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ABSTRACT To improve low-latency computing and communication services, a new type of mobile edge
computing architecture named multi-layer cloud radio access network (Multi-layer CRAN) is designed in
this paper. InMulti-layer CRAN, a high-level edge cloud is deployed next to base band unit pool to handle the
computing tasks of user equipment (UE) in centralized way. Meanwhile, a low-level edge cloud is deployed
in each remote radio head (RRH) to locally handle UEs’ computing tasks in a distributed way. Based upon
Multi-layer CRAN, a cooperative communication and computation resource allocation (3C-RA) algorithm
is further designed for lower service latency and energy cost, and higher network throughput in this paper.
3C-RA utilizes a distributed RRH cell coloring algorithm to enable each RRH to work out the resource
allocation in an efficient and distributed way. 3C-RA employs a proportional fairness-based approach to
allocate communication and computation resource in each RRH cell. A series of simulations on Multi-layer
CRANwith 3C-RAwere carried out. The simulation results validate that Multi-layer CRAN is more capable
of providing low-latency computing and communication services, and 3C-RA enables Multi-layer CRAN
to have lower service latency and energy cost and higher network throughput.

INDEX TERMS Multi-layer CRAN, communication and computation resource allocation, high-level edge
cloud, low-level edge cloud.

I. INTRODUCTION
Currently, Cloud Radio Access Network (CRAN) as a type of
network paradigm has been gradually deployed in countries
such as China etc. [1]. CRAN promotes the merits of the
cloud computing for use inmobile networks, and the ability to
run a lowCapital Expenditure andOperating Expenditure [2].
In reality, with the increase in popularity of high defini-
tion video, gaming, virtual reality, more and more resource-
hungry tasks come into play in User Equipments (UEs).
However, due to the limited UE resource, such as CPU, stor-
age etc., it is very difficult for a UE to process those resource
intense applications. To deal with this issue, Mobile Edge
Computing (MEC) [3], [4] was proposed as an emerging tech-
nique in 5G networks to extend the computational capacity of
UEs. MEC can enable a UE to offload the computing tasks
to the cloud to lighten its load and to have a longer battery
life. The authors of [5], [6] proposed applyingMEC to extend
the UEs computational capacities of cellular networks and

Heterogeneous Networks (HetNets). In [7], a new type of
CRAN was designed to have a MEC along with Base Band
Unit (BBU) pool, which is the main concern of this paper.

CRANworking withMEC is still in its infancy. In practice,
CRAN with MEC may not be able to provide the highly
desired low-latency computing and communication services
to act as an enabler for new potential IoT applications.
In CRAN with MEC, if a UE offloads computing tasks to the
remote cloud, the UEmay experience a poorer Quality of Ser-
vice (QoS). This is because when a UE transmitting intense
data to the remote cloud through a constrained fronthaul,
it may cause intolerable time delay. In addition, the capacity
of a frounthaul is limited, so one fronthaul may not able to
accommodate all the incoming UE requests.

To address above issues, in this paper, we propose a new
type of Multi-layer MEC architecture, named Multi-layer
CRAN. Multi-layer CRAN makes use of local clouds to han-
dle proximity UEs’ tasks to decrease the latency and to save
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fronthaul capacity. In Multi-layer CRAN, a centralized High-
level Edge Cloud (HEC) is developed next to the BBU pool to
handle most of the offloaded computing tasks from Remote
Radio Heads (RRHs). A Low-level Edge Cloud (LEC) is
developed in each RRH to locally handle users’ time sensitive
tasks or the tasks not suitable to be offloaded to the HEC.
Due to the transmission time saved in the fronthaul, Multi-
layer CRAN therefore has the potential to better deliver low-
latency computing and communication services.

Because of the separations of HEC and LEC in
Multi-layer CRAN, the Cooperative Communication and
Computation Resource Allocation becomes critical. InMulti-
layer CRAN, the allocations of the communication and
computation resource should be cooperatively done among
RRHs. To fully unleash the potential advantages of Multi-
layer CRAN, the resource allocation should minimize ser-
vice latency and energy cost, and maximize the network
throughput, and have time delay awareness and be scalable
with respect to the network size. This makes traditional
resource allocationmethods for CRAN infeasible, due to their
computational complexities as well as the signaling latency
involved. The issue becomes even worse for the case of a
Multi-layer CRAN having an increased network size.

To address above issue, we propose a Cooperative Com-
munication and Computation Resource Allocation (3C-RA)
algorithm in this paper to facilitate the resource alloca-
tion. 3C-RA utilizes a Distributed RRH Cell Coloring Algo-
rithm (DRCC) to enable each RRH to carry out the resource
allocation in a distributed way with efficiency. In each RRH
cell, the communication resource allocation employs a pro-
portional fairness based approach coupled with computation
resource allocation. This paper carried out simulations to val-
idate Multi-layer CRAN with 3C-RA. The simulation results
show that Multi-layer CRAN can better provide low-latency
computing and communication services with low energy cost.
Also 3C-RA can enable Multi-layer CRAN to have a higher
network throughput. In summary, the primary contributions
of this paper are:
1) A Multi-layer MEC architecture is proposed to deliver

low-latency computing and communication services.
Based on the architecture, a Multi-layer CRAN is
designed in this paper. Multi-layer CRAN has a HEC
working as the central cloud to handle UE tasks with
intensive computing. Meanwhile, Multi-layer CRAN
has a number of LECs working as local clouds to handle
proximity UE tasks that are sensitive to latency. This
Multi-layer MEC architecture is to avoid UEs offload-
ing data intense UE tasks to the remote cloud through
constraint fronthauls. Multi-layer CRAN therefore can
save UE task latency and fronthaul capacity.

2) A 3C-RA algorithm is designed to help Multi-layer
CRAN make better use of the scarce computing
and communication resource. 3C-RA employs a pro-
portional fairness based approach for communication
resource allocation coupled with computation resource
allocation. Through 3C-RA, Multi-layer CRAN can

have increased network throughput, improved low-
latency computing and communication services, and
decreased energy cost.

3) 3C-RA works in a distributed way and promises the
efficiency through a DRCC algorithm. Each RRH in
Multi-layer CRAN can efficiently carry out the resource
allocation in distributedway. Therefore, 3C-RA has time
delay awareness and scalability against the dynamic size
and user requirements of Multi-layer CRAN.

The remainder of this paper is organized as follows.
In section II, we give the related work. In section III,
we describe Multi-layer CRAN system model and formulate
related resource allocation problem. In Section IV, we present
the 3C-RA algorithm. We discuss 3C-RA converging to opti-
mal solution in section V. Simulation results and analysis are
presented in Section VI. In Section VII, we give conclusions
and future work.

II. RELATED WORK
There is a number of work proposed to help CRAN provid-
ing low-latency computing and communication services with
MEC, such as [5]–[8]. However, that work cannot solve the
task latency issues under severe situations, such asmost of the
UE tasks having to be offloaded to the remote cloud through
congested fronthauls.

Some work has tried to release the fronthaul constraint to
improve the performance of CRAN with MEC. For example
in [9], a type of CRAN named a Heterogeneous CRAN
(H-CRAN) was proposed, where user and control planes
are decoupled. In H-CRAN, High Power Nodes (HPNs) are
mainly used to provide seamless coverage and execute the
functions of the control plane, while RRHs are deployed to
provide a high-speed data rate for packet traffic transmission
in the user plane. In [10], H-CRAN with multiple clouds was
discussed, where a set of base stations share a local cloud.
Generally, H-CRAN mainly utilizes macro base stations to
work out the network controlling tasks to release the fron-
thaul constraint. However, H-CRAN involves complicated
resource allocation [11], [12], and the way that macro base
stations release the fronthaul constraint cannot fully solve the
task latency issue [18].

In contrast to the work in [5]–[12], offloading compu-
tational tasks to local clouds as a more effective solution
was investigated and several platforms have been proposed
in [13]–[16]. For example in [16], the authors tried to realize
a type of distributed mobile cloud computing through amulti-
user clustering solution. The solution focuses on managing
resource for the set of radio access points forming the local
cloud. All the work in [13]–[16] tried to make use of local
cloud to handle UE tasks instead of offloading intense data to
the remote cloud. However, for the case of a network having
majority of the UEs that have high mobility, an un-balanced
distribution and operate dynamic tasks, the work in [13]–[16]
still cannot handle the task latency issue.

To implement local cloud with flexibility while maximally
exploring network participants’ computing capabilities,

19024 VOLUME 5, 2017



H. Mei et al.: Multi-layer CRAN With Cooperative Resource Allocations

a new cloud computing technology named fog computing
has been proposed into mobile networks [17]. Fog computing
is a term for an alternative to cloud computing that puts a
substantial amount of storage, communication, control, con-
figuration, measurement, and management at the edge of a
network, rather than establishing channels for the central-
ized cloud storage and utilization. Therefore, fog computing
extends the traditional cloud computing paradigm to the net-
work edge. A new network paradigm named Fog computing
based RAN (F-RAN) has been proposed in [18] and [19].
In F-RAN, RRHs and UEs can work as fog nodes to help
release the pressure on fronthauls and the centralized cloud.
In [18], the authors discussed how to allocate the amounts
of assigned tasks for each fog node and the data sharing
process to balance the computing and communication costs
guaranteeing low-latency applications. In [19], the authors
discussed the computing and communication tradeoff and
unique characteristics for a F-RAN architecture with ultra
low-latency applications. F-RAN is still in its infancy. There
are still quite a number of outstanding problems that need
further investigation, such as UEs transmission modes selec-
tion, interference suppression, UEs coordinated scheduling
etc. Fog computing also suffers from a lacking of prosperous
resource coordination [20]. In [20], the authors explored the
possibility that CRAN and F-RAN complement each other in
engineering practice, a harmonization between H-CRAN and
the fog network was proposed.

In this paper, we still employ the local cloud idea to help
CRAN provide low-computing and communication services
with multi-layer MEC. In contrast to the work in [13]–[20],
we propose aMulti-layer CRAN to better deploy local clouds
close to UEs by rational network planning. Further supported
by cooperative communication and computation allocation
mechanism, such as 3C-RA, Multi-layer CRAN can improve
low-latency computing and communication services even
for the case of a network having majority of the UEs that
have high mobility, an un-balanced distribution and operate
dynamic tasks. Compared to F-RAN, Multi-layer CRAN
does not suffer from a lack of prosperous resource coordi-
nation, and reduces the need for complex work, such as UEs
transmission modes selection, interference suppression, and
UEs coordinated scheduling etc.

III. MULTI-LAYER CRAN SYSTEM MODEL AND RELATED
RESOURCE ALLOCATION PROBLEM
A. SYSTEM MODEL
1) USER SERVICE LATENCY AND ENERGY COST
We assume there are C RRHs in Multi-layer CRAN and each
of which j = 1, 2, ...,C forms a small cell. In a RRH cell j,
there are Nj UEs supported by this cell. UE i = 1, 2, ...,Nj in
the coverage of j-th RRH is denoted as ij-th UE. The task of
ij-th UE is formulated as

Uij = (Fij,Dij), ∀i ∈ Nj, ∀j ∈ C (1)

where Fij describes the total number of the CPU cycles
needed to be completed for task Uij, while Dij denotes the

whole size of the task’s output data transmitting to the ij-th
UE through CRAN after task execution, including the task’s
output parameter and calculation results etc. [8].

Based on (1), the latency of finishing the task from ij-th UE
in RRH cell j is formulated as

Tij =
Fij
fij
+
Dij
rij
, ∀i ∈ Nj, ∀j ∈ C (2)

where fij is the allocated computation capabilities serving UE
task Uij, and rij is the data rate of ij-th UE supported by RRH
j. fij and rij will be further discussed and formulated in (6)
and (7) respectively.

We define Eij as the energy cost of the UE task Uij in cell
j, which is formulated as

Eij = ϕ(fij)ϑ−1Fij + ηPj(
Dij
rij

), ∀i ∈ Nj, ∀j ∈ C (3)

where ϕ≥0 is the effective switched capacitance and ϑ≥1
is the positive constant [21]. According to the realistic mea-
surements, ϕ can be set to ϕ=10−11 [22]. η≥0 is a weight to
the tradeoff between the energy consumptions in the mobile
cloud and CRAN, and it can be also explained as the ineffi-
ciency coefficient of the power amplifier at RRH. Pj repre-
sents the power of RRH j.

FIGURE 1. System Architecture on Multi-layer CRAN.

2) MULTI-LAYER CRAN ARCHITECTURE
In order to provide low-latency computing and communica-
tion services, the latency and energy cost of each UE task
formulated in (2) (3) should be effectively decreased. Multi-
layer CRAN is to fulfill the requirement, and its structure is
shown in Fig.1. In Multi-layer CRAN, the LEC in a RRH is
mainly used to serve time sensitive tasks of proximity UEs,
while the HEC next to the BBU pool is mainly deployed
to serve the computing intensive tasks offloaded by RRHs.
From users’ perspectives, a UE is served by a RRH with a
LEC, only if the task of the UE is time delay sensitive that
is not suitable to be offloaded to the HEC. We define such
a UE as a LUE. In contrast, a UE served by a RRH and the
HEC, if the task of the UE is not very sensitive to latency
but involves intense computing. We define such a UE as
a HUE.
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3) DATA RATE IN MULTI-LAYER CRAN
In Multi-layer CRAN, the data rate of a UE is closely related
to the output of the employed communication resource alloca-
tion mechanism, which decides the quality of the channels of
the UE. The communication resource in Multi-layer CRAN
has K OFDM based Radio Blocks (RBs) with a total band-
width B. According to frequency reuse [23], each RRH cell
in Multi-layer CRAN can have all the K RBs leading the
frequency reuse factor to be 1.

We employ the Signal to Interference plus Noise
Ratio (SINR) to evaluate the channel quality of a RB inMulti-
layer CRAN. In RRH cell j, if RB k is allocated to ij-th UE,
the SINR of RB k is formulated as

Sikj =
Pj
K (dij)−1hikj∑

∀t∈Qj
Pt
K (dit )−1hikt + N0

(4)

where dij is the distance from ij-th UE to its associated
RRH j. hikj represents the channel gain of RB k from ij-th
UE to the associated RRH j. Pj is the power of RRH j. N0
denotes the estimated power of noise in cell j (in dBm). Qj is
the group including all the external and proximity interfering
RRHs to cell j. A UE will receive inter cell interference from
the RRHs in group Qj, if its allocated RBs are used by those
interfering RRHs in Qj at the same time.
According to the RB SINR formulated in (4), the data rate

of RB k serving ij-th UE in RRH cell j can be expressed as

rijk = B · log2(1+ Sikj) (5)

According to (5), the data rate of ij-th UE served by RRH
cell j is formulated as

rij =
K∑
k=1

αikjrikj (6)

where αikj represents the RB allocation policy for UEs in
RRH cell j. αikj = 1 means RB k is allocated to ij-th UE,
while αikj = 0 means not.

4) COMPUTATION CAPACITY IN MULTI-LAYER CRAN
In Multi-layer CRAN, the available communication resource
is represented as certain amount of RBs, each of which is
an atom resource unit. Similarly, we define a Computing
Block (CB) as the atom computation resource unit, which
has computation capacity 1f . Accordingly, the computation
resource allocated to ij-th UE in cell j is represented as

fij =

Fmaxj∑
f=1

βifj1f (7)

where βifj denotes whether CB f allocated to ij-th UE
(βifj = 1) or not (βifj = 0) in cell j. Fmaxj represents
the number of CBs available to ij-th UE in cell j, which is
composed by two parts i.e. Fmaxj,LEC from LEC and Fmaxj,HEC from
HEC and Fmaxj = Fmaxj,HEC + F

max
j,LEC .

B. PROBLEM FORMULATION
In Multi-layer CRAN, UE tasks should be served by Multi-
layer CRANwith acceptable latency. For ij-th UE in cell j, its
task latency is close related to the communication resource
allocation i.e. αj = [αikj]Nj·K , and the computation resource
allocation i.e. βj = [βifj]Nj·Fmaxj

. To describe this problem,
we define a utility function on UE task latency as

Gij(αj, βj) =

{
1, if Tij 6 Tmaxij

0, if Tij > Tmaxij
(8)

where if ij-th UE in cell j having its task handled in acceptable
latency i.e. Tmaxij , Gij is set to 1, otherwise Gij is set to 0.
The main objective of this paper therefore is to maximize

the sum of the task latency utilities of all the UEs in a RRH
cell j. This is formulated as

Gj(αj, βj) =
∑
∀i∈Nj

Gij(αj, βj) (9)

According to (9), the optimization problem of RRH cell j is
formulated in (10). ProblemP in (10) aims at maximizing the
number of UEs that successfully have their tasks handled in
acceptable latency in each cell, with prerequisites formulated
in (11)-(13). (11) denotes the overall energy cost caused
by the UE tasks in cell j should not exceed the maximal
allowed constraint: Emaxj . (12) denotes the total number of
RBs allocated to UEs in cell j should not exceed the number
of available RBs. (13) denotes the overall size of the compu-
tation capacities allocated from HEC and LEC to UEs should
be less than the maximum allowed capacities in cell j i.e.
Fmaxj = Fmaxj,LEC + F

max
j,HEC .

P: max
αj,βj

Gj(αj, βj), ∀j ∈ C (10)

s.t.
∑
∀i∈Nj

Eij 6 Emaxj (11)

∑
∀i∈Nj

K∑
k=1

αikj 6 K (12)

∑
∀i∈Nj

Fmaxj∑
f=1

βifj 6 Fmaxj (13)

IV. COOPERATIVE COMMUNICATION AND
COMPUTATION RESOURCE ALLOCATION
To solve problem P , the 3C-RA algorithm in this paper
cooperatively works out the communication and computation
resource allocation of each RRH cell of Multi-layer CRAN to
decrease UE task latency and energy cost. 3C-RA utilizes a
cell coloring based distributed resource allocation approach
to enable each RRH cell to carry out the resource allocation
in an efficient and distributed way. When 3C-RA completes,
the resource allocation results: (αj, βj, ∀j ∈ C) are obtained
solving problem P .
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A. 3C-RA FOR A SINGLE RRH CELL
We first discuss 3C-RA for a single RRH cell. According
to problem P and related constraints, 3C-RA intends to
maximize the number of UEs having their task handled in
acceptable latency in a RRH cell j. To solve this problem,
3C-RA assumes all the UEs in cell j to have their tasks
finished within T Tij . T

T
ij is the configurable latency threshold,

and (T Tij 6 Tmaxij ,∀i ∈ Nj). In this way, 3C-RA can work
out the communication and computation resource allocation
with a pre-define prerequisite, which makes sure 3C-RA
fully considering the UE latency requirements. Based on this
assumption, we therefore change (3) into (14), with η = 1
and ϑ = 2.

Eij =
ϕ(Fij)2rij + PjDijT Tij rij − Pj(Dij)

2

T Tij (rij)
2 − Dijrij

(14)

According to (14), if setting the energy cost Eij of ij-th UE
equal to a configurable threshold: ETij , we can calculate out rij
as the data rate that can guarantee UE task Uij finished with
allowed latency T Tij and energy cost ETij . rij is calculated out
by solving (14) as a quadratic equation, in which rij is the only
variable. The energy cost threshold ETij is configurable and

should be set to have
∑Nj

i=1 E
T
ij 6 Emaxj to fulfill the energy

cost constraint defined in (11). With such specified data rate
of each UE, 3C-RA can easily solve the communication and
computation resource allocation problem of a single cell by
Algorithm 1.

1) ALGORITHM 1
In Algorithm 1, 3C-RA first works out the communication
resource i.e. RBs allocation of RRH cell j from step 2 to 3 for
all the UEs. The RB allocation works based upon a pro-
portional fairness approach [24]. At step 2, Algorithm 1
calculates out the requested data rata of each UE task by
solving (14). For example of UE task Uij, rij is calculated,
guaranteeing UE taskUij finishedwith latency T Tij and energy
cost ETij . Afterwards, Algorithm 1 works out the proportional
fairness based RBs allocation at step 3.

After communication resource allocated, Algorithm 1 then
works out the computation resource allocation for cell j.
In order to do so, Algorithm 1 has to understand the com-
putation capacity request and the mobile edge cloud i.e.
LEC or HEC choice of each UE task. At Step 4 and 5 of
Algorithm 1, the requested computation capacities of each
UE task are calculated. Take ij-th UE as an example, fij is
calculated by solving (2), subject to rij as the available data
rate of the UE and T Tij as the maximally allowed latency of
UE task Uij. Step 6 and 7 of Algorithm 1 utilize a Inverse

Cumulative Ranking method to enable d
Fmaxj,LEC

Fmaxj,LEC+F
max
j,HEC

NjeUEs

with low latency task i.e. low Tmaxij to choose LEC as their
computation service provider and join group Lj. However,
if a ij-th UE with intense computing i.e. fij > φ1f , this
UE will choose HEC instead. This is because LEC is not
prone to handle computing intense tasks, as its computation

Algorithm 1 3C-RA for RRH Cell j

1 Task inputs: Tmaxij ,T Tij ,E
T
ij ,∀i ∈ Nj;

2 Calculate (rij,∀i ∈ Nj) by solving (14) considering
Eij = ETij , Tij = T Tij ;

3 Carry out RB allocation of cell j based upon
Proportional Fairness (See Algorithm 2), taking Nj and
rij as the inputs;

4 rij =
∑K

k=1 αikjrikj,∀i ∈ Nj;
5 Calculate fij of each UE task by solving (2) considering
T Tij and rij;

6 Rank each UEs in cell j through Inverse Cumulative
Ranking according to Tmaxij ;

7 Group d
Fmaxj,LEC

Fmaxj,LEC+F
max
j,HEC

Nje UEs which are in lower rank
into Lj as LUEs subject to (fij < φ1f ), and the rest UEs
grouped into Hj as HUEs;

8 Carry out CB allocation from HEC to HUEs (grouped as
Hj) of cell j based upon Proportional Fairness (See
Algorithm 3), taking Hj, fij and Fmaxj,HEC as the inputs;

9 Carry out CB allocation from LEC to LUEs (grouped as
Lj) of cell j based upon Proportional Fairness (See
Algorithm 3), taking Lj, fij and Fmaxj,LEC as the inputs;

10 return (αj, βj);

capacity is limited. The way putting UEs with lower latency
requirement to choose LEC is reasonable, as LEC can save
latency without transmitting data through fronthaul to better
fulfill those UEs’ latency requirements. Apart form the UEs
choosing LEC, the rest UEs in cell jwill choose HEC and join
group Hj.

After the computation capacity request and mobile edge
cloud choice of each UE task being decided, Algorithm 1 car-
ries out step 8 to allocate computation resource i.e CBs from
HEC to each HUEs (UEs in group Hj) based on the propor-
tional fairness approach specified in Algorithm 3. Similarly,
the CBs allocation from LEC to each LUEs (UEs in group Lj)
is carried out at step 9 of Algorithm 1. After CBs allocation
done, 3C-RA finishes and returns the resource allocation
results of cell j: (αj, βj) at step 10.

2) ALGORITHM 2
3C-RA utilizes Algorithm 2 to work out the communication
resource allocation of cell j in a proportional fairness way.
Algorithm 2 works out the RBs allocation mainly in outer
loops from step 3 to 18. In one outer loop, the proportional
fairness based RBs allocation is carried out through inter
loops from step 6 to 16. In one inter loop, there will be a
RB k∗ allocated to UE i∗, which has the highest proportional
fairness value (step 8 of Algorithm 2). However, if a candidate
UE i∗ already has enough RBs allocated to have data rate
Ri∗ = ri∗,j (step 10 of Algorithm 2), this UE will not be
allocated RB any more to avoid greedy. The proportional
fairness values of each RB to UE pair e.g.Pik are calculated
by step 7 of Algorithm 2. A proportional fairness value takes
the product of the requested data rate of the candiate UE,
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Algorithm 2 RB Allocation for Cell j Based Upon
Proportional Fairness

1 Task inputs: Ij, (rij,∀i ∈ Ij);
2 G = 0, Kd = {},s = 0;
3 while (G < dξ × Ije)&(s < Smax) do

4 Ri(t + 1) = (tc−1)Ri(t)+
∑K

k=1 αikjrikj
tc

,∀i ∈ Ij;
5 αikj = 0, (∀i /∈ Kd ,∀k ∈ K ) ;
6 while (∃k ∈ K →

∑
∀i∈Ij αikj = 0) do

7 Pik =
rijrikj

(tc−1)Ri(t+1)+
∑K

k=1 αikjrikj
,∀i ∈ Ij;

8 (i∗, k∗) = argmax∀i∈Ij (i, k)[Pik ];

9 Ri∗ =
∑K

k=1 αi∗kjri∗kj;
10 if Ri∗ < ri∗j then
11 αi∗k∗j = 1;
12 else
13 G = G+ 1;
14 Kd = Kd ∪ {i∗};
15 end
16 end
17 s = s+ 1;
18 end
19 return αj;

e.g. ri,j of ij-th UE, and the data rate of the candidate RB, e.g.
ri,k,j of RB k, as the numerator. This makes sure the UE with
higher data rate requirement being more prone to get high
quality RB allocated. The denominator of the proportional
fairness value is to guarantee the RB allocation follows the
proportional fairness way to avoid RB allocation bias [24].
The denominator is the sum of the data rate of the objective
ij-th UE in last time slot tc (i.e. (tc− 1)Ri(t + 1)) and the real
time data rate of ij-th UE (i.e.

∑
∀k∈K αi,k,jri,k,j).

On finishing one outer loop, Algorithm 2 will check
whether the number of the UEs successfully obtained enough
RBs is higher than a threshold i.eG > dξ×Ije or not at step 3.
ξ is the ratio of success UEs to the total number of UEs, which
is a pre-defined parameter to determine the converge condi-
tion of Algorithm 2. IfG is higher than the allowed threshold,
Algorithm 2 will finish (converge) and return the output αj
at step 19. However, if G is not higher than the threshold,
Algorithm 2 will invalid the RB allocations to the UEs that
not obtained enough RBs (step 5) and carry on working out
the RB allocations of those UEs in further steps. In addition,
to guarantee algorithm finishing in finite steps in case of
condition G > dξ × Ije not easily reached, Algorithm 2 will
terminate if running out of allowed steps Smax .

3) ALGORITHM 3
In Algorithm 3, similar to the RB allocation, in each ses-
sion of proportional fairness based CB allocation, a pair
of CB f ∗ to UE i∗ that has the highest proportional
fairness value will be found and UE i∗ will be allo-
cated CB f ∗ (step 8 of Algorithm 3). However, if a
candidate UE i∗ already has enough CBs allocated to
have computation capacity Fi∗ = fi∗j, this UE will not

Algorithm 3 CB Allocation for Cell j Based Upon
Proportional Fairness

1 Task inputs: Ij, (fij,∀i ∈ Ij), Fmaxj ;
2 G = 0, Fd = {}, s = 0;
3 while (G < dµ× Ije)&(s < Smax) do

4 Fi(t + 1) =
(tc−1)Fi(t)+

∑Fmaxj
f=1 βifj1f

tc
,∀i ∈ Ij;

5 βi,k,j = 0, (∀i /∈ Fd ,∀k ∈ K ) ;
6 while (∃f ∈ Fmaxj →

∑
i∈Ij βifj = 0) do

7 Pif =
fij

(tc−1)Fi(t+1)+
∑Fmaxj

f=1 βifj1f
,∀i ∈ Ij;

8 (i∗, f ∗) = argmax∀i∈Ij (i, f )[Pif ];

9 Fi∗ =
∑Fmaxj

f=1 βi∗fj1f ;
10 if Fi∗ < fi∗j then
11 βi∗f ∗j = 1;
12 else
13 G = G+ 1;
14 Fd = Fd ∪ {i∗};
15 end
16 end
17 s = s+ 1;
18 end
19 return βj;

be allocated CB any more to avoid greedy (step 10 of
Algorithm 3). The proportional fairness values of each CB
to UE pair e.g.Pif are calculated by step 7 of Algorithm 3.
A proportional fairness value takes the computation capac-
ity requirement of a UE, e.g. fij, as the numerator to make
sure the UE with higher computation capacity requirement
being more prone to get CB allocated. The denominator
of the proportional fairness value is to guarantee the CB
allocation follows the proportional fairness way to avoid CB
allocation bias. The denominator is the sum of the compu-
tation capacity of the objective ij-th UE in last time slot tc
(i.e. (tc− 1)Fi(t + 1)) and the real time computation capacity

of ij-th UE (i.e.
∑Fmax

f=1 βifj1f ).
Similar to Algorithm 2, Algorithm 3 will converge if the

number of the UEs successfully obtained enough CBs is
higher than the allowed threshold i.e G > dµ × Ije. Algo-
rithm 3 will invalid the CB allocations to the UEs that not
obtained enoughCBs and carry onworking out the CB alloca-
tions of those UEs in further steps, if the algorithm not able to
converge yet.µ is the ratio of success UEs to the total number
of UEs, which is a pre-defined parameter to determine the
converge condition of Algorithm 3. Algorithm 3 will finish if
the converge condition is satisfied or the algorithm running
out of allowed steps Smax .

B. 3C-RA FOR THE WHOLE MULTI-LAYER CRAN
According to Algorithm 1, the 3C-RA algorithm can work
out the resource allocation for a single cell of Multi-layer
CRAN. 3C-RA can further utilize a cell coloring based dis-
tributed resource allocation approach to enable every RRH
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cell in Multi-layer CRAN to carry out Algorithm 1 in an effi-
cient and distributed way. When 3C-RA completes, the opti-
mized resource allocation for the whole Multi-layer CRAN is
obtained.

In traditional distributed resource allocation, when a RRH
cell j carries out Algorithm 1, RRH cell j has to ask its neigh-
bor cells inQj to stay static and not to carry out Algorithm 1 at
the same time. Otherwise, The running of Algorithm 1 in
RRH cell j will not able to converge and obtain the output.
This is because if neighbor cells in Qj not static and having
their resource allocation changing all the time, cell j then
does not able to have a deterministic prerequisite to work out
its resource allocation. The way putting the neighbor cells
to stay static during the resource allocation of a cell will
tremendously decrease the resource allocation efficiency, and
cause the overall resource allocation taking incredibly long
time to finish. This problem will escalate in the case that the
size of Multi-layer CRAN increases. To solve this issue, this
paper proposes Algorithm 4 for 3C-RA working out resource
allocation for the wholeMulti-layer CRAN in distributedway
with efficiency.

FIGURE 2. Color RRH cell nodes by DRCC guaranteeing no adjacent node
having same color.

The cell coloring based distributed resource allocation
approach was first introduced by the authors of [25], [26].
As shown in Fig.2, the non-neighbor RRH cells (in same
color) can carry out the Algorithm 1 simultaneously, each of
which can surely converge and get the resource allocation
output. This is because the same colored RRH cells are
geographically far away from each other, and any two of
the running cells are not each other’s neighbor. Therefore,
during the simultaneous running, the neighbors of a running
cell are static for the moment, which provides a deterministic
prerequisite for the running cell to work out the resource
allocation. By this simultaneous resource allocation within
RRH cells, 3C-RA can effectively decrease the running time.

3C-RA for the whole Multi-layer CRN is designed in
Algorithm 4. At step 1, 3C-RA colors RRH cells of Multi-
layer CRAN to guarantee that no adjacent RRH cell has
the same color, by using the DRCC algorithm. After-
wards, the resource allocation of RRH cells is carried out

Algorithm 4 3C-RA for the Whole Multi-Layer CRAN

1 Color RRH cells through Distributed RRH Cell Coloring
Algorithm (DRCC)[25] by colors from group Z ;

2 i=1, Gold = 0,Gnew = 1, s = 0;
3 while (Gnew > Gold )&(s < Smax) do
4 Gold = Gnew ;
5 for (i ≤ |Z |) do
6 Simultaneously run Algorithm 1 for each of the

cells with color Z [i];
7 end
8 Gnew =

∑
∀j∈C Gj;

9 i = (i+ 1)%|Z |;
10 s = s+ 1;
11 end
12 return (αj, βj), ∀j ∈ C ;

iteratively (step 3 to step 11). In one iteration, only one of
the colors is considered and Algorithm 1 is simultaneously
run to the cells in that color (step 6). In the next iteration, the
3C-RA algorithm moves to another color in set Z, and cycles
until the end (step 9). Then 3C-RA works on the cells of
that color simultaneously. The 3C-RA algorithm moves from
one color to another color step by step until no resource
allocation of a cell leading to the increment of the utility of
network task latencies:Gnew any more (3C-RA converges) or
3C-RA running out of allowed iteration counts (Smax)(step 3).
Finally, step 12 returns the results: (αj, βj), ∀j ∈ C , which
is the resource allocation of every RRH cell of Multi-layer
CRAN.

V. 3C-RA CONVERGE TO OPTIMAL SOLUTION
In 3C-RA, Algorithm 1 applies 3 mechanisms to make sure
itself working towards the optimal resource allocation for
each RRH cell of Multi-layer CRAN. First, 3C-RA applies
the requested data rate and computation capacity of each UE
task to calculate the proportional fairness value during the
resource allocation (see step 7, 8 of Algorithm 2 and step 7,
8 of Algorithm 3). The requested data rate and computation
capacity of a UE are calculated by solving (14) and (2). This
enables the proportional fairness based resource allocation
to be more prone to allocate resource to the UE tasks with
intense data rate and computation capacity requests. Second,
Algorithm 2 and 3 called by Algorithm 1 do not allocate any
RB or CB to the UEs that already have enough resource allo-
cated to void greedy (see step 10 of Algorithm 2 and step 10 of
Algorithm 3). Third, Algorithm 2 and Algorithm 3 define
their converge condition to make sure the number of UEs
successfully allocated enough RBs and CBs is higher than
a pre-defined threshold (see step 3 of Algorithm 2 and step
3 of Algorithm 3). If not able to converge to the conditions,
Algorithm 2 or Algorithm 3 will invalid the resource allo-
cation output of the UEs that not able to receive enough
RBs or CBs, and try to work out the resource allocation for
those UEs in further steps. This enables Algorithm 2 and
Algorithm 3 to work out the communication and computation
resource allocations closer to the optimal solution.
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These 3 mechanisms make sure 3C-RA working out the
resource allocation of each RRH cell based on a way of
heuristic searching, which can closely approach the optimal
solution. However, the resource allocation results of 3C-RA
are highly effected by the pre-defined parameters including
ETij , T

T
ij , ξ , µ and Smax . 3C-RA uses converge parameters

ξ and µ and maximal allowed steps Smax to make sure
Algorithm 1, 2 and 3 converge after finite steps. In theory,
the higher ξ , µ and Smax are, the longer time and more
computing resource 3C-RA algorithm will cost to reach con-
vergence and work out the resource allocation closer to the
optimal solution, vice versa. Another thing is, how easily
3C-RA converges to the optimal solution is close related
to the latency threshold T Tij and energy cost threshold ETij ,
according to which the data rate and computation capacity
requests of a UE task is calculated by solving (14) and (2).
Basically, the lower ETij or T Tij is, the harder 3C-RA will
converge to the optimal solution, as lower ETij or T

T
ij leading

to higher data rate and computation capacity requirements
of each UE task. Finally, 3C-RA may reach an sub-optimal
solution without to the optimal one even running in incredibly
long time, such as running with ξ = 100% and µ = 100%
and Smax as a very large number. This is because the opti-
mization problem P is non-convex, and the heuristic search
of 3C-RA may work in back and forth without reaching the
optimal solution.

VI. SIMULATION RESULTS
To validate the contributions of this paper, we run a series of
system simulations on Multi-layer CRAN with 3C-RA run-
ning in different configurations, then compare the UE tasks
latency and UE throughput as the outputs. We also compare
3C-RA to the Proportional Fairness based Resource Alloca-
tion (PF-RA) solution proposed in [24], which carries out the
resource allocation without cooperative control. The PF-RA
is implemented as the default resource allocation solution in
the Vienna LTE System Level Simulator [27] employed with
related augments by this paper. The simulation is based on
the Monte Carlo method, and is a time driven process. The
simulation configurations, 3C-RA settings and UE scenarios
are listed in Table.1. The 3C-RA setting 1 in Table.1 is to
set 3C-RA running with harsh converge condition to allocate
resource to UEs closer to the optimal solution. In contrast,
3C-RA setting 2 and 3 are to set 3C-RA running with medium
and easy converge conditions.

The simulation results are shown in Fig.3, Fig.4 and
Table.2. In Fig.3, the cumulative latency utility of each RRH
cell, e.g Gj(αj, βj) of cell j as formulated in (9), is demon-
strated. Compared to PF-RA, 3C-RA in Fig.3 universally
enables higher cumulative latency utility of each RRH cell,
considering all of the UE scenarios in Multi-layer CRAN.
That means, with 3C-RA, Multi-layer CRAN better han-
dles UEs tasks with low-latency. Considering different set-
tings, 3C-RA in setting 1 gives the best performance on task
latency, as it works with harsh converge condition. 3C-RA in

TABLE 1. System configuration on simulations.

TABLE 2. Performance comparisons on average RRH throughput.

setting 2 and setting 3 give the medium and worst perfor-
mance on task latency.

In Fig.4, the comparisons on average UE through-
put according to Empirical Cumulative Distribution Func-
tion (ECDF) are shown. Compared to PF-RA, the ECDF
outputs in Fig.4 show that 3C-RA universally enables higher
UE throughput in all of the UE scenarios in Multi-layer
CRAN. Similar to Fig.3, 3C-RA in setting 1 gives the best
performance on UE throughput, and 3C-RA in setting 2 and
setting 3 give the medium and worst performance on UE
throughput.

In Table.2, the numerical comparisons on UE task latency
and UE throughput are listed. According to Table.2, 3C-RA
can maximally improve the cumulative latency utility of the
whole network by 23.25% and the average RRH throughput
by 42.81% compared to PF-RA in UE scenario 3, where
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FIGURE 3. Comparisons on latency utilities. (a) UE scenario 1.
(b) UE scenario 2. (c) UE scenario 3.

Multi-layer CRAN is congested. In UE scenario 1 where UEs
are sparse in Multi-layer CRAN, 3C-RA can increase the
cumulative latency utility of the whole network by by 19.29%
and the average RRH throughput by 43.73% compared to
PF-RA. Table.2 also shows that 3C-RA improves the perfor-
mance of Multi-layer CRAN in different settings.

In summary, based on the simulation results shown
in Table.2 and Fig.3-4, it is obvious that Multi-layer CRAN
as a new CRAN with Multi-layer MEC better utilizes local
clouds to deliver low-latency computing and communication
services. Further more, the 3C-RA algorithm as an effective
resource allocation solutions enables Multi-layer CRAN to
have UE tasks handled in lower latency and high network
throughput according to the simulation setting and UE sce-
narios considered.

The 3C-RA overall complexity is T (
∑
∀j∈C (Nj∗K ∗F

max
j ∗

Smax)). The specific computing time is determined by the
number of RRH cells C, the number of RBs K, the number
of CBs Fmaxj and number of UEs Nj per cell j. As discussed
in Algorithm 4, 3C-RA as a distributed algorithm can share

FIGURE 4. UE average throughput comparisons according to ECDF.
(a) UE scenario 1. (b) UE scenario 2. (c) UE scenario 3.

the computation tasks within all the RRHs. Thus 3C-RA can
run in efficiency and timely deliver the outputs.

VII. CONCLUSION
This paper proposes a new type of Mobile Edge Computing
architecture named Multi-layer CRAN to provide dynamic
computing offloading strategies. Multi-layer CRAN can pro-
vide low-latency computing and communication services
through the helps of LECs as the proximity local clouds to
UEs. This paper further designs a Cooperative Communi-
cation and Computation Resource Allocation (3C-RA) for
Multi-layer CRAN. 3C-RA is designed to rationally allocate
the communication and computation resource from RRHs,
HEC and LECs to UEs in Multi-layer CRAN for low task
latency. 3C-RA is designed to be distributed in real-time and
to be scalable with respect to the network sizes. Through
systematical simulations, the results validate that Multi-layer
CRAN with 3C-RA has the theoretical performance gain.

In future work, we intend to improve the performance
of Multi-layer CRAN by using fog computing to explore
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the computing capabilities of UEs, deploying LECs based
local clouds through better network planning, and imple-
menting better resource allocation solutions etc. In current
3C-RA algorithm, the computation and communication
resource allocations are in a loosely coupled format, where
the communication resource allocation is sequentially built.
Meanwhile, 3C-RA in this paper is based on a simple
SISO antenna model, which does not take the cutting edge
MIMO beam forming antenna model into consideration. This
paper also does not consider any sophisticated UE to mobile
edge cloud i.e. LEC and HEC selection method. Therefore,
in future work, the 3C-RA algorithm for Multi-layer CRAN
should be extended to have a more closely coupled coopera-
tive communication and computation resource allocation and
consider more advanced network scenarios.
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