
1 (κ)+ χ

2
2 (κ)+ 1

0.2χ3(κ)


ν(κ) =


1

2κ + 14
cos (0.3κ − 1)

1
κ + 9

sin (0.2κ − 1)

 ,
ϑ(κ) =

[
0.1 exp(−0.5κ) sin (κ)
0.2 exp(−0.4κ) cos (2κ)

]
where χi(κ)(i = 1, 2, 3) denotes the i-th component of χ (κ).
Then, E1(κ) and E2(κ) are set as:

E1(κ) =

 0.3 0 0
0 0.2 0
0 0 0.2

 , E2(κ) =

 0.2 0 0
0 0.3 0
0 0 0.2


The probabilities of stochastic variable ρ(κ), %(κ), ς(κ)

and ψ(κ) are taken as ρ̄ = 0.5, %̄ = 0.5, ς̄ = 0.9, ψ̄ =
0.6, respectively. The parameters in L(·) are set as δ1 =
0.4, δ2 = 0.3. The parameter uncertainties HG(κ),EG(κ) and
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gain variations Hk (κ),Ek (κ) are set as follows:

HG(κ) =

 0.15
0.2
0.1

 , EG(κ) =
[
0.1 0.2 0.05

]

Hk (κ) =

 0.2 0
0.2+ 0.1 sin κ 0.1

0 0.15

 ,
Ek (κ) =

[
0.2 0.15+ 0.05 sin κ
0.15 0.1

]
and the uncertain parameters Fk (κ),FG(κ) satisfy
Fk (κ)TFk (κ) ≤ I , FG(κ)TFG(κ) ≤ I .
Set χ (0) = [0.3 0.25 −0.4]T and χ̂ (0) = [0 0 0]T .

Choose � = I and threshold δ = 0.1. For given γ = 0.95
and U = diag{1, 1, 1, 1, 1, 1, 1, 1}, choose 5(0) = 0.9γ 2U
to satisfy the initial condition (35).

Table 1 lists the desired parameters of filter z(κ) obtained
by applying the algorithm in this paper.

The simulation results are shown in Figs 1-3. State vari-
ables χ1(κ) − χ3(κ) and their estimate χ̂(κ) − χ̂3(κ) are
depicted in Figs 2, respectively, and Fig 3.(a) plots z(κ) and
estimation, whereas z(κ) − ẑ(κ) is shown in Fig 3.(b). The
transition times are plotted in Fig 1, whereas one represents
the times that data-driven condition is satisfied and signal of
sensors is transmitted, while zero represents the times that
data-driven condition is not satisfied. The H∞ performance
index is J1 = −0.3440. From Fig 1, we could find that the
data-driven communication mechanism may largely reduce
the signal transmission frequencywhile maintaining the guar-
anteed filtering index. Results confirm the proposed filter-
ing method which could well achieve the desired filtering
requirement for the proposed cyber-physical systems.

VI. CONCLUSIONS
The data-driven robust non-fragile H∞ filtering problem for
the proposed cyber-physical systems has been researched in
this paper. The data-driven communication mechanism has
been adopted to reduce the signal transmission frequency
while maintaining filtering performance requirement. The
phenomenon of ROGVs in the implementation of filtering
has been considered. Thus, a data-driven non-fragile filtering
framework is constructed. Based on this unified framework,
the influence of simultaneous presence of networked-induced
packet dropouts, quantization, RONs and ROUs in cyber-
physical systems is investigated. By employing stochastic
analysis and Lyapunov functional approach, sufficient con-
ditions guaranteeing the filter for proposed cyber-physical
system have been derived. Moreover, H∞ filters parameters
have been obtained in Theorem 2. Finally, the proposed data-
driven robust non-fragile filtering method for cyber-physical
systems is confirmed by a simulation.
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