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ABSTRACT Wireless communication channels are highly prone to interference in addition to the pres-
ence of additive white Gaussian noise (AWGN). Stochastic gradient (SG)-based non-parametric maxi-
mum likelihood (NPML) estimator, gives better channel estimates in the presence of Gaussian mixture
(AWGN plus interference) noise processes, for subsequent use by the channel equalizer. However, for
sparse channels, the SG-NPML-based channel estimator requires large iterations to converge. In this
paper, we propose a natural gradient (NG)-based channel estimator for sparse channel estimation in the
presence of high interference. We propose a generalized pth order warping transformation on channel
coefficients space and then calculate the Riemannian metric tensor, thereby resulting in faster convergence
in interference limited channels. The proposed algorithm is applied for IEEE 802.22 (based on orthogonal
frequency division multiplexing) channel estimation in the presence of interference. Extensive simulations
and experimental results show that the proposed NG-based algorithm converges faster than SG-NPML
for the same mean squared error (MSE) floor with similar computational complexity per iteration as an
SG-NPML algorithm. We also present convergence analysis of proposed NG-NPML algorithm in the
presence of Gaussian mixture noise and derive an analytical expression for the steady-state MSE.

INDEX TERMS Orthogonal frequency division multiplexing non-parametric maximum likelihood, Rieman-
nian geometry, Gaussian mixture noise, natural gradient, IEEE 802.22, convergence analysis, sparse channel

estimation.

I. INTRODUCTION

Wireless communication channels are highly affected by
interference from both the co-channel interference (CCI) [1]
and adjacent channel interference due to the extensive growth
of wireless services and applications, and due to hardware
imperfections [2]. These interferences along with additive
white Gaussian noise (AWGN) can be jointly modeled as
Gaussian mixture noise which is non-Gaussian in nature [3].
In addition to interference in the radio channel, the
example of non-Gaussian noise sources include symmetric
alpha-stable noise [4], [S], double talk in echo cancella-
tion [6], biological noise [7] in the underwater acoustic
channels and variety of natural and man-made sources [8].
Stochastic gradient (SG) based non-parametric maximum
likelihood (SG-NPML) adaptive algorithm gives better chan-
nel estimates in the presence of Gaussian mixture noise [3].
In the SG-NPML based channel estimator, first, the error
signal (which is a Gaussian mixture) is estimated, then the

probability density function (PDF) of this error signal is
estimated with the help of kernel density estimators [8] and
finally, the gradient of the cost function [2], [10], [11] is
applied iteratively to approach maximum likelihood estimate.
This resulting channel estimate has lower mean squared
error (MSE) than least squares based channel estimator
in the interference limited channels. However, in practice,
there are various communication channels that are sparse
in nature. Some examples include digital TV transmission
channel [12], broadband system [13], [14], multi-input multi-
output channel [15], underwater acoustic channel [16], and
wireless multipath channel in cellular communication [17].
For sparse channels, SG-NPML based adaptive channel esti-
mation requires a large number of iterations for convergence,
and hence increases computational cost of the system.

In literature, there are various sparse channel esti-
mators including least absolute shrinkage and selection
operator (LASSO) [18], matching pursuit (MP) [19], and
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orthogonal matching pursuit (OMP) [20], which have low
computational complexity as compared to SG-NPML. The
LASSO, MP, and OMP have good MSE performance in
the presence of Gaussian noise, if a priori knowledge
of an exact number of active taps is provided. However,
MSE floor increases for LASSO, MP, and OMP for an
interference limited sparse channel, thereby rendering them
unsuitable for channel estimation.

One solution to circumvent the slow convergence of
SG-NPML, and MSE degradation for LASSO, MP, and
OMP, is to use a natural gradient (NG) based adaptive algo-
rithms. NG learning provides an efficient algorithm which
replaces stochastic gradient with a natural gradient. NG is
the steepest descent direction in Riemannian space [21].
In NG adaptation, the weights are updated according to the
non-Euclidean nature of the parameter space. The adap-
tation is based on a ‘“non-straight line” distance metric
defined by the Riemannian metric structure [22]. A Rie-
mannian metric structure describes the parameter space for
NG adaptation [23]. The optimum value of filter parameters
is expected to be close to the coordinate axis for a sparse
channel. Hence, the parameter space close to the axis should
be warped in the sense that any direction which is orthog-
onal to the axes should be larger than the Euclidean dis-
tance [18]. Thus, once the channel coefficient vector comes
close enough to coordinate axis, they swing to the same
position, thereby leading to a sparse solution [22]. In sparse
channel estimation, the improved-proportionate normal-
ized least-mean square (IPNLMS) [24] and improved-
proportionate affine projection algorithm (IPAPA) [25]
are well known NG algorithm which outperforms their
corresponding classical SG normalized least-mean
square (SG-NLMS) and affine projection algorithm (APA)
respectively. However, in interference limited communica-
tion channels (modeled by Gaussian mixture distribution)
these algorithms also do not perform well and have high
MSE floor. Additionally, for sparse channel estimation under
symmetric alpha-stable distribution, natural gradient-based
M-estimate affine projection algorithm (NGMAPA) and
natural gradient-based p-norm affine projection algo-
rithm (NGpNAPA) have been proposed in [4], which also
have high MSE floor in the presence of interference.

Thus, to circumvent the limitations of existing algorithms,
in this paper, we propose NG based channel estimator for
channel estimation in interference limited sparse channels.
The proposed algorithm uses p™ order transformation on
the channel coefficients space which transforms the chan-
nel coefficients space from Euclidean space to Riemannian
space. In [22] and [26], a linear transformation is used to
calculate the channel update in the presence of Gaussian
noise. However, in [22] NG is applied on NLMS, which
has poor performance in the presence of high interference.
Additionally, the algorithm in [22] requires a large (thou-
sands) number of iterations to converge. In both [22] and [26],
the generalization of this transformation and its analysis is
not done. In this paper, we generalized this transformation,
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thereby resulting in faster convergence. The effect of this gen-
eralization on convergence rate and MSE is also highlighted
to aid in selection transformation order for given application.
In Riemannian space, the Euclidean distance based gradient
does not give the steepest descent/ascent direction of the cost
function [27]. Hence, once the channel coefficients space is
warped, we apply NG adaptation on this space and calcu-
late the Riemannian metric tensor (gain matrix) which is a
positive-definite matrix that describes the local curvature of
coefficient space for the proposed algorithm. The gain matrix
is proportional to the updated channel coefficients; hence the
effective NG’s adaptation step-size is assumed to be large
for active taps (the taps having a significant magnitudes of
channel coefficients) and small for inactive taps (the taps hav-
ing zero or nearly zero magnitudes of channel coefficients),
leading to faster convergence.

To validate effectiveness of the proposed algorithm,
we apply this to a standardized IEEE 802.22 based receiver
for sparse channel estimation. Both the simulation and exper-
imental results show that the proposed NG-NPML outper-
forms the classical SG-NPML and other algorithms. For both
simulation and experimental setup we have chosen IEEE
802.22 standard (based on OFDM) as it is an evolving stan-
dard for TV white space (TVWS) communication and its
transmission parameters such as bandwidth, sampling rate,
and operating frequency band is same as digital terrestrial
TV (DTTV) whose transmission channel is sparse [28].
Hence, the transmission channel for IEEE 802.22 stan-
dard is also sparse. In many countries, large bandwidth is
unutilized (or underutilized) in terrestrial TV bands [29].
Moreover, these vacant bands are likely to be made unli-
censed like in the UK [30] and Africa, or made lightly
licensed for data transmission in rest of the world.

Additionally, in this paper, we also present convergence
analysis of the proposed NG-NPML algorithm in mean
weight error, and derive an approximate analytical expression
for steady-state MSE based on Taylor series expansion. The
analysis is based on ‘transform’ domain approach as used
in [31]. Simulation results verify the theoretical calculation
well. As an early work, the authors introduced preliminary
quadratic warping transformation for sparse channel estima-
tion in the presence of interference [32]. In summary, the main
contributions of this paper are as follows:

o« We propose a generalized robust (to various inter-
ferences) NG-NPML for sparse channel estimation
for OFDM systems by transforming the coefficients
space into Riemannian space. The complexity per iter-
ation of proposed algorithm is similar to SG-NPML.
However, by calculating the gain matrix, which provides
large step-size for active taps and small step-size for
non-active taps, a much faster convergence is achieved
for the same MSE as SG-NPML, and superior to
LASSO and OMP.

« We also present convergence analysis of the proposed
generalized NG-NPML algorithm in mean weight error,
and derive an approximate analytical expression for
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steady-state MSE based on Taylor series expansion
for the first time in literature. Simulation results val-
idate the theoretical expressions for MSE and excess
MSE (EMSE). Additionally, the convergence analysis of
NG-NPML algorithm can be used to analyze the other
NG based algorithms like NGMAPA and NGpNAPA in
the presence of Gaussian mixture noise.

For validation of robustness of the proposed algorithm,

we have performed simulations and experiments under var-

ious conditions:

o We have chosen IEEE 802.22 standard (as it is an evolv-
ing standard for TVWS communication and is based
on OFDM) for simulation and experimental purpose to
verify superiority of the proposed algorithm for Typi-
cal Urban COST-207 channel model. For simulations,
we used another IEEE 802.22 transmitter as CCI.

o For experimental validation (on National Instru-
ments  Universal  Software = Radio  Peripheral
(NI-USRP) 2952R), we used two types of CCI; an
IEEE 802.22 transmitter and DTTV transmitter. Both
the simulation and experimental results show robustness
of the proposed algorithm.

Rest of the paper is organized as follows: Section II
describes the system model and provides an overview
of NPML technique and the NG adaptation algorithm.
Section III describes the proposed algorithm by using warp-
ing transformation with detailed derivation of the quadratic
warping transformation. Section IV provides the stabil-
ity condition of the proposed algorithm with respect to
mean weight error and derive the analytical expression
for steady-state MSE which is based on transform domain
model of NG-NPML. Section V shows the computer sim-
ulation results and experimental results analysis with dis-
cussions and complexity analysis of the conventional and
proposed algorithm. Finally, the conclusions are drawn
in Section VI.

Notation: In this paper, the superscripts (.)7, (.)* and
() denote the transposition, complex conjugate and Hermi-
tian of (.) respectively. Bold capital letters denote matrix and
bold small letters denote vector. |.| and ||.|| represent absolute
value and Euclidean norm of (.) respectively. The E[.] is
the statistical expectation operator, 7r(.) is the trace of (.),
and I is an identity matrix of dimension L x L.

Il. SYSTEM MODEL AND PRELIMINARIES

In this section, we briefly explain the system model for
real valued channel estimation as shown in Fig. 1 and
overview of SG-NPML and NG adaptive algorithm.
Let x(n), x(n) = [x(n),x(n — 1),...,.x(n — AL +
DIT, h = [k(O0), k1), ..., (L — DIT, wn), i(n), hy =
[hr(0), g (1), ..., (L — DIT, e(n) and e(n) = w(n) + i(n)
represent the source signal, vector of source signal of dimen-
sion L x 1, true channel impulse response vector, AWGN,
CCI signal, adaptive (estimated) filter coefficient vector,
residual error and Gaussian mixture noise respectively. Here
L, k, and n represent the channel length, iteration index,
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FIGURE 1. System model for channel estimator.

and time index respectively. The joint PDF of AWGN and
CCI follow the Gaussian mixture. Let the received signal be
given by:
L-1
) =Y hDx(n — 1) + e(n) €y

=0

In SG-NPML technique, an iterative gradient ascent method
is used for channel estimation [3]. In SG-NPML estimator,
the cost function is given by [3]:

M
J(he) = Llhely) = logf(ylhe) = Y logf(e(m) (2)

m=1

where £(.) represents the log likelihood function and f (e(m))
is the PDF of Gaussian mixture noise which is estimated
by kernel density estimation with M measured data samples.
€(m) can be calculated as:

L—-1

e(m) = ym) — Y b (I)yx(m — 1) 3)

[=0

PDF of the Gaussian mixture noise is estimated by (4):

M
f(e(i)):%ZK(e(i)—e(i)) i=12,....M 4

j=1
where K(.) is assumed to be Gaussian kernel [9] and

defined as:

2
K = 5) )

1
N T 202
where o is the kernel width [9]. The channel update equation
at (k + 1)" iteration is given by

By = by + 0V, Ty ©)
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where p is the step-size and for SG-NPML, the gradient of
cost function which minimize (2) is given by [3]:

Vi, J ()

022

YL (e() — €(D)x() — X(NK (e(i) — €())

S K(e(i) — e(k))

(N

After substituting (7) into (6), the channel update equation is
given by:

] 1 quK(ek))

Z( Y K(er)

where €; = €(i) — €(j), q = x(i) — x(j) of dimension L x 1.
After iterations, the above equation tends to convergence and
the ML estimate of the channel vector in additive Gaussian
mixture noise is obtained [2]. However, for a large channel,
the convergence is slow and is comparatively more complex.
On the other hand, if the channel is sparse i.e. most of the
channel coefficients are nearly zero; an adaptation algorithm
that updates the channel coefficients by taking advantage
of sparseness of parameter solution space is needed. It is
shown in [33], that the NG based adaptation provides a better
solution for sparse channels. This is because in NG adapta-
tion, Riemannian metric tensor provides large step-size for
active tap coefficients, and small step-size for inactive tap
coefficients and hence gives faster convergence. The estima-
tor coefficients are updated based on a ““non-straight line”
distance metric defined by the Riemannian metric structure.
In Riemannian space, distance is not measured according to
the Euclidean norm. Once the parameter space is warped, then
the NG update of h at (k + )" jteration is given by [22]:

by = by + uGL VG T(hy) ©)

mﬂ_m+ ®)

where G is the Riemannian metric tensor (gain matrix)
which is a positive-definite matrix that descrlbes the local
curvature of the parameter space at hy, and GA is the inverse
of Gy

To derive the natural gradient, we choose a distance met-
ric (as given in [23]), which is not Euclidean, but Riemannian:

D = |d;, (), b (1) + rpa (D)
L—1
= Y IF(u() + repi (D) — Flw)? (10)
=0
where the ri 1 (7x41(0), g1 (D), ..., rep(L — D7) is a
column vector of L x 1 dimension having elements of small
real value data and F(.) is a warping transformation on (.).
By using Taylor series approximations in the above equation,
the distance metric can be written as [23]:

D:r,fHGf1 il (11)

Gﬁ for the proposed NG-NPML algorithm is calculated
using (10) and (11).
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IIl. PROPOSED NG-NPML ALGORITHM

In this section, we derive the proposed iterative algorithm
by transforming the parameter space and calculate the gain
matrix. The gain matrix Gy, is updated at each iteration,
hence it provides large step-size for active taps and small
step-size for inactive taps, thereby leading to faster conver-
gence. The gain matrix Gﬁk depends on the estimated channel
coefficients at each iterations. As shown in (10) and (11),
the gain matrix Gy, also depends on the transformation.
The transformation can include linear, quadratic, and higher
orders. The transformation can be generalized to any order as
given below:

F (1))
= \/ak(\|izk<l)|—|izk<l>|2 m

iD= = e DP | + B)
(12)

where p is the order of transformation, § is a regularization
parameter and « is a normalization term which is given as:

= . . .
w=7y )|hk(z)| — ... = P = D
=0

+8 (13)

The convergence of NG-NPML can be made faster
by using higher order transformation. However, the com-
putational complexity also increases as the order of the
transformation increases. Hence, to balance computa-
tional complexity and faster convergence rate, we consider
quadratic warping transformation on the channel coefficient
space which is given by:

Fll (b)) = \/ak (1w = 1hwp|+8)  as

After substituting (14) in (10), the distance metric is given
by (15), as shown at the bottom of the next page.

Here, we assume that |rx+1(/)] < 1 and [[hg|| > [|rg41]].
In the above equation, we consider two cases, fzk(l)rkH(l) >
0 and fzk(l)rkﬂ(l) < 0. For both the cases, the final channel
update equation at (k 4+ 1) iteration is given as:

(|1l - 12|+ 1)

)

By =By + Vi, T () (16)
where I'» is a matrix of dimension L x L, |ﬁk| and |ﬁk |2 are
L x L diagonal matrix. The proof of the above equation is
given in Appendix A. Similarly, the channel update equation
at (k + 1) iteration for p™ order transformation is given by:

(1A -

..—|ﬁk|P(+ﬁ1)

ﬁk+1 ~ hy + M T
p

Vi, J ()
(17)

where T, = (I+2|Hg | +. .. 4 p|Hy [P~1)2. The proof of (17)
is given in Appendix B. After substituting (7) into (16),
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FIGURE 2. Transform domain model of NG-NPML estimator.

the channel update equation at (k + 1) iteration for quadratic
transformation can be written as:

€xGy, aK (ex)
it = by + 25 Z Yo Gy, (18)
i—1 ijlK(Gk)

where G; = (‘|ﬁk| _ |ﬁk|2‘ n ﬂI)/(akrz) is a diag-
onal gain matrix with gx(/) = Gi(/,]) and satisfying

SE e =10 < @) < 1).

IV. CONVERGENCE ANALYSIS OF PROPOSED

NG-NPML ALGORITHM

In this section, convergence analysis of NG-NPML algo-
rithm is described. The convergence analysis of NG-NPML
algorithm is not straightforward as used in the least mean
square algorithm because of the presence of Gﬁk and K (eg).
In order to analyze convergence of the proposed algo-
rithm in the presence of G o We use ‘transform’ domain
model of proportionate- type ‘hormalized least mean square
algorithm [31], [34], [35]. Further, since K(ex) consists of
exponential term, it is approximated by its Taylor series
expansion for mathematical tractability. Let Ry = E[qx (1,{],
R = ]E[qu] and ﬁk = ]E[ﬁkfl]{] is the correlation
matrix (diagonal) of transformed input g, q and weight error
vector hy respectively of dimension L x L.

A. TRANSFORM DOMAIN MODEL OF THE
NG-NPML ALGORITHM
The transform domain model of the NG-NPML algorithm

djagona} matrix of dimension L x L, s(n) and flk =

[ (0), hi (1), ..., by (L — 1)]T are the transformed input and

filter coefficient vector respectively with s(n) = GIIQ/ 2x(n)
k

and ﬁk = G;l/ zﬁk, such that ﬁ[s(n) = ﬁ;x(n). The update
k

equation of h at (k + 1) iteration is given according to the
SG-NPML:

K
Z 1 exqi K (ex) (19)

i M K(er)
where, qx = s(i) — s(j) of dlmensmn L x 1 From (18),
the hg4; can be computed as hk+1 = G h2+1 Now,

ﬁk+1 = G /th which can be wrltten as hk+1 =

Gl/2 Gl/zh;H_1 It is reasonable to assume GA/2 ~ Gl/2
hj 41 hy 4
near convergence and/or large order channel [35] and thls

implies ﬁ;{ = flk+1. Hence, (19) can be written as:

M| ek (ex)
b1 =hye + — Z 2= (20)

i=1 Zj 1K(€k)

It is also assumed that the q is zero mean Gaussian random
variable for large order channel by the central limit theo-
rem [36]. The above equation is used for the convergence
analysis of the proposed algorithm in terms of mean weight
error.

B. MEAN WEIGHT ERROR CONVERGENCE ANALYSIS
With a zero-mean Gaussian transformed input g and its cor-
relation matrix Ry j, the proposed algorithm produces stable
performance with respect to mean weight error if the step-size
1 satisfies the below criterion:
202
O<pu< —— < (21)
M 21:1 )\s,k(l)

where Aq ([) is the eigenvalue of Ry . The proof of the above
equation is given in Appendix C.

C. STEADY-STATE MEAN SQUARE ERROR

PERFORMANCE ANALYSIS

In this subsection, we derive the analytical expression for the
steady-state MSE based on Taylor series expansion and show
that to achieve lower MSE floor, step-size must be small.
With a zero-mean Gaussian transformed input q, correlation
matrix Ry and using the Taylor series expansion of the
exponential function, the steady-state MSE is given by:

MTr (R, )Elexp ( ) 21E[exp ( )]
£ =&+ lim 2
k=00 2652 E[exp ( )(1 - %)]E[CXP (;_Lz>]

is shown in Fig. 2, where Glll/ 2 is a transform domain (22)
k
L—1 - - - - )
p=)" )\/ak(\mk(l) + 71 (O] = VD + risn P + B) - \/ak(\mk(m — 1P|+ 8)| (1s)
=0
VOLUME 5, 2017 17785



IEEE Access

A. Bishnu, V. Bhatia: Sparse Channel Estimation for Interference Limited OFDM Systems and Its Convergence Analysis

where, & = E[&?] is the minimum MSE (MMSE), ¢ =
e(i)—e()), & = IE[E,%] at steady-state. The proof of the above
equation is given in Appendix D. With the help of above
equation, observations can be derived as corollary

Corollary 1: The steady-state MSE of the proposed
NG-NPML algorithm is independent of the gain matrix which
is given as:

[LMUZ]E[CXP( ) B[ exp( )
202E[exp (;U—ez)( )]E[exP ( )]

(23)
where 0& is the variance of q.

Proof: Since, qx = GA q,
1/2 1 2
/ quG /

l=0 gk(l) = 1 and at steady-state the variation of gain

matrix is very small. Hence, at steady-state Tr(R;i) =

Tr(IE[G%]/ 2RG}11/ 2]) = o‘% and by using above condition in (22)
I k

%-002504‘

= E[4xq] ] which

is equal to E[G ], the gain matrix Gﬁk satisfy

we arrive at (23). [ |

Remark 1: The steady-state EMSE which is the second
term on right hand side of (23) does not depend on the gain
matrix. Hence both MSE and EMSE at steady-state does not
depend on the transformation F (.).

V. RESULTS AND DISCUSSIONS

In this section, effectiveness of the proposed algorithm and
its convergence analysis is validated by numerical simulation
and experimental results. In subsection A, numerical simula-
tion is done followed by the experimental result in subsection
B, and finally, the computational complexity of the proposed
and the conventional algorithms is given in subsection C.

A. SIMULATION RESULTS

In this sub-section, we have compared the performance
of conventional SG-NPML algorithm, and the proposed
NG-NPML algorithm on IEEE 802.22 based transceiver as its
transmission channel may be considered as sparse, and it is an
evolving standard for TVWS [37], [38] for rural broadband.
The IEEE 8022.22 is based on OFDM with fast Fourier
transform (FFT) of size 2048, cyclic prefix of length 1/4,
1/18, 1/16 and 1/32. Data is modulated by quadrature phase
shift keying, 16-quadrature amplitude modulation (16-QAM)
and 64-QAM as per the specification [39]. The Gaussian
mixture noise considered in this paper, is due to the pres-
ence of unknown (at receiver) CCI and AWGN. For simula-
tion, we have assumed only one strong co-channel interferer.
We have considered M = 2048 (large) samples for better
PDF estimation of Gaussian mixture noise and Typical Urban
COST-207 channel model [40] which gives sparse channel
of length L = 51 with 6 active (non-zero) tap coefficient
at sampling rate of 6 MHz [41]. The channel coefficients
are Rayleigh faded. For both the algorithms, the adaptation
step-size, u, was taken to be 5 x 107%, 8 = 0.01, and all
the simulation results were obtained by taking an ensemble
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FIGURE 3. MAE of sparse channel estimation at SIR 5dB and SNR 30dB.

of 250 runs. The channel is estimated with the help of
preamble which consists of long training sequence (LTS) and
it is binary phase shift keying (BPSK) modulated as per the
standard. We assume knowledge of the position of non-zero
coefficient. However, there are various techniques to identify
the position of active taps coefficients [42], [43].

Fig. 3 shows the convergence curve for SG-NPML and
NG-NPML (with different order of transformation) which
shows the mean absolute error (MAE) of sparse chan-
nel estimation (10log;o(E[- Y17 (1) — h(1)[]), where
L, is the number of active taps) against number of iter-
ations at 5 dB signal to interference ratio (SIR) and
30 dB signal to noise ratio (SNR). Fig. 3 shows that
the proposed NG-NPML convergences much faster than
SG-NPML for the same MSE floor and requires about
1/4™" iterations as compared to SG-NPML for conver-
gence, thereby resulting in huge savings in both com-
putations and time. Fig. 3 also shows that the proposed
NG-NPML algorithm converges much faster as we increase
the order of transformation, however the complexity is also
increased with the increase in the order of transformation.
In Fig. 3, we also compare the proposed algorithm with other
popular algorithms namely NGMAPA, NGpNAPA, LASSO,
and OMP which shows that the proposed algorithm out-
performs all existing techniques for sparse channel estima-
tion. Fig. 3 also shows that the performance of NGMAPA,
NGpNAPA, LASSO, and OMP degrade under additive CCI
and AWGN (Gaussian mixture noise). Fig. 4 shows good
agreement between the theoretical expression of steady-
state EMSE (E[ez(n)]e,oo) calculated in (80) and Monte
Carlo simulation of the proposed algorithm, for comparison,
we also show the Monte Carlo simulation of the SG-NPML
algorithm. In Fig. 4, the legend ‘SS Theoretical’ represents
the theoretical steady-state of EMSE. A small deviation is
attributed to the approximate expression of (80). The steady-
state EMSE for both the algorithm is same because the
proposed algorithm is independent of the gain matrix at
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FIGURE 4. Theoretical and Monte Carlo simulation of EMSE of residual
error for SG-NPML and NG-NPML at SIR 5dB and SNR 30dB.
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FIGURE 5. Theoretical and Monte Carlo simulation of MSE of residual
error for SG-NPML and NG-NPML at SIR 5dB and SNR 30dB.

steady-state as given in Corollary 1. Fig. 5 shows good agree-
ment between the theoretical expression of steady-state MSE
(E[€2(n)]so) calculated in (82) and Monte Carlo simulation
of proposed algorithm. Again for comparison, we also show
the Monte Carlo simulation of the SG-NPML algorithm.
In Fig. 5, the legend ‘SS Theoretical’ represents the theo-
retical steady-state of MSE. We have chosen MMSE (&) =
—30 dB (which is equivalent to the variance of AWGN) since
the NPML based algorithms mitigate the effect of additive
interference.

B. EXPERIMENTAL RESULTS

In this subsection, we validate robustness and applicabil-
ity of the proposed NG-NPML algorithm in the presence
of system nonlinearities, fixed point implementation and
other impairments introduced by the hardware. The per-
formance of proposed algorithm is also tested practically
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for IEEE 802.22 based transceiver using NI-USRP 2952R.
The USRP is a software defined radio (SDR) based radio
frequency (RF) hardware designed to test digital communi-
cation systems [44]. With support from Laboratory Virtual
Instrument Engineering Workbench (LabVIEW) which is
a graphical programming software developed by National
Instruments, real time processing is made to and from
USRP via Ethernet connection [45]. Detailed specification
of USRP 2925R is given in [46]. In the case of interference
from another IEEE 802.22 transmitter, the experimental setup
using USRP boards is shown in Fig. 6.

The FFT size of OFDM and other specification is as per
IEEE 802.22 standard. The frame synchronization and chan-
nel estimation are done with the help of preamble which con-
sists of the short training sequence (STS) and LTS of frame
of length 2560 symbols including 512 symbols for cyclic
prefix. The training sequence is BPSK modulated, while the
data sequence was QPSK modulated and then transmitted at
a symbol rate of 312.5K symbols/sec onto a 450MHz carrier
frequency. Long distance transmission is not possible due
to the limited power of USRP; hence we used a Typical
Urban COST-207 sparse channel to emulate sparsity before
transmitting the signal over the air. In this paper, two types of
CCI are considered as follows:

1) ANOTHER IEEE 802.22 AS AN INTERFERER

This interference is created by using another USRP 2952R
with same IEEE 802.22 specification at 450MHz. In Fig. 6,
the left hand side and right hand side USRP act as transceiver
and interferer respectively. The distance between transmit
and receive antenna is close hence the effect of the real
channel is less as compared to emulated channel. The dis-
tance between receiver and interferer is 1.2 meter. The MSE
performance of both SG-NPML and NG-NPML algorithm is
shown in Fig. 7 for 5dB SIR and 30dB SNR. This exper-
imental result also validates the faster convergence rate of
proposed NG-NPML algorithm as shown in the simulation
results in Fig. 4 and 5.

2) DTTV AS AN INTERFERER

In this part, we have considered two cases. In the first
case, real time DTTV signal acts as an interference and in
the second case, the recorded Advanced Television Systems
Committee (ATSC) DTTYV signal [47] is used as interference.
In the case of real time DTTV signal, the desired signal is
transmitted at 514 MHz and 519 MHz with 6 MHz band-
width, since the DTTV signal in Indore, India is present
at 514 MHz with bandwidth of 8 MHz [48]. The DTTV
transmitter transmits at 6.4 KW power and 6 Km far from the
receiver. At 514 MHz, the whole desired signal experiences
interference by DTTV and hence results in low SIR (5 dB).
However, at 519 MHz, only a small part of the desired signal
is affected and leading to high SIR (20 dB). Fig. 8 shows
the MSE of SG-NPML and NG-NPML at 30 dB SNR, and
at 514 MHz and 519 MHz. We observe that the proposed
NG-NPML converges much faster than SG-NPML.
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FIGURE 6. Experimental setup for IEEE 802.22 acts as an interferer.
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FIGURE 7. Experimental result of MSE of residual error for SG-NPML and
NG-NPML at SIR 5dB and SNR 30dB.

Fig. 9 shows the same MSE plot as shown in Fig. 8, how-
ever without knowing the active tap positions and hence,
the MSE floor of Fig. 9 is higher than Fig. 8. Fig. 9 also
shows that even without knowing the active tap positions
the proposed NG-NPML converges much faster than the
SG-NPML. Fig. 10 shows the constellation diagram of the
received signal before and after NG-NPML based channel
estimation and equalization at 514 MHz and 519 MHz. It is
observed from Fig. 10 (b) and (d) that the received signal
after equalization is less affected by interference at 519 MHz
as compared to 514 MHz, since at 514 MHz SIR is high as
compared to 519 MHz.

Fig. 11 (a) and (b) show the MSE performance of
SG-NPML and NG-NPML at 30 dB SNR and 5 dB
SIR for recorded ATSC DTTV signal in New York
city (NYC/200/44/01) and Washington DC (WAS-082/35/01)
respectively as an interference. Fig. 11 again validates the
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FIGURE 9. Experimental result of MSE of residual error for SG-NPML and
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SIR without knowing the active tap positions.

faster convergence of proposed algorithm. It is observed from
the Fig. 7-9, and Fig. 11 that the MSE of residual error starts
at a very low value due to close proximity of transmit and
receive antennas as shown in Fig. 6. Since the transmit and
receive antennas are close to each other, the transmit power is
reduced. In order to reduce transmit power in the experimen-
tal setup, we can either reduce the gain of the USRP or scale
down the signal before transmission. In this paper, we scale
down the signal before transmission, since the lowest gain of
the USRP leads the received signal in nonlinear range. Hence,
the scaling down of the signal before transmission leads to
a lower absolute value of MSE even at initial iterations as
observed in Fig. 7-9, and Fig. 11.

There is some difference in convergence rate, and MSE
of the residual error between simulation and experimental
results due to the difference in the real and simulated chan-
nel. This also results in different channel coefficients for
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simulation and experimental results, less ensemble for the
experimental result (ensemble for different value of channel
gains), artifacts (such as synchronization, frequency offset
etc.), limitations of the hardware, non-synchronized inter-
ference, and dynamicity of noise and interference. Hence,
we have plotted separate graphs for simulation and experi-
mental results. However, both the simulation and experimen-
tal results validate faster convergence rate of the proposed
NG-NPML algorithm over the conventional SG-NPML. It is
to be noted that the proposed algorithm is not limited to IEEE
802.22 standard, it can be applied to any OFDM based system
like Long-Term Evolution in unlicensed spectrum for sparse
channel estimation.

C. COMPLEXITY ANALYSIS
We have calculated the per iteration computational cost of
SG-NPML and the proposed NG-NPML algorithm for real
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TABLE 1. Estimated computational cost of SG-NPML per iteration.

S. No. TERM X + /
1. hyx(i) ML M(L —1) -
2. e(i) = - M -

y(i) — hix(d)
M2_M
3. Cij(ii) = - 2 -
e(i) — e(y)
4 ez W - -
2
6. pij = . R i
2,
exp ( — 2;@)
DPij
7. k’L] = 27:0_2 - - -
8. 0 =20 kij - M2 - M -
M2—
9. Uij(irts) = - L( 3 ) -
(x(d) — x(5)]
10. Yi(ists) = 2LM? M?% —2M -
Sl eidijkis —2LM
M r;
11. t=3o - M-1 M
12. flk+1 = - L -
h; + 45
2 M? 5M2 | LM?
2M?2L + M= 2 4+ =2
TOTAL -ML-4 | +ME4L | M
_5M _
2

data in terms of the number of additions, multiplications,
and divisions. While calculating the computational cost, con-
stant term multiplication is ignored (using a look up table
implementation) and the value of 0% is assumed to be known
fixed value. Table 1 describes the estimated computational
cost of SG-NPML based on (8). In Table 1, as ¢;; = —e;;
in term 3™, hence ej; is not calculated. From the Table,
the 6 term, the exponential term is calculated using explic-
itly lookup table. In term 97, Xijj is a vector of dimension L x 1
and due to the constant multiplication in 5* and 7 term,
hence the computational cost of operation is ignored. Thus,
the approximated cost per iteration for SG-NPML is O(M>L)
multiplications, O(M 21) additions and O(M) division.

Table 2 describes the additional terms computational cost
of NG-NPML based on (18). In the 1% term, the sign of
ﬁk is multiplied by itself to obtain |ﬁk|, hence it require L
multiplications, and then creates a diagonal matrix of dimen-
sion L x L with |IA1k(l)| term as diagonal element. In the
3" term, the computational complexity of oy is calculated
using (13). In the 6™ term, t is a vector of dimension 1 x L
and W is diagonal matrix of dimension L x L. Hence, the total
computational cost is the sum of Table 1 and 2 for NG-NPML.
The computational cost of the gain matrix of proposed algo-
rithm is O(L), since M > L. Hence, the total estimated
cost of NG-NPML per iteration is O(M>L) multiplications,
O(M?L) additions and O(M) division. Thus, we can con-
clude that the proposed NG-NPML has same computational
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TABLE 2. Estimated computational cost of additional terms in NG-NPML
per iteration for quadratic warping.

S. NO. TERM X + /
1. [hy| L
2. by, |2 L
3. ay, (as given in (13) L 2L
4. T2 (as given in (35)) L L
5. | W= ([l - P[4 p1) J(eeT) | L | L | L
6. tW L
TOTAL 6L | 4L | L

complexity as SG-NPML per iteration. However, as the order
of transformation increases (order of p > 2), additional
terms of NG-NPML requires additional L multiplications and
L additions for each increase of the order of transformation.
It is observed from Fig. 8, Fig. 9, and Fig. 11 that in terms
of total computational complexity NG-NPML is 8-10 times
faster than SG-NPML. The computational complexity of NG-
NPML is slightly high as compared to OMP (O(ML)) and
LASSO (0(L3)), and high as compared to NGMAPA (O(M))
and NGpNAPA (O(L)) per iteration. However, the improve-
ment in MSE/bit error rate is substantial by using proposed
algorithm. Additionally, the complexity of PDF estimation in
NG-NPML can be reduced by using fast or reduced density
estimation techniques.

VI. CONCLUSION

In this paper, we proposed NG-NPML algorithm for sparse
channel estimation in the interference limited environments.
NG is applied on coefficient space which is transformed from
Euclidean distance space to Riemannian space by using warp-
ing transformation function. In this paper, we used quadratic
warping transformation to balance the computational com-
plexity of transformation and faster convergence rate. The
proposed algorithm is found to be robust to CCI as compared
with other algorithms. The proposed algorithm is applied on
IEEE 802.22 based transceiver and the simulation results,
as well as experimental results, show that the proposed
NG-NPML algorithm has much faster convergence compared
to conventional SG-NPML in high interference.

We also derive the stability condition of proposed algo-
rithm in terms of mean weight error and the approximated
analytical expression of steady state MSE and EMSE. The
simulation results show good agreement with the derived
expressions.

APPENDIX A

DERIVATION OF (16)

Case 1 (fzk(l)rkJr 7(1) > 0): For the first case, after expand-
ing (15) yields

L—1
2
D=3 |VA+alnd—28 VA 24)
=0
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where
A = e (|1 = 1P| + 8) 5)
B = arlh)lries1(D) (26)

and oy |r,§ 1 (D] is neglected. The (24) can be written as:

L1 -
D— Z )“/Z<1 n Olk|rk+1(l)|(1i - 2|hk(l)|))1/2 B ﬂ‘Z
= 27

By using Taylor series expansion and keeping the significant
terms, the above equation can be approximated as:

L1 A
D Z ‘\/Z(H_aklrk+1(l)|2(1:—2|hk(l)|)) 3 \/X‘z (28)
1=0

The above equation can be further simplified as:

L-1 2 > 2
i1 D1 (D (1 = 2 (D))

D~ 2
> - @
1=0

The above equation can be written as:
o2
o e (1= 2081) v
~ . - (30)
4(| Bl — 12| + p)
|ﬁk| is given as:
1 (0)] 0 . 0
. 0 (D] . . 0
|H| = . . . 31
0 0 (L — 1)

By comparing (11) with (30), we get the Riemannian met-
ric tensor as:

. _ o (1= 218)? )
" - 2|+ 1)

Hence,
4(| el - 12|+ 1)
Gl =

hy " (I — 2JH )

(33)

The B should be small so that it does not dominate the
Riemannian metric tensor at any stage of iteration. After
substituting (33) in (9) and dropping the constant “4”, the
NG update of channel at (k 4+ 1)" iteration is given by:

(|1Bel = 12| + )
o (X = 2081, )?

By = By + Vi, J(he)  (34)
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Assume that at any iteration (I — 2|ﬁk|)=0, then the above
equation goes to infinity and there is no solution. Hence,
to overcome this problem we modified (34) as:

(|1Bel = 2| + p)
oIy

Bi1 = he + Vi, J(he)  (35)
where T’y = (I+ 2[Hy )%

Case 2 (hx(Drr+1(I) < 0): For the second case, after
expanding (15) yields

L—1
2
D:Z’\/A_ak|”k+l(l)|+23—\/;‘ (36)
=0

where A and B are given by (25) and (26) respectively. After
solving the above equation as in Case I, the channel update
equation for the Case 2 is given by:

(|1l = 182 + 1)

ﬁk+1 =y + 2 P
a <I+ b)) i M)

Vi, T () (37)

Hence, for both the cases, the final channel update equation
is given by (37).

APPENDIX B

DERIVATION OF (17)

After substituting (12) into (10), the distance metric forp = 3
is given by (38), as shown at the bottom of this page. For
fz,%(l)rkH(l) < 0, after expanding (38) yield (39)

L—1
2

D:Z‘«/AjLB—x/Z‘ (39)

=0

where

A = e (|1 = 1P = 1 F)| + ) (40)
B = ag|rip1(D] 4 20k [ (D1 (D13 e (D 71 (D)
(41)

and oc|rZ, (D], aklr (DI, el he(Dl]r2, ()] are neglected
because of |rg+1(1)] < 1. The (39) can be written as (42), as
shown at the bottom of this page.

By using Taylor series expansion and keeping the first two
terms only, the (42) can be approximated as (43), as shown

at the bottom of this page. The (43) can be further simplified
as:
_ A A 2
S O (1 + 20 D)) + 31 (D))
D~ Z
4A

(44)
1=0
The above equation can be written as:

2y ~ )2
rl g (T4 208 + 318 2) ri
D=~ - - - (45)
4(| Pl = 1A = 8| + 1)

By comparing (11) with (45), we can get inverse of Rieman-
nian metric tensor as:

([ - B - e |+ )
G ' = . — (46)
C (T 20 + 3 P)

Similarly for p™ order transformation, the above equation can
be written as:

(|0t = = | + p)
G-l =
he (I+ 20| + ... + plH; 1)

(47)

After substituting (47) into (9), the channel update equation
at (k + 1) iteration for p™ order transformation is given by:

(|1l = ... = | + 1)

Olkr[,

Vi J ()
(48)

hiy ~he +p

APPENDIX C
DERIVATION OF (21)
Let hy is the weight error vector which is defined as:

hy=h-—hy (49)

then the transformed domain weight error vector can be rep-
resented as:

=G " =G h— iy (50)
hy hy
From Fig. 2, e(n) = h'x(n) + e(n) — ﬁ,{s(n), which can be

further written as e(n) = hTGgl/ 2s(n) + e(n) — ﬁ,{s(n) and
finally ¢

e(n) = h!'s(n) + e(n) (51)

L—-1
~ ~ ~ ~ ~ ~ 2
D= 3 | fou (i) + ress 01 = x4 rics O — ) + s [+8) = Jn (|1 01 ~ 1P ~ | )|
=0
(38)
L—1 2 2~ 2
b= 5 VA1 + e AR ROR) 2 )
=0
L—1 2 P 2
b~ VA1 et 2RO SRRy )
=0
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or
_¥Tx ~ _ ~TY. ~
e« =hqr+e=q.hy+e (52)
Now (20) can be written in terms of transformed weight error
vector as:

G."*h — hyy

byt

=G 1/2h Iy +—Z =1 kK () (53)
i—1 Z] 1 K(er)

We can assume ijl/ ’h ~ GA 21 because the gain matrix

k+1
do not change significantly from k™ to (k 4+ 1)" index (near

convergence), so the above equatlon can be written as:
Z j—] qukK(Gk)
S YKo

After substituting (52) into (54), the transformed weight error
vector at (k + 1)™ iteration is given as:

hisr = hy — (54)

Z pys 1(lk(qkhk+e)K(€k)

Let Ay = E[ﬁk], then the above equation can be written as:

o1 (L] Bk (e0) + El4eK (e0)1)
Agy1 ~ Ap — e
* o2 E[K ()]

hiy = (55)

(56)

Without loss of generality, hy is independent with q; and
K(€r), and therefore ﬁk with q; and K(ex) [31], [49].
We also assume that qx is asymptotically uncorrelated with
K(er) [36] [50], [51]. Hence, by using above assumptions,
E[qxq;, th(ek )] can be written as E[q q, T ALE[K (€)]. Fur-
ther, E[qreK (ex)] = 0 as q is a zero mean and statistically
independent of e.
The above equation can then be written as:

uM uM
w1~ = S5 Ruar = (1= 53R )Ac (57)
For " tap, we have

M
81~ (1= S50 0) A (58)

For stability or convergence of the proposed algorithm,
the following condition satisfy

uM
“l<l—-—FAx<1 Vi (59)
o
For the stability of the proposed NG-NPML algorithm,
the step-size p satisfying
0 20° (60)
< U< ——
M Yy hsi(D)
It is observed from the above equation that the upper

bound (on right hand side of (60)) on u varies at each itera-
tion. However, this upper bound does not change significantly

17792

near convergence since Tr(R;x) = Tr(E[G}lAl/ ZRG;I/ 2]), R
. . .o k k

is constant (as q is constant), and it is assumed that near
convergence Gy, does not change significantly, and hence

from (60), the upper bound is constant near convergence.

APPENDIX D
DERIVATION OF (22)
By using (51), the MSE is given by:

&k =8 +&x (61)

where & = E[ek] Eek = E[hk qcq;, hk] is the EMSE and
cross term is zero. To evaluate the steady-state MSE, firstly
we calculate the steady-state EMSE. Let us define

f(&) = ek () = e exp (2—) (©2)
B 2
Fleo) = K@ =exp (35 (63)
and
& = h{ (64)
Hence, the steady-state EMSE is given by:
feco = lim E[¢7] (65)
k—o00

By using (59) and some mathematical manipulation and
approximation, the following relation holds for energy con-
servation [36], [50], [51]:

El| by +11%]

, 2M2E a. 1122
~ B[] — PEMPEGe] ()]

o*E[f2(ex)]

2UME[Gf (k)]
o 2E[f ()]

(66)

where ||qx||?> = Tr(Ry k). Assume that the estimator is in
steady-state such that

lim E[|/hy1]1*] = lim E[|[hy|*] (67)
k—o00 k—o00
Hence, in the steady-state (67) becomes
Elgf (0] _ uM . Elllal (€]
im =2 lim ———— 2 2 (68)
k—oco E[f ()] E[f2(ex)]

We do Taylor series expansion of the function f(.) [51] for
the derivation of steady-state EMSE. Taking the Taylor series
expansion of f (ex ) and f (€} ) with respect to ¢ around e yields

02 k—oo

1
fle) =f(& +8) =f@) +f' @ + 5f”(é>c,3 + o(gd)

(69)
and

- - 1-
=f@ +f @+ Ef”(é)g“kz + o(g?)
(70)

fler) =f +@)
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@l _

uMTr R0 (E2@) + B @)@ + I @16 )

E[f(®)] + 1E[f" (@)«

o? (B2@) + EF @@ + [ @l
uMTr(R, OE[f2(@)IE[f ()]

(75)

kK~ - - =
202E[f"(@)]E[f2(2)] — ILMTF(Rx,k)<E[f(Z’)]E[f(E)f "@)+ (@121 + JE[fz(é)]%lE[f”(é)])

(76)

where 0({,{2) is the third and higher-order terms. We assume
IE[O({kz)] is very small and ||q| 12 is asymptotically uncorre-
lated with f 2(ek) [50], [52], then we derive
El¢if (e0)] ~ ELf @) +f(@)¢¢] ~ EIf' (@) (71)
Elf*(en] = EIf*@]1 + Ef @f"@ + If'@Fl&  (72)

- - 1 -
Elf (e0)] ~ EIf @)] + S B ()16 (73)
and
Elf2(e0)] ~ E[f2@)] + E[f @)f" (@) + [f (@)% 1&  (74)

After substituting (71)-(74) into (68) yields (75), as shown
at the top of this page. After some simple manipulation and
assumption that éi ¢ 18 very small at steady-state, (75) can be
approximated as (76), as shown at the top of this page. For
small value of u, (76) can be simplified as:

 WMTrR,OEI2@IEF @)

P = 77
Sk T B @EF @] an
Here,
_2? &2
1@ =ee(5z)(1- ) 78

After substituting (62), (63) and (78) into (77), the steady
state EMSE can be approximated as:

MR, OELexp (25 ) 1Elexp (35 )1
lim & 4 = lim 7 7
k—o0”

k=0 262 [exp (%) (1 - %)]E[CXP (;_622>]
(79)

At steady-state, the mean of residual error, E[e(n)], is zero
and hence [E[¢; ] is also zero. Therefore, the EMSE of residual
error at steady-state is given as:

E[eX()]e.co = lim £ x/2 (80)

After substituting (79) into (61), the steady-state MSE is
given by:

UMTr (R ;)E[exp (;—éf)éz]JE[exp (ga—ei)]

)IELexp (25)1
81)

Soo =80+ klgr()lo 2 —&?
20-°E[exp (202)<1 -

22
o2

Similarly, the MSE of residual error at steady-state is given
as:

El2(m)]oo = £00/2 (82)
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