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ABSTRACT Multimodal imaging techniques have received a great deal of attention, since their inceptions
for achieving an enhanced imaging performance. In this paper, a novel joint reconstruction framework for
computed tomography (CT) and magnetic resonance imaging (MRI) is implemented and evaluated. The CT
and MRI data sets are synchronously acquired and registered from a hybrid CT-MRI platform. Because the
image data sets are highly undersampled, the conventional methods (e.g., analytic reconstructions) are unable
to generate decent results. To overcome this drawback, we employ the compressed sensing (CS) sparse
priors from an application of discrete gradient transform. On the other hand, to utilize multimodal imaging
information, the concept of projection distance is introduced to penalize the large divergence between
images from different modalities. During the optimization process, CT and MRI images are alternately
updated using the latest information from current iteration. The method exploits the structural similarities
between the CT andMRI images to achieve better reconstruction quality. The entire framework is accelerated
via the parallel processing techniques implemented on a nVidia M5000M Graph Processing Unit. This
results in a significant decrease of the computational time (from hours to minutes). The performance of the
proposed approach is demonstrated on a pair of undersampled projections CT and MRI body images. For
comparison, the CT and MRI images are also reconstructed by an analytic method, and iterative methods
with no exploration of structural similarity, known as independent reconstructions. Results show that the
proposed joint reconstruction provides a better image quality than both analytic methods and independent
reconstruction by revealing the main features of the true images. It is concluded that the structural similarities
and correlations residing in images from different modalities are useful to mutually promote the quality of
joint image reconstruction.

INDEX TERMS Multimodal imaging, image reconstruction, compressed sensing.

I. INTRODUCTION
The multimodal imaging techniques have been widely hailed
as powerful tools to assist the modern clinical decision-
making process. A claim has been made that more structural
and/or functional information can be revealed by these tech-
niques than those performing only single modality [1], [2].
Since its inception in 1960’s [3], a variety of multimodal
imaging commercial products have been developed, such
as positron emission tomography and computed tomogra-
phy (PET-CT), positron emission tomography and mag-
netic resonance imaging (PET-MRI), and single positron
emission computed tomography and computed tomogra-
phy (SPECT-CT). However, the fusion of CT andMRI has not

yet been thoroughly investigated and commercialized. The
idea of combining CT and MRI techniques seems so natural
since both of them are the most commonly used imaging
modalities today, and they are intrinsically complementary to
each other in many ways. For example, CT has high contrast
for bones, whereas MRI has excellent dynamic range for
soft tissues. Recently, the concept of ‘‘omni-tomography’’
has been proposed [4], [5], and one of whose goals is to
design and implement a grand fusion of CT and MRI in a
single scanning machine, which has not yet been achieved.
The hybrid CT-MRI platform will contain hardware and soft-
ware for both systems. Under this setup, the data from CT
and MRI scanners are acquired and registered synchronously
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(‘‘all in one’’), and images are reconstructed simultaneously
(‘‘all at once’’). In this paper, we address the need for the
planned grand fusion by proposing a projection distance-
based CS method for its CT-MRI joint image reconstruction.

On the targeted hybrid CT-MRI platform, due to machan-
ical and electrical limitations, both CT and MRI data sets
are highly undersampled. These undersampled data are col-
lected through synchronous acquisition such that online data
registration could be achieved [4], [5]. From the image
reconstruction perspective, the enabling technology of omni-
tomography is the CS-based image reconstruction [6], [7].
Conventionally, medical imaging systems employ analytic
methods such as filtered back-projection [8] for CT and
inverse Fourier transform [9] for MRI to reconstruct images.
However, to have decent image quality, fully-sampled data
sets are required. For example, a typical commercial 64-slice
CT scanner normally has about 1000× 64 detector channels,
and it collects approximately 1000 projections per rotation.
Therefore, the sampling density is extremely high such that
the Nyquist rate is guaranteed. Initiated about a decade ago,
the CS-based methods have undergone a rapid growth, espe-
cially in recent years. For instance, Lustig et al. [10] showed
that CS can be utilized to reconstruct sparse medical images
from undersampled measurements. Their work makes use of
the CS theory developed by Candes, Tao and Donoho, who
proved that given knowledge about a signal’s sparsity, the
signal may be reconstructed with even fewer samples than the
Nyquist-Shannon sampling theorem [11] requires [12]–[14].

Mathematically, a well-known fact in system identification
is that undersampling the input and output signals leads to
an under-determined mathematical system model. In theory,
an undersampled inverse problem requires a regularization
instead of direct inverse such that stability can be kept during
the problem-solving procedure [15]. Reconstruction from
undersampled data with the direct inverse generates strong
artifacts in general. Obviously, we need to suppress the arti-
facts to avoid confusionwith the real anatomic structures. The
choice of regularization is essentially subjective and mainly
depends on the applications. In recent years, the gradient-
based methods such as total variation (TV) minimiza-
tion [6], [7], [10], [16]–[18] have gained great popularity,
because of their impressive results in artifacts reduction and
image denoising. In many cases, medical images can be well
approximated by piece-wise constant functions. A typical
example is the large area of air in the CT lung imaging.
Therefore, it is reasonable to add TV as a regularization, since
in general the gradient-based sparse prior is very important
in CS-based medical image reconstruction to suppress the
streaks and to reduce noise.

From another perspective, since a multimodal platform
samples the same object simultaneously, the images from
different modalities must share structural similarities particu-
larly in boundaries and edges. This is achieved despite the fact
that CT and MRI images are formed under completely differ-
ent physical principles. In other words, CT images and MRI
images are similar in structural features even though they

look quite different in terms of pixel intensity and contrast
for the same anatomy. As a result, coupling some structural
features between CT andMRI can potentially improve recon-
struction quality for both of them. From a signal processing
perspective, this is equivalent to utilizing more information
to perform a better signal recovery.

The idea of performing joint reconstruction by coupling
underlying models that have a common structure emerged
1990’s. Haber and Oldenbourg [19] found that the joint
inversion approach reduces the non-uniqueness, and may
improve the quality of interpretation. However, the appli-
cation concentrates on geophysical applications. Rigie and
Rivire [20] employed a ‘‘total nuclear variation’’ to perform
joint reconstruction on CT data acquired from different kVp.
However, he did not use it for the cross-modal scenario,
and thereby he did not utilize any cross-modal information.
Ehrhardt et al. [21] investigated the PET-MRI joint recon-
struction using a parallel level set. However, PET imaging is
remarkably different formCT imaging in terms of its physical
realization and mathematical approach. In particular, the spa-
tial resolution of PET images is significantly lower than that
of CT images [22]. Other reseraches on multimodal recon-
struction can also be found in [23]–[25], but ultimately the
CT-MRI joint reconstruction remains a challenging research
topic. In general, the key to perform joint reconstruction lies
in the following two questions. The first one is how to model
a multimodal imaging system, whereas the second one is how
to create a coupling among different modalities. In fact, the
multimodal imaging systems can be reasonably generalized
as multichannel imaging systems [20], [26], [27], which have
been used in many applications, such as color and geophysics
imaging [21]. On the other hand, multimodal coupling has
been explored with many geometric-based [28]–[30] and the-
oretical information-based methods [31], [32]. However, all
these methods uses offline information from other modalities.
Therefore, none of these priors have actually been fit into
the context of the planned omni-tomography system, which
requires images to be reconstructed simultaneously.

This research is part of the planned omni-tomography
project, and particularly works on the portion of image
reconstruction. It requires the development of a new joint
CT-MRI reconstruction from highly undersampled CT and
MRI data sets. The proposed sparse-prior-based projection
distance optimization method updates image signals at each
iteration while it incorporates information provided by the
the CT and MRI coupling. The methodology is very general,
and it can be applied to any problem where images share
structural correlations, for instance, dual-energy CT imaging
systems. For comparison purpose, analytic reconstruction and
individual CS-based reconstructions are also implemented.
The latter method does not process any information from the
other modality and thereby ignores the similarity and corre-
lated information. Since the omni-tomography is currently an
active research topic and has not been yet realized, our data
are generated by simulating the clinical CT and MRI images.
Numerical simulations reveal that our joint reconstruction
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provides a significant improvement in image quality, espe-
cially when the structure of the anatomy is more complicated
than the piece-wise constant model.

The rest of this paper is organized as follows.
Section II provides the theoretical framework and methods of
multimodal imaging systems. Section III provides simulation
results and analysis. Section IV draws conclusions for this
work.

II. THEORY AND METHODS
A. RECONSTRUCTION FRAMEWORK
Both the CT and MRI imaging systems can be modeled as a
linear shift-invariant regression model as

y = Ax+ σ, (1)

where x denotes an unknown image to be reconstructed;
A denotes the system matrix; σ denotes the noise; and
y denotes the collected data. For CT imaging, the noise are
dominantly Poisson, and the data are a number of projections,
or sinogram, formed by passing a set of X-ray beams through
an object from different angles. For MRI, the noise are
Gaussian and the data, usually referred to as k-space data, are
essentially the Fourier transform of the original image. The
system matrix A in Equation (1) indicates forward projection
in CT imaging and Fourier transform in MRI.

As CT and MRI are fused together, the multimodal
imaging system is modeled as an N -channeled imaging
system [20], [26] whose system matrix is

A =


A11 A12 . . . A1N
A21 A22 . . . A2N
...

...
. . .

...

AN1 AN2 . . . ANN

. (2)

The diagonal terms in Equation (2) represents the within
channel impulse responses, whereas the off-diagonal ones
represents the cross-channel interactions. As described in
Figure 1, CT and MRI imaging are performed independently
within the fused platform, implying that the off-diagonal
are 0s, which leads to the simplification that

A =
[
A1 0
0 A2

]
. (3)

Similarly, for multichanneled data, signal, and noise, we have

y =
[
y1
y2

]
, x =

[
x1
x2

]
, and σ =

[
σ1
σ2

]
, (4)

where the subscripts ‘‘1’’ and ‘‘2’’ indicate CT and MRI,
respectively. This notation carries on throughout the rest of
the paper.

The regression model given by Equation(1) is known to
be ill-conditioned and encompasses a large variance noise.
According to the CS theory, solving such a problem requires
sparse representation of the unknown signal as an additional
regularization [10], [12], [14]. Here, TV is employed because

FIGURE 1. Imaging pipeline on a fused CT-MRI system. The CT and MRI
signals are collected independently.

it has shown impressive results in many applications. The TV
of an image x is defined as

TV (x) =
∫
�

‖∇x‖1d�, (5)

where∇x is DGT of the image, and ‖·‖1 denotes the L1-norm,
which is defined as

‖x‖1 = (|x1| + |x2| + · · · + |xn|), (6)

where | · | denotes the absolute value. Figure 2 shows the
DGT calculation of an abdomen CT image (top row) and an
MRI image (bottom row) using the stencil-based high-order
approximation [33].

FIGURE 2. Discrete gradient transform using the 8th order approximation
of an abdomen CT image on top row and MRI image on bottom row. From
left to right: original image; transform in the horizontal direction;
transform in the vertical direction.

The TV for a multichannel imaging system TVM (x) is
defined as [26]

TVM (x) = âĂć

√√√√ M∑
m=1

TV (xm)2, (7)
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where M denotes the total number of the channels in the
multichannel imaging system and m denotes the channel
index. As a multichannel imaging system, the multimodal
reconstruction framework is formulated as a constrained opti-
mization problem defined as

x = argmin
x

(
TVM (x)

)
,

s.t. y = Ax, (8)

which can be solved by minimizing a cost function
expressed as

f (x) =
1
2
‖Ax− y‖22 + ξTVM (x), (9)

where ‖ · ‖2 denotes the L2-norm defined as

‖x‖2 = (x21 + x
2
2 + · · · + x

2
n )

1
2 , (10)

and ξ is a constant parameter. Note Equation (9) is a typical
Lagrange function consisting of a data fidelity term and a
regularization term. In fact, since there are two modalities in
our CT-MRI system, the cost function given by Equation (9)
needs to be adjusted such that

f (x1, x2) =
1
2
‖A1x1 − y1‖22 +

1
2
‖A2x2 − y2‖22

+ ξ
âĂć
√
TV (x1)2 + TV (x2)2, (11)

where x1 is the CT image and x2 is the MRI image.
A common way to minimize f (x) in Equation (9) is to

adopt gradient-based methods. By applying the chain rule,
the partial derivative of the multimodaled TV in Equation (9)
with respect to (w.r.t.) the mth modality is given by

∂TVM (x)
∂xm

=
TV (xm)
TVM (x)

∇ ·

(
∇xm
‖∇xm‖2

)
. (12)

Hence, the partial derivative of the cost function given by (9)
w.r.t. the unknown of one single modality is expressed as

∂f (x)
∂xm

= A∗m
(
Amxm − ym

)
+ ξ

TV (xm)
TVM (x)

∇ ·

(
∇xm
‖∇xm‖2

)
,

(13)

where A∗m is the conjugate transpose of A.

B. MULTIMODAL COUPLING
The purpose of jointly reconstructing multimodal images
is to enhance image quality by incorporating additional
information like structural similarities. The design here is
to utilize commonly shared features between CT and MRI
images. Although the images have different dynamic range
and distribution, they are acquired for the same anatomical
structure, and the information encompassed in these images
like edges and boundaries carries high correlation. Figure
2 displays CT and MRI images of an abdomen, and their
DGTs in horizontal and vertical directions, which show obvi-
ous similarities in structures. Figure 3 shows the overlapped
image gradients between CT and MRI images. Starting from
perfect alignment on the upper left corner, the MRI image

FIGURE 3. Angle between overlaid CT and MRI image gradients varying
from 0◦ to 160◦; note that when the angle is 0◦, the two images are very
well aligned.

FIGURE 4. Fitting curve defined in Equation (15) shows projection
distance as a function of the angle between CT and MRI image TVs; note
that it reaches its maximum when the two images are orthogonal and its
minimum when the two images are perfectly aligned.

rotates such that the inter-vector angle increments by 22.5◦.
As the inter-vector angle increase, the overlap between the
two decreases, and so does the similarity between the CT and
MRI images.

To incorporate the structural similarity of CT and MRI
images, one needs to measure the divergence between the
two images in a feature space. To this end, we introduce
a projection distance between the TVs of two images as a
quantitative metric. Specifically, given two vectors u and v,
the projection distance dproj(u, v) is defined as

dproj(u, v) = 1− cos(u, v) = 1−
u · v
‖u‖2‖v‖2

, (14)

where cos(u, v) is the cosine similarity, and u · v is the
inner product of u and v. The projection distance measures
the dissimilarity between two non-zero vectors of an inner
product space by computing the cosine of the angle between
them. Consequently, it becomes larger as the two images
get less similar, and it becomes smaller as they get more
alike. Figure 4 shows how the projection distance changes
as a function of the deviation changing between the two
vectors. The function curve is approximated by an 8th order
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polynomial function given by

p(x) =
8∑

n=0

(anxn). (15)

Note that 1 > dproj(u, v) > 0 and dproj(u, v) = dproj(v,u).
It is also straightforward to prove that dproj(u, v) = 0 when
two vectors are identical, and dproj(u, v) = 1 when two
vectors are orthogonal.

In order to embed the projection distance into our gradient-
based optimization framework, its derivative w.r.t. the TV of
the unknown images is necessary. Here we only show the
derivation w.r.t. one of the modalities, and the other simply
follows the symmetric principle. By definition, the derivative
of dproj(u, v) w.r.t. u is given by

∂

∂u
dproj(u, v) = −

∂

∂u
cos(u, v),

where
∂

∂u
cos(u, v) = lim

∂u→0

cos(u+ ∂u, v)− cos(u, v)
∂u

,

and

cos(u+ ∂u, v) =
(u+ ∂u) · v
‖u+ ∂u‖2‖v‖2

.

Particularly, we have

‖u+ ∂u‖2 =
√
(u+ ∂u) · (u+ ∂u)

= ‖u‖2

√
1+ 2

u

‖u‖22
· ∂u+

‖∂u‖22
‖u‖22

≈ ‖u‖2

(
1+

u

‖u‖22
· ∂u

)
.

It follows that

cos(u+ ∂u, v)

≈
u · v+ ∂u · v

‖u‖2

(
1+ u

‖u‖22
· ∂u

)
‖v‖2

≈
u · v+ ∂u · v
‖u‖2 ‖v‖2

(
1−

u

‖u‖22
· ∂u

)

=

(
u

‖u‖2 ‖v‖2
−

u · v
‖u‖2 ‖v‖2

u

‖u‖22

)
· ∂u

+
u · v

‖u‖2 ‖v‖2
+ O(∂u2)

≈ cos(u, v)+

(
v

‖u‖2 ‖v‖2
− cos(u, v)

u

‖u‖22

)
· ∂u,

and
∂

∂u
cos(u, v) = lim

∂u→0

cos(u+ ∂u, v)− cos(u, v)
∂u

=
v

‖u‖2 ‖v‖2
− cos(u, v)

u

‖u‖22
.

Hence,

∂

∂u
dproj(u, v) = cos(u, v)

u

‖u‖22
−

v
‖u‖2 ‖v‖2

. (16)

Similarly, due to the symmetric form of projection distance,
its derivative w.r.t. v is given by

∂

∂v
dproj(u, v) = cos(u, v)

v

‖v‖22
−

u
‖u‖2 ‖v‖2

. (17)

Note that in our optimization framework u and v here are TV
terms of the CT and the MRI image, therefore, by applying
chain rule we have

∂

∂x1
dproj(u, v)

=

(
cos(u, v)

u

‖u‖22
−

v
‖u‖2 ‖v‖2

)
∇ ·

(
∇x1
‖∇x1‖2

)
(18)

for CT imaging, and

∂

∂x2
dproj(u, v)

=

(
cos(u, v)

v

‖v‖22
−

u
‖u‖2 ‖v‖2

)
∇ ·

(
∇x2
‖∇x2‖2

)
(19)

for MRI. In Equation (18) and Equation (19), u = TV (x1)
and v = TV (x2).

C. MULTIMODAL OPTIMIZATION
To restrict the divergence between CT and MRI images, the
projection distance is added to Equation (9). The cost function
thereby becomes

f (x) =
1
2
‖Ax− y‖2 + ξTVM (x)+ λdproj(TV (x)), (20)

where λ is the tuning factor of the projection distance term.
By expressing Equation (20) as a cost function of a joint
CT-MRI optimization, we get

f (x1, x2) =
1
2
‖A1x1 − y1‖2 +

1
2
‖A2x2 − y2‖2

+ ξ
√
TV (x1)2 + TV (x2)2

+ λdproj
(
TV (x1),TV (x2)

)
, (21)

where dproj
(
TV (x1),TV (x2)

)
is the projection distance of

TVs of the CT and the MRI images, and it is defined in
Equation (14).

To solve x1 and x2 in Equation (21), we generalize the
conjugate gradient method to the nonlinear optimization
problems. The nonlinear conjugate gradient (NCG) method
[34], [35] only requires the gradient of the cost function to
seek a local minimum of a quadratic function in the neigh-
borhood of the critical points. By taking the derivatives on
both sides of Equation (21) and letting u = TV (x1) and
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v = TV (x2), the gradient of f (x1, x2) in Equation (21)
w.r.t. x1 is
∂f (x1, x2)
∂x1
= A∗1

(
A1x1 − y1

)
+ ξ

u
TVM (x)

∇ ·

(
∇x1
‖∇x1‖2

)
+ λ

(
cos(u, v)

u

‖u‖22
−

u
‖u‖2 ‖v‖2

)
∇ ·

(
∇x1
‖∇x1‖2

)
(22)

and the counterpart w.r.t. x2 is

∂f (x1, x2)
∂x2
= A∗2

(
A2x2 − y2

)
+ ξ

v
TVM (x)

∇ ·

(
∇x2
‖∇x2‖2

)
+ λ

(
cos(u, v)

v

‖v‖22
−

v
‖u‖2 ‖v‖2

)
∇ ·

(
∇x2
‖∇x2‖2

)
,

(23)

where

cos(u, v) =
u · v

‖u‖2 ‖v‖2
. (24)

In practical implementation, in order to make L1-norm differ-
entiable throughout its entire support, an infinitesimal term ε,
e.g. 1× 10−15, is added such that

∇ ·

(
∇xm
‖∇xm‖2

)
→ ∇ ·

(
∇xm

‖∇xm + ε‖2

)
. (25)

The joint CT-MRI system essentially extends the NCG
optimization problem to a multivariate level. To solve it, the
updates of Algorithm 1 are calculated at each iteration. Here,
the superscript n denotes the nth iteration; d(n) denotes conju-
gate gradient; α(n) denotes step size found by the line search
algorithm satisfying the Wolfe condition [36], [37]; β(n) is
computed by the Fletcher-Reeves method [38]; and · depicts
the dot product. The entire iterative algorithm is summarized
in Algorithm 1. Note that in Algorithm 1, β(n)1 and β(n)2 are
the same since the NCG method accounts for the union of x1
and x2 expressed as [x1, x2].

III. RESULTS AND DISCUSSION
The joint reconstruction framework is tested on a pair of
body images, including a CT image and an MRI image. The
images are acquired for the same anatomy and are both sized
256 × 256 pixels. Image intensity is normalized to [0 1] for
both images. The undersampled CT sinogram is created by
simulating a forward projection from 51 different directions
out of a full rotation ranging from 0◦ to 360◦. Similarly, the
undersampled MRI k-space data are collected by applying
an undersampling mask to the fully sampled k-space data,
which are generated by applying the Fourier transform to the
original image.

Algorithm 1 CS-Based Joint Reconstruction
1: Initialization:

x(0)1 = 0; x(0)2 = 0;
d(0)1 = −∇x1 f (x

(0)
1 , x

(0)
2 );

d(0)2 = −∇x2 f (x
(0)
1 , x

(0)
2 );

k = 0;
2: while true do
3: Line search:

α(n) = argminα f (x
(n)
1 + αd

(n)
1 , x

(n)
2 + αd

(n)
2 ).

4: Update results
x(n+1)1 = x(n)1 + α

(n)d(n)1 ;

x(n+1)2 = x(n)2 + α
(n)d(n)2 ;

5: Update steepest decent direction
g(n+1)1 = −∇x1 f (x

(n+1)
1 , x(n+1)2 );

g(n+1)2 = −∇x2 f (x
(n+1)
1 , x(n+1)2 );

6: Update Fletcher-Reeves value
g(n) = [g(n)1 , g

(n)
2 ];

β
(n)
1 =

g(n+1)·g(n+1)

g(n)·g(n) ;

β
(n)
2 =

g(n+1)·g(n+1)

g(n)·g(n) ;

7: Update conjugate gradient
d(n+1)1 = g(n+1)1 + β

(n)
1 d(n)1 ;

d(n+1)2 = g(n+1)2 + β
(n)
2 d(n)2 ;

8: k = k + 1;
9: if k > K or |dx1| < ε1 or |dx2| < ε2 then
10: break;
11: end if
12: end while

The algorithm is implemented on a PC with Microsoft
Windows 10 Pro powered by Exon CPU. The PC has
32Gigabyte of memory such that all programmings are coded
under x64 mode. The computer is also equipped with an
nVidia M5000M Graphic Processing Unit (GPU) provided
with an 8-Gigabyte on-chip memory driven by Compute
Unified Device Architecture (CUDA) 8.0. The software is
developed in MATLAB, C/C++, and CUDA, combined by
the MEX interface.

The forward projection and back-projection for the CT
imaging is programmed in CUDA-based C code to further
accelerate the computation. The CT projection follows an
equi-angular fanbeamgeometrywith no iso-center offset. The
number of the detectors is 1024, which is a typical value
emulating major vendors in current market. The projection
implementation employs a ray-driven model for forward pro-
jection and a pixel-driven [39] model for back-projection.
As for the MRI, the 2D-Fourier operator and its inverse are
performed with built-in MATLAB functions. The Fourier
transform is not carried out by GPU code, but it is sufficiently
fast.

The evaluation is conducted by comparing the results
obtained from all experiments. The three tested methods are
listed as following scenarios:
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1) Analytic reconstructions;
2) Reconstruction based on Equation (11);
3) Reconstruction based on Equation (21).

The comparison among the three reconstruction strategies are
also compared in Table 1.

TABLE 1. Comparison of different reconstruction strategies.

FIGURE 5. Convergence curves with CPU implementation and accelerated
GPU implementation. Both follow the strategy described in Algorithm 1.

Figure 5 shows the convergence of reconstruction
implemented in GPU and CPU, both of which follow
Algorithm 1. The GPU implementation significantly decease
the time of convergence as the plot shows. The NCG algo-
rithm approaches its minimal at approximately 600 iterations,
and the cost function decreases with a very steady behavior
afterwards. The forward and backprojection of CT imaging
are computationally expensive, so they are accelerated with
CUDA implementation with massive parallelism. Conse-
quently, each iteration takes roughly 0.4 seconds to update
both CT and MRI images. To get final reconstruction results,
it takes approximately 400 seconds.

The results of different reconstructions are displayed in
Figure 6 and Figure 7 in the following order: top left depicts
the original image as the truth; top right depicts the CS-based
joint reconstruction with projection distance regularization;
bottom left depicts the CS-based reconstruction indepen-
dently on single modality without projection distance regular-
ization; and bottom right depicts the analytic reconstruction
of the undersampled sinogram with 51 projections using

FIGURE 6. Comparison of CT reconstructions: top left depicts the original
image as the truth; top right depicts the joint reconstruction; bottom left
depicts the independent reconstruction; and bottom right depicts the
analytic reconstruction. The display windows is [0 1].

FIGURE 7. Comparison of MRI reconstructions: top left depicts the
original image as truth truth; top right depicts the joint reconstruction;
bottom left depicts the independent reconstruction; and bottom right
depicts an analytic reconstruction. The display windows is [0 1].

native fanbeam geometry algorithm [8] for CT, and inverse
Fourier transform with 40% k-space sampling rate for MRI.
The analytic reconstruction exhibits strong artifacts due to
severe undersampling. Streaks and distortion are quite obvi-
ous in both CT and MRI images. In contrast, the joint recon-
struction shows a similar image quality as the independent
reconstruction. Both of the reconstructed images are very
similar to the truth. The tuning parameters here are chosen
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FIGURE 8. Three ROIs are chosen from both CT and MRI images. ROIs are
higjlighred in red color, whereas, regions of background are also chosen,
but labeled in blue color. Display window is [0 1].

as ξ = 0.01 and λ = 0.05. The choice of ξ and λ is
experimental, and is not under the scope of this work.

A detailed analysis is conducted by observing zoomed-
in region of interests (ROIs). The ROIs are marked in red
color as depicted in Figure 8. Figure 8 also defines back-
ground regions where noise is calculated. This will be fur-
ther explained in the paragraph where statistics of ROIs are
discussed.

Figure 9 and Figure 10 display ROIs for CT and MRI
images, respectively. CT ROIs focus on bony structures
which absorb a large amount of X-ray photons, and therefore
show much higher intensity. Similarly, MRI ROIs are chosen
with tissues containing high density of protons, such as lipids,
as they show stronger intensity in images. The evaluation of
the images concentrates on the texture, artifacts, resolution
and noise. By visual inspection, it is observed that the joint
reconstruction (top right panel) in both CT and MRI provides
better intensity and focus of texture on bone structure as
compared with the independent and analytic reconstructions.
It also achieves the best resolution among the tested recon-
struction methods by comparison with the original image.
In addition, the joint reconstruction also exhibits the best
smoothness in background tissue, especially in MRI ROIs.

FIGURE 9. ROI comparison for CT imageswith all three ROIs being
defined in Fig. 8 in red color; All ROIs are zoomed in with zoom factor
of 8×. Display window is [0 1].

Image difference is also examined. Figure 11
and Figure 12 show the image differences for different
reconstructions compared to the truth. In particular, image
difference gives a much clearer distinction between joint
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FIGURE 10. ROI comparison for MRI images with all three ROIs being
defined in Fig. 8 in red color; All ROIs are zoomed in with zoom factor
of 8×. Display window is [0 1].

and independent reconstruction, both of which are iterative
methods. Under the proper window level, joint reconstruction
shows much less difference than independent reconstruction
when both are compared to the truth.

FIGURE 11. Image difference with respect to ground truth: truth on the
top left; joint reconstruction on the top right; independent reconstruction
on the bottom left; analytic reconstruction on the bottom right. The
display windows is [0 0.08].

FIGURE 12. Image difference with respect to ground truth: truth on the
top left; joint reconstruction on the top right; independent reconstruction
on the bottom left; analytic reconstruction on the bottom right. The
display windows is [0 0.08].

Quantitative analysis using statistics are also performed
for each ROI. All ROIs are also considered region of sig-
nal, yet the back-group airial region is excluded. The back-
ground regions, highlighted in blue color in Figure 8, are
chosen to evaluate noise. All regions of signal contain
high intensity objects, and all backgroud regions lie where
no anatomy being imaged. As larger intensity does not
necessarily mean good image nor does mean low noise,
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TABLE 2. Statistics CT ROIs.

TABLE 3. Statistics of MRI ROIs.

signal-to-noise ratio (SNR) is calculated for each reconstruc-
tion. For digital images, the SNR is defined as [40]

SNR =
µsignal

σbackground
, (26)

where µsignal is the mean value of the signal region, and
σbackground is the standard deviation of the noise of the back-
ground region. As Figure (8) shows, the signal region is rep-
resented with red color while the noise region is represented
with blue color. Maximal value, minimal value, and mean
value are computed for each signal region, and noise is com-
puted as the standard deviation of each background region.
The results of the CT and MRI ROIs are listed in Table 2
in Table 3, respectively.

The statistical results confirm the previous visual inspec-
tion: joint reconstruction reveals the truth with the highest
confidence. In particular, it approximates the true signal

FIGURE 13. Averaged SNR comparison for CT and MRI reconstruction
using the joint, individual and analytic methods.

FIGURE 14. CT reconstruction comparison in line profile: top depicts the
line ROI on CT image; bottom left depicts the line profile comparison;
bottom right depicts a zoom-in of high frequency part of the line ROI;
display windows is normalized to [0 1].

better in high intensity location and generates less noise in the
background. The independent reconstruction has close qual-
ity to joint reconstruction, but ignoring the multimodal infor-
mation induces small accuracy as compared with the joint
reconstruction. It is also noticed that the analytic reconstruc-
tion sometimes gives stronger signal intensity than the joint
reconstruction, but its noise in the background is extremely
large, and this eventually leads to a very poor SNR. Figure 13
displays values of SNR according to Equation (26) for differ-
ent reconstructions. The calculation is based on normalized
image pixel value. SNRs of both CT and MRI images follow
a descending order from truth to analytic as the graph shows.
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FIGURE 15. CT reconstruction comparison in line profile; top depicts the
line ROI on CT image; bottom left depicts the line profile comparison;
bottom right depicts a zoom-in of high frequency part of the line ROI;
display windows is normalized to [0 1].

Aside from the statistic comparison, line profile is another
way to investigate the reconstruction quality. The line
profiles are also drawn in the same ROIs as defined
in Figure 8, and they are across areas containing high
frequency components such as boundaries and edges.
Figure 14 and Figure 15 displays how each reconstruction
performs comparing to the original image. The results are
consistent with those from visual inspection and statistic
analysis. Joint reconstruction, among the three, gives the best
reconstruction quality of reconstruction followed by individ-
ual reconstruction. Analytic reconstruction, however, holds a
far more inferior result to the aforementioned two.

TABLE 4. Similarity measurement for CT reconstruction.

Similarity metrics between the original image and its
reconstructed versions are computed as the third mean for
verification. The metrics here include the Root-Mean-Square
Error (RMSE), the structural similarity (SSIM) [41], and the
correlation coefficients. The results are displayed in Table 4
for CT imaging and in Table 5 for MRI. All calculations are

TABLE 5. Similarity measurement for MRI reconstruction.

based on normalized images as the aforementioned. For both
the CT and MRI images, the joint reconstruction exhibits the
highest similarity and correlationwith the original image. The
independent reconstruction follows the joint reconstruction.
The analytic methods rank the lowest among all the tested
methods here.

IV. CONCLUSIONS
In this paper, it is demonstrated that integration of multi-
modal information of structural similarity can enhance recon-
struction quality. The CS technique employed here gives an
example of how to achieve multimodal reconstruction with
highly undersampled data. The choice of the joint priors is
instrumental and needs to be handled properly to balance
the image quality. TV is included so that artifacts are sup-
pressed while projection distance is utilized to govern the
divergence between different modalities. The results reveal
that the joint reconstruction framework produces superior
image reconstruction quality when using the iterative-based
methods that incorporates multimodal structural similarities.
Future work will include the extension of the proposed joint
reconstruction concept to more scenarios for which struc-
tural similarity is available. It will also include the applica-
tion of different sparse transformations, the development of
3D-imaging framework, newways of couplingmultimodality
information, and faster and more robust optimization algo-
rithm to further reduce data sampling.
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