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ABSTRACT We analyze the ergodic capacity of multiple-input multiple-output (MIMO) Rayleigh-fading
relay channels. We first derive the probability density function of a sum of independent complex central
Wishart matrices—called the central hyper-Wishart matrix—and its joint eigenvalue density. We then derive
a trace representation for the max-flow min-cut upper bound on the ergodic capacity of general full-duplex
MIMO relay channels where each communicating node is equipped with N antennas and has access only
to respective receive channel state information. We also establish the Schur monotonicity theorem for this
cutset bound as a functional of the signal-to-noise ratios (SNRs) of three communication links. We further
characterize the exact ergodic capacity in the regularity SNR regime where the upper and lower bounds
coincide.

INDEX TERMS Cooperative relaying, cutset bound, ergodic capacity, hyper-Wishart matrix, multiple-input
multiple-output (MIMO), Rayleigh fading.

I. INTRODUCTION
The problem of transmitting information over three-terminal
communication channels was first introduced by van der
Meulen in the pioneering work [1]. Following this first treat-
ment for discrete memoryless relay channels, the seminal
work [2] established the capacity theorems for degraded
and reversely degraded memoryless relay channels as well
as the upper and lower bounds on the capacity of general
memoryless relay channels. The upper bound was developed
using the max-flow min-cut theorem while the achievable
lower bound involved block-Markov superposition coding.
It was further shown that these two bounds—often called
the cutset upper bound and partial decode-and-forward (DF)
lower bound—coincide for a class of relay channels with
orthogonal components and hence, the capacity for such relay
channels is equal to the cutset bound [3].

Cooperative communication in wireless networks can be
formulated as a relay channel where one or more relays
help a pair of nodes to communicate [4], [5]. Motivated by
this, a large wave of work has been recently spawned on
the capacity analysis and relaying operations for wireless
relay networks from last decades with the multiple-input
multiple-output (MIMO) technology [6]–[14]. In particular,
the upper and lower bounds on the ergodic capacity were

developed in [11, Th. 4.1 and 4.2] for general full-duplex
MIMO relay channels in the presence of Rayleigh fading and
receive channel state information (CSI) only. These bounds
resorted again to standard achievability and converse bound-
ing techniques in [2] along with the fact that independent
Gaussian codebooks at the source and relay are optimal cod-
ing strategies due to the channel uncertainty at these nodes—
i.e., no transmit CSI (see also [6, Th. 8]).1 Furthermore, the
sufficient regularity conditions, under which the upper and
lower bounds coincide and hence the ergodic capacity can be
exactly characterized, were investigated for the high signal-
to-noise ratio (SNR) case where all nodes have the same num-
ber of antennas. However, since the exact expressions for the
bounds were presented in forms of expectations with respect
to source-to-destination (S→ D), source-to-relay (S→ R),
and relay-to-destination (R → D) Rayleigh-fading channel
matrices, there is no analytic expression for the capacity in
MIMO relay channels. Hence, the results were verified by the
simulation study [11] or by the asymptotic analysis [12]–[14].
The key to the successful analysis for the capacity of MIMO

1With full CSI, the solutions to transmit covariance optimization problems
at the source and relay for the cutset upper bound and partial DF lower bound
were formulated in [15] as standard convex problems, which are tighter
than [11, Th. 3.1 and 3.2].
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relay channel relies on the marginal eigenvalue density of
the sum of Wishart matrices. However, even in the case of
two Wishart matrices with unequal covariance matrices, the
eigenvalue distribution has an intractable form [16]–[18].2

Hence, we are motivated to find its tractable form expression
with application to MIMO relay channels.

In this paper, we analyze the upper and lower bounds
on the ergodic capacity of a general full-duplex MIMO
Rayleigh-fading relay channel where each communicating
node is equipped with N antennas and has access only to
respective receive CSI, which is referred to as a ‘‘N -MIMO
relay channel’’. Specifically, the main results of the paper,
which resort to the finite random matrix methodology devel-
oped in [19]–[25], can be summarized as follows.
• Hyper-Wishart matrix: We first derive the probability
density function (PDF) of a sum of two independent
complex central Wishart matrices (Theorem 1) and its
joint eigenvalue density (Theorem 2 and Corollary 1).
We refer this random matrix as the ‘‘central hyper-
Wishart matrix’’ (Definition 1).

• Shannon transform and its Schur monotonicity: We
derive the Shannon transform of the unordered marginal
eigenvalue density of the hyper-Wishart matrix with
scaled identity covariances as the closed-form trace rep-
resentation (Theorem 3).3 We show that this Shannon
transform as a functional of scale variables is monoton-
ically decreasing in a sense of Schur (MDS) or Schur-
concave (Property 2).4 We further assess the Shannon
transform of its asymptotic spectrum as the antenna
numbers tend to infinity (Theorem 4).

• Ergodic Capacity: We derive the closed-form trace
expressions for the upper and lower bounds
[11, Th. 4.1 and 4.2] on the ergodic capacity of general
N -MIMO Rayleigh-fading relay channels (Theorem 5
and Remark 4). We establish the Schur monotonicity for
the cutset bound as a functional of the SNRs of three
communication links (Remark 3). We further charac-
terize the exact ergodic capacity in the regularity SNR
regime where the upper and lower bounds coincide and
hence the ergodic capacity coincides with the cutset
bound (Remark 5).

The rest of this paper is organized as follows. In Section II,
we introduce a hyper-Wishart matrix and derive some distri-
butional properties of its eigenvalues. Section III analyzes the
cutset upper bound and partial DF lower bound on the ergodic
capacity of N -MIMO Rayleigh-fading relay channels using

2The distribution of the sum of two complex Wishart matrices has been
derived using the Harish-Chandra-Itzykson-Zuber unitary group integral
when one of the covariance matrices is proportional to the identity matrix
while the second is arbitrary [18].

3The Shannon transform is originally motivated by applications and its
wireless engineering and randommatrix theory applications have been devel-
oped in [23].

4Although the term ‘‘Schur-concave’’ is well entrenched in the literature,
this terminology is misleading and the term ‘‘MDS’’ or ‘‘Schur-decreasing’’
is more pertinent [26]. See [21, Appendix I] and reference therein for basic
notions of majorization and Schur monotonicity theory.

the statistical results related to the hyper-Wishart matrix.
In Section IV, we present some numerical results and finally,
Section V concludes the paper. Throughout the paper, we
shall adopt the notation: i) random variables are displayed in
sans serif, upright fonts; their realizations in serif, italic fonts;
and ii) vectors and matrices are denoted by bold lowercase
and uppercase letters, respectively. We relegate the glossary
of notation and symbols used in the paper to Appendix A.

II. MATHEMATICAL FRAMEWORK
We begin by introducing a new class of random matri-
ces involving Wishart matrices and deriving some distribu-
tional properties of its eigenvalues, which will be extensively
invoked in the capacity analysis.5

A. HYPER-WISHART MATRIX
Definition 1 (Hyper-WishartMatrix): LetWi∼W̃m (ni,Σi),

i = 1, 2, . . . ,L, be statistically independent complex central
Wishart matrices where ni > m.6 Then, the Lth-order central
hyper-Wishart matrix W ∈ Cm×m > 0 with parameters m,
n = (n1, n2, . . . , nL), and {Σ i}

L
i=1, denoted by

W ∼ HW̃(L)
m
(
n, {Σ i}

L
i=1

)
, is defined as

W =
L∑
i=1

Wi. (1)

Remark 1: If Σ i = Σ or ni = n in Definition 1,
then the hyper-Wishart matrix W reduces to the com-
plex Wishart matrix, that is, W ∼ W̃m

(∑L
i=1 ni,Σ

)
or

W ∼ W̃m

(
n,
∑L

i=1Σ i

)
.

Theorem 1: Let W ∼ HW̃(2)
m (n, {Σ1,Σ2}) be the

second-order central hyper-Wishart matrix. Then, the density
of W forW > 0 is given by

pW (W )

=
1

0̃m (n1 + n2)
det (Σ1)

−n1 det (Σ2)
−n2 det (W )n1+n2−m

× etr
(
−Σ−11 W

)
1F̃1

(
n2; n1 + n2;

(
Σ−11 −Σ

−1
2

)
W
)
(2)

Proof: See Appendix B. �
Theorem 2 (Joint Eigenvalue Density): Let λ1 > λ2 >

. . . > λm > 0 be the ordered eigenvalues of
W ∼ HW̃(2)

m (n, {Σ1,Σ2}). Then, the joint density of
λ1, λ2, . . . , λm is given in (3), as shown at the top of the next
page, where D = diag (λ1, λ2, . . . , λm).

Proof: It follows readily from using the PDF pW (W ) in
Theorem 1 and the unitary transformationW = UDU† with
Jacobian J (W → U,D) =

∏m
i<j
(
λj − λi

)2. �

5There has beenmuch attention to the distribution theory of randommatri-
ces (see [17], [27], [28], and references therein). Specifically, the Wishart
distributions are great interest in multivariate statistical analysis [17], [27].
It was named in honor of JohnWishart, who formulated a general distribution
using a geometrical argument [29], from the one obtained by Fisher [30] in
the bivariate case.

6When ni < m, the complex Wishart matrix Wi be a singular Wishart
matrix [28].
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pλ1,λ2,...,λm (λ1, λ2, . . . , λm) =
1

0̃m (n1 + n2)
det (Σ1)

−n1 det (Σ2)
−n2

[ m∏
k=1

λ
n1+n2−m
k

][ m∏
i<j

(
λj − λi

)2]
×

∫
U∈U(m)

etr
(
−Σ−11 UDU†

)
1F̃1

(
n2; n1+n2;

(
Σ−11 −Σ

−1
2

)
UDU†

)
[dU] (3)

Corollary 1 (Scaled Identity Covariances): If Σ1 = αIm
and Σ2 = βIm, α, β > 0, in Theorem 2, then we have

pλ1,λ2,...,λm (λ1, λ2, . . . , λm)

= Km,n1,n2,α,β

×

[ m∏
k=1

λ
n1+n2−m
k e−λk/α

][ m∏
i<j

(
λj−λi

)]
det (Ξ) (4)

where

Km,n1,n2,α,β =

[
m∏
i=1

αn1βn2 (n1 + n2 − i)! (i− 1)!

]−1
(5)

andΞ is them× mmatrix whose (i, j)th entry4ij is given by

4ij=λ
j−1
i 1F1

(
n2−m+j; n1+n2−m+j;

β − α

αβ
λi

)
. (6)

Proof: It follows immediately from Theorem 2 and
[21, Corollory 3]. �

B. Shannon TRANSFORM
The Shannon transform of a nonnegative random variable x
is defined as [23, Definition 2.12]

Vx (γ ) , E {ln (1+ γ x)} (7)

where γ > 0. Again motivated by applications, for an
m × m positive semidefinite random matrix A, its Shannon
transform is defined as [23]

VA (γ ) = lim
m→∞

1
m

E {ln det (Im + γA)}

=

∫
∞

0
ln (1+ γ x) dFA (x) (8)

where FA (x) is the asymptotic empirical eigenvalue distribu-
tion (or spectrum) of A. In particular, if the joint density of
ordered eigenvalues ofA is symmetric in all eigenvalues, then
the Shannon transform of the unordered marginal eigenvalue
λ (A) of A is equal to

Vλ(A) (γ ) =
1
m

E {ln det (Im + γA)} (9)

leading to asymptotical equivalence between the unordered
marginal eigenvalue and empirical spectrum of A such that
VA (γ ) = limm→∞ Vλ(A) (γ ). For completeness, we first
review these two key Shannon transforms involving the stan-
dard Wishart matrix, which have been well studied in the
context of multiple-antenna communications.

Let W? (m, n) ∼ W̃m

(
n, 1

m Im
)
be the standard Wishart

matrix and λ? (m, n) be its unordered marginal eigenvalue.

Then, λ? (m, n) has the density function of the form in
[19, eq. (42)] and its Shannon transform is given
by [19, Th. II.1]

Vλ?(m,n) (γ )

=
em/γ

m

m−1∑
i=0

i∑
j=0

2j∑
k=0

n−m+k∑
`=0

{
(−1)k (2j)! (n− m+ k)!
22i−k j!k! (n− m+ j)!

×

(
2i− 2j
i− j

)(
2j+ 2n− 2m

2j− k

)
E`+1

(
m
γ

)}
(10)

which is the ergodic per-antenna capacity of MIMO
Rayleigh-fading channels.7 As m, n → ∞ with n/m → κ ,
the spectrum of the standard Wishart W? (m, n) con-
verges almost surely to the Marc̆enko-Pastur density
[23, eq. (1.12)] and its Shannon transform is given
by [22, eq. (11)], [23, eq. (1.14)]

VW?(κ) (γ ) = κ ln
(
1+ γ −

1
4
F (γ, κ)

)
+ ln

(
1+ γ κ−

1
4
F (γ, κ)

)
−
F (γ, κ)

4γ
(11)

where

F (γ, κ)=
(√
γ
(
1+
√
κ
)2
+1−

√
γ
(
1−
√
κ
)2
+ 1

)2

. (12)

We now extend the Shannon transforms (10) and (11) to the
case of a conical combination of two independent standard
Wishart matrices, which includes hyper-Wishart matrices
with scaled identity covariances as nontrivial cases.
Theorem 3: Let W1 ∼ W̃m

(
n1, 1

m Im
)

and W2 ∼

W̃m

(
n2, 1

m Im
)
be statistically independent and

W = αW1 + βW2, α, β > 0. (13)
Then, the Shannon transform of the unordered marginal
eigenvalue λ (W) of W is given by

Vλ(W) (γ ) =


1
m

tr
(
GGG−1ĠGG

)
, if α 6= β and α, β > 0

Vλ?(m,n1+n2) (αγ ) , if α = β 6= 0
Vλ?(m,n2) (βγ ) , if α = 0
Vλ?(m,n1) (αγ ) , if β = 0

(14)

where GGG and ĠGG are m × m matrices whose (i, j)th entries
are given in (15) and (16), as shown at the bottom of the
next page, respectively. In particular, we denote mVλ(W) (γ )

7We can also express the Shannon transform Vλ?(m,n) (γ ) as the trace
representation using [20, Th. 2].
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when n1 = n2 = m at γ = 1 by ψm (α, β) as a functional of
the conical scaling variables (α, β) ∈ R2

+.
Proof: See Appendix C. �

Theorem 4: LetW be a conical combination of twom×m
standard Wishart matrices as defined in Theorem 3. Then,
as m, n1, n2 → ∞ with limiting ratios n1/m → κ1 and
n2/m → κ2, the Shannon transform of its asymptotic spec-
trum is given by

VW (γ )

=



ln
[
(1+αγ η)κ1 (1+βγ η)κ2

η

]
+η−1, if α 6= β and

α, β > 0
VW?(κ1+κ2)

(αγ ) , if α = β 6= 0
VW?(κ2)

(βγ ) , if α = 0
VW?(κ1)

(αγ ) , if β = 0
(17)

where η is the unique positive solution of

κ1 + κ2 −

(
κ1

1+ αγ η
+

κ2

1+ βγ η

)
= 1− η. (18)

Again, we denote VW (γ ) when n1 = n2 = m at γ = 1 by
ψ∞ (α, β) as a functional of (α, β) ∈ R2

+.
Proof: See Appendix D. �

Remark 2: As κ1 and κ2 tend to infinity, W1 and W2
converge almost surely to Im by the law of large numbers.
Hence, we have

lim
κ1,κ2→∞

VW (γ )
a.s.
−→ ln [1+ γ (α + β)] . (19)

Property 1: By definition,

∂

∂α
ψm (α, β) = E

{
tr
[
(In + αW1 + βW2)

−1W1

]}
> 0

(20)

where the last inequality follows from positive definiteness
ofW1 andW2 along with the fact that the eigenvalues of AB
are all positive for any A,B > 0. Therefore, we can see from
(13) and (20) that the Shannon transform ψm (α, β) as a

functional of the scaling variables (α, β) ∈ R2
+ is symmetric

in α and β; and increasing in each argument (α or β).
Property 2 (Schur Monotonicity): Since

∂2

∂α2
ψm (α, t − α)

= −E
{
tr
([
(In+αW1+(t−α)W2)

−1 (W1−W2)
]2)}

6 0, (21)

ψm (α, t − α) is concave in α for each fixed t > α. Therefore,
it follows from [26, Proposition C.2.b] that the Shannon
transform ψm (α, β) as a functional of (α, β) ∈ R2

+ is MDS:

ψm (α1, β1) > ψm (α2, β2) (22)

whenever (α1, β1) 4 (α2, β2) on R2
+. Let L

(γ )
+ be a straight

line on the nonnegative quadrant R2
+ such that

L(γ )+ =
{
(α, β) ∈ R2

+ : α + β = γ
}
. (23)

Since (γ /2, γ /2) 4 (α, β) 4 (γ, 0) for all (α, β) ∈ L(γ )+
(see blue solid and red dashed lines in Fig. 1), the MDS
property (22) reveals that

ψm (γ, 0) 6 ψm (α, β) 6 ψm
(γ
2
,
γ

2

)
, ∀ (α, β) ∈ L(γ )+ .

(24)

Moreover, since ψm (α, β) is (argument-wise) increasing
and MDS, it follows from [26, Th. A.8] that

ψm (α1, β1) > ψm (α2, β2) (25)

whenever (α1, β1) 4w (α2, β2) on R2
+ (see blue and red

shaded regions in Fig. 1). The geometrical illustration for
the Schur monotonicity property of the Shannon transform
ψm (α, β) on R2

+ is depicted in Fig. 1.

III. CAPACITY OF N-MIMO RELAY CHANNELS
In this section, we analyze the cutset upper bound and partial
DF lower bound on the ergodic capacity of MIMO Rayleigh-
fading relay channels using the statistical results on the hyper-
Wishart matrix obtained in Section II.

Gij = (n1 + n2 − m+ i+ j− 2)!
(αγ
m

)n1+n2−m+i+j−1
× 2F1

(
n2 − m+ j, n1 + n2 − m+ i+ j− 1; n1 + n2 − m+ j; 1−

α

β

)
(15)

Ġij =
(n1 + n2 − m+ j− 2)! (1− n1 − n2 + m− j)n2−m+j

(n2 − m+ j− 1)!

(
β − α

αβγ/m

)1−n1−n2+m−j

×

 n1−1∑
k=0

k+i−1∑
`=0

(1− n1)k
(
β−α
αβγ/m

)k
k! (2− n1 − n2 + m− j)k

(αγ
m

)k+i
(k + i− 1)! em/(αγ )E`+1

(
m
αγ

)

−

n2−m+j−1∑
k=0

k+i−1∑
`=0

(1− n2 + m− j)k
(
α−β
αβγ/m

)k
k! (2− n1 − n2 + m− j)k

(
βγ

m

)k+i
(k + i− 1)! em/(βγ )E`+1

(
m
βγ

) (16)
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FIGURE 1. Geometrical illustration of Schur monotonicity of the Shannon
transform ψm (α, β) on R2

+
.

FIGURE 2. A general full-duplex N-MIMO relay channel.

A. CHANNEL MODEL
We consider a general full-duplex N -MIMO Rayleigh-fading
relay channel with N -antenna source, relay, and destination
nodes, as depicted in Fig 2. The received signals at the relay
and destination can be written respectively as

y1 = H1x+ z1 (26)

y = Hx+H2x1 + z (27)

where x and x1 are N × 1 transmitted signals from the source
and relay nodes with power constraints E

{
‖x‖2

}
6 P and

E
{
‖x1‖2

}
6 P1, respectively; H, H1, and H2 are N × N

Rayleigh-fading channel gain matrices for the S → D,
S→ R, and R→ D communication links, respectively; and
z and z1 are N × 1 zero-mean complex additive white
Gaussian noise (AWGN) vectors at the relay and desti-
nation, respectively. The entries of the channel matrices
H, H1, and H2 are independent and identically distributed
(i.i.d.) circularly symmetric complex Gaussian CN (0, �/N ),
CN (0, �1/N ), and CN (0, �2/N ), respectively, while those
of the AWGN vectors z and z1 are i.i.d. CN

(
0, σ 2

)
and

CN
(
0, σ 2

1

)
, respectively. The transmitted signals x and x1 are

statistical independent of the AWGN z and z1. Furthermore,

all the random quantities H, H1, H2, z, and z1 are also
mutually independent. The variances � and �i, i = 1, 2,
capture the variations of distance-related large-scale path loss
between different transmit-receive node pairs, i.e., � = r−ν

and �i = r−νi , where r and ri denote the distances between
respective communicating node pairs and ν is the power
pass-loss exponent. Hence, we can parameterize the average
received SNRs per antenna for the S → D, S → R, and
R→ D links as

SNR =
P

rνσ 2 , SNR1 =
P

rν1σ
2
1

, SNR2 =
P1
rν2σ

2 (28)

respectively. We further assume that each node has access to
respective receive CSI only, i.e., the source has no CSI, the
relay has access to H1 only, and the destination has access
to H and H2.8

B. CUTSET UPPER BOUND
The max-flow min-cut argument yields the upper bound on
the ergodic capacity (nats/s/Hz) of the general N -MIMO
Rayleigh-fading relay channel as follows [11, Th. 4.1]:

〈c〉 6 min
{
EH,H1 ln det

(
IN +

P
σ 2N

H†H+
P

σ 2
1N

H
†
1H1

)
,

EH,H2 ln det
(
IN+

P
σ 2N

HH†
+

P1
σ 2N

H2H
†
2

)}
.

(29)

The key step for developing this bound is to show that optimal
coding strategies use independent Gaussian codebooks for
x and x1 at the source and relay by virtue of the fact that the
source has no CSI and the relay has access only to receive
CSI (i.e., on H1).9

Theorem 5 (Cutset Bound): Let snr = SNR/N and snri =
SNRi/N , i = 1, 2, be the normalized SNR parameters. Then,
the cutset bound on the ergodic capacity (nats/s/Hz) of the
general N -MIMO Rayleigh-fading relay channel is given in
closed form by

〈c〉 6 ψN (snr,min {snr1, snr2}) . (30)

Proof: It follows readily from (29), Theorem 3, and
Remark 1. �
Remark 3: The cutset upper bound (30) is only a function

of snr and min {snr1, snr2} due to the symmetric antenna con-
figuration of the N -MIMO channel. Specifically, the cutset
bound as a functional of snr and min {snr1, snr2} is increasing
and MDS (see Property 2).

8We assume that the relay can cancel out the self-interference with full
CSI at the relay [11]. The optimal power allocation problems under different
operating conditions were investigated in [6], [31], and [32]. Recently, it
was shown that the isotropic Grassmann input distribution achieves an upper
bound on the cutset bound in MIMO relay channels when no CSI is available
at any of the communicating nodes [33].

9In case of the fixed channel or assuming full CSI, the transmitted signals
x and x1 from the source and relay are in contrast correlated for maximizing
the achievable information rate in the multiple access part of cuts with
complete cooperation between the source and relay nodes [2], [11], [15].
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Remark 4 (Partial DF Lower Bound): Using block-
Markov superposition coding and again independent code-
books for the source and relay, the partial DF lower bound
on the ergodic capacity of general MIMO Rayleigh-fading
relay channels has been also given in [11, Th. 4.2]. For the
general N -MIMO relay channel, we obtain this lower bound
in closed form, using the same line of the proof of Theorem 5,
as follows:

〈c〉 > max
{
ψN (snr, 0) ,

min {ψN (0, snr1) , ψN (snr, snr2)}
}
.

(31)

If snr1 6 snr2, the lower bound is particularized using (25) to

〈c〉 > ψN (max {snr, snr1} , 0) . (32)
Remark 5 (Regularity for Capacity Achieving): When the

channel is physically degenerate such that i) snr = 0 (no
S → D link) and ii) snr1 = 0 or snr2 = 0 (relay off),
the upper and lower bounds in (30) and (31) coincide and
hence, the capacity for such N -MIMO relay channels can be
characterized exactly as follows:

〈c〉 =

{
ψN (0,min {snr1, snr2}) , if snr = 0
ψN (snr, 0) , if snr1 = 0 or snr2 = 0

(33)

where the first case corresponds to general full-duplex dual-
hop MIMO relaying in which the minimum information flow
capability between the S → R and R → D links behaves
as a bottleneck for the achievable rate; and the second case
boils down to the MIMO capacity in the absence of relaying
[19, Th. III.1]. In addition to these two physically degenerate
cases, we can also characterize the capacity in a regular SNR
regimeR as

〈c〉R = ψN (snr, snr2) (34)

where10

R =
{
(snr, snr1, snr2) ∈ R3

+ :

ψN (0, snr1) > ψN (snr, snr2)
}
.

IV. NUMERICAL RESULTS
In this section, we provide some numerical results to illustrate
our analysis.

A. VERIFICATION
To verify our analysis, we depicted the upper bound on
ergodic capacity 〈c〉 in nats/s/Hz and its scaled asymptote
N 〈c〉? in nats/s/Hz as a function of min (snr1, snr2) in Fig. 3
when snr = 25 dB and N = 2, 3, 4. The analysis result
using (30) in Theorem 5 agrees exactly with the simulation
result obtained using [11, Th. 4.1]. We can also see that

10The sufficient conditions for regularity were characterized in [11] for
the high-SNR regime and the scalar case.

FIGURE 3. Upper bound on ergodic capacity 〈c〉 in nats/s/Hz and its
scaled asymptote as a function of min

{
snr1, snr2

}
when

snr = 25 dB, and N = 2,3,4.

FIGURE 4. Ergodic capacity 〈c〉 in nats/s/Hz as a function of the relay
location at the position x when P = P1 = −23 dBm, σ2 = σ2

1 =
−101.11 dBm, N = 2, and ν = 4. The source and destination
are located on a line at x = 0 and x = 10, respectively.

the scaled asymptotic capacity, which can be obtained by
replacing the exact expressionψN (snr,min {snr1, snr2})with
Nψ∞ (snr,min {snr1, snr2}) in Theorem 5, accurately pre-
dicts the exact results, specially when snr = min (snr1, snr2).

B. CAPACITY ACHIEVABILITY
In this subsection, we consider an N -MIMO relay
channel with a small cell size to illustrate capacity
achievability [34], [35]. We set the transmission powers
and noise powers to P = P1 = −23 dBm and σ 2

=

σ 2
1 = −101.11 dBm, leading to P/σ 2

= P/σ 2
1 =

P1/σ 2
1 = 78.11 dB, which are the average receive SNRs at
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FIGURE 5. Capacity achieving region and their ergodic capacity 〈c〉 in
nats/s/Hz for a N-MIMO Rayleigh-fading relay channel for (a) ν = 3.5 and
(b) ν = 4 when N = 2. The relay located at

(
x, y

)
in the 20× 20 grid with

the source and destination located at the coordinates
(
0,0

)
and

(
10,0

)
,

respectively.

a reference distance of 1 meter away from the source and
relay.

Fig. 4 shows the upper and lower bounds on the ergodic
capacity 〈c〉 in nats/s/Hz as a function of the relay location at
the position x when the source and destination are located
on a line at x = 0 and x = 10, respectively. We set the
power pass-loss exponent ν = 4 for all links and N = 2.
For a comparison, we also plot the physically degenerated
channels (no S → D link and relay off channels) as shown
in (33). We can observe that the upper and lower bounds on
the ergodic capacity are coincided when the relay is located at
x ∈ (−9.3, 4.8). In this case, the normalized SNR parameters
are in the regular SNR regime R as shown in Remark 5 and
the capacity 〈c〉 is equal to ψ2 (snr, snr2).

To further characterize the sufficient condition for capacity
achieving, we plot the ergodic capacity 〈c〉 in nats/s/Hz for a
N -MIMO Rayleigh-fading relay channel in Fig. 5 where the
relay is located at (x, y) in the 20×20 grid, and the source and
destination are located at the coordinates (0, 0) and (10, 0),
respectively, for (a) ν = 3.5 and (b) ν = 4 when N = 2.
The color in contour plots represents the ergodic capacity in
nats/s/Hz for the corresponding relay position at (x, y) when
the upper and lower bounds coincide. We can observe that the
regular SNR regimeR increases with the pass-loss exponent
ν while decreasing the achievable capacity. This sufficient
regularity condition for capacity achievability depends on
the number of antennas, fading, and path-loss exponent, as
expected.

V. CONCLUSIONS
In this paper, we developed a framework to characterize
ergodic capacity of MIMO Rayleigh-fading relay channels
by introducing a cental hyper-Wishart matrix. We derived
the PDF of the sum of two independent complex central
Wishart matrices and its joint eigenvalue density which
enable us to derive the closed-form formula for the upper and
lower bounds on ergodic capacity of MIMO Rayleigh-fading
relay channels and its asymptote with Shannon transform of
the unordered marginal eigenvalue density of hyper-Wishart
matrix. It has been shown that i) the Shannon transform as
a functional of scale variables has a MDS property; and ii)
the regularity SNR regime where the upper and lower bounds
coincide is characterized by the number of antennas, fading,
and path-loss exponent.

APPENDIX A
GLOSSARY OF NOTATION AND SYMBOLS

(·)† Transpose conjugate
R
n
+ Nonnegative orthant:

R
n
+ = {(x1, x2, . . . , xn) : xi > 0,∀i}

 Imaginary unit:  =
√
−1

tr (A) Trace of a matrix A
etr (A) Exponential trace of a matrix A:

etr (A) = exp (trA)
In n× n identity matrix
diag (·) Diagonal matrix
A > B Löwner partial ordering for Hermitian

matrices A and B:
A > B means that A− B is positive
definite

a 4 b Majorization ordering [21, Definition 3]:
a 4 b means that a is majorized by b

a 4w b Weak majorization ordering
[26, Definition A.2]:
a 4w b means that a is weakly
supermajorized by b

⊕ Direct sum of matrices: A⊕ B =
[
A 0
0 B

]
(a)n Pochhammer symbol:

(a)n = a (a+ 1) · · · (a+ n− 1),
(a)0 = 1, a 6= 0
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pFq (·) Generalized hypergeometric function of
a scalar argument [36, eq. (9.14.1)]

En (z) nth-order exponential integral function
[19]: En (z) =

∫
∞

1 e−zxx−ndx,
n = 0, 1, 2, . . ., <{z} > 0

0̃m (z) Complex matrix-variate gamma function
[37, Definition 6.1]

pF̃q (·) Hypergeometric function of a matrix
argument [21, eq. (76)]

U (m) Unitary group of order m:

U (m) =
{
U ∈ Cm×m : UU†

= Im
}

[dU] Unitary invariant Haar measure on the
unitary group U (m) normalized to make
the total volume unity

(dX) Exterior product of the differential
elements of X

E {·} Expectation operator
px (x) Probability density function of x
CN

(
µ, σ 2

)
Circularly symmetric complex Gaussian
distribution with mean µ and
variance σ 2

Ñm,n (M,Σ,Ψ ) Complex matrix-variate Gaussian
distribution [19, Definition II.1]

W̃m (n,Σ) Complex central Wishart distribution
[19, Definition II.2]

APPENDIX B
PROOF OF THEOREM 1
The joint density of W1 and W2 is given by

pW1,W2 (W1,W2)

=
1

0̃m (n1) 0̃m (n2)
det (Σ1)

−n1 det (Σ2)
−n2 det (W1)

n1−m

× det (W2)
n2−m etr

(
−Σ−11 W1 −Σ

−1
2 W2

)
(35)

forW1 > 0, W2 > 0. Making the transformations

W = W1 +W2 (36)
V = W−1/2W2W

−1/2 (37)

with Jacobian J (W1,W2→ W ,V) = det (W )m, we get the
joint density ofW and V as follows:

pW,V (W ,V)

=
1

0̃m (n1) 0̃m (n2)
det (Σ1)

−n1 det (Σ2)
−n2

× det (W )n1+n2−m det (V)n2−m det (Im − V)n1−m

× etr
(
−Σ−11 W

)
etr
{
W1/2

(
Σ−11 −Σ

−1
2

)
W1/2V

}
,

(38)

for W > 0, 0 < V < Im. We then obtain the den-
sity of W given in (39), as shown at the bottom of this
page. Now integrating out with respect to V with the help
of [37, Example 6.3], we arrive at the desired result (2).

APPENDIX C
PROOF OF THEOREM 3
When α = β, α = 0 or β = 0, the problem boils down to
theWishart cases and hence, we can obtain the corresponding
ψm (α, β) using (10) together with Remark 1.

For α 6= β and α, β > 0, we have W ∼

HW̃(2)
m

(
{n1, n2},

{
α
m Im,

β
m Im

})
by definition. Let

444 = ln det (Im + γW) . (40)

Then, the moment generating function of444 can be written as

φ444 (s) = EZ

{
es444
}

= EW
{
det (Im + γW)s

}
. (41)

Using Corollary 1 and the same steps leading to [20, Th. 1]
or [21, Th. 10], we get

φ(s) = Km,n1,n2,αγ /m,βγ /m det {GGG (s)} (42)

where GGG (s) is the m × m matrix whose (i, j)th entry is
given by

Gij (s) =
∫
∞

0
(1+ λ)s λn1+n2−m+i+j−2e−λm/(αγ )

× 1F1

(
n2−m+j; n1+n2−m+j;

β−α

αβγ/m
λ

)
dλ.

(43)

Let GGG = GGG (0) and ĠGG = dGGG (s) /ds
∣∣
s=0 for notational

simplicity, and let GGG[1] = GGG−1ĠGG be the dimatrix of GGG (s)
at s = 0 [20, Definition 2], where the (i, j)th entry of ĠGG is
given by

Ġij =
∫
∞

0
ln (1+ λ) λn1+n2−m+i+j−2e−λm/(αγ )

× 1F1

(
n2 − m+ j; n1 + n2 − m+ j;

β − α

αβγ/m
λ

)
dλ.

(44)

Then, it follows from [20, eq. (10)] that

E {444} =
d
ds

lnφ444 (s)

∣∣∣∣
s=0

=
d
ds

ln det {GGG (s)}
∣∣∣∣
s=0

= tr
(
GGG[1]

)
. (45)

pW (W ) =
1

0̃m (n1) 0̃m (n2)
det (Σ1)

−n1 det (Σ2)
−n2 det (W )n1+n2−m etr

(
−Σ−11 W

)
×

∫
0<V<Im

det (V)n2−m det (Im − V)n1−m etr
{
W1/2

(
Σ−11 −Σ

−1
2

)
W1/2V

}
(dV) (39)
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Now, we obtain the (i, j)th entry ofGGG as (15) with the help of
the integral identity [36, eq. (7.522.9)]. To evaluate the (i, j)th
entry of ĠGG in (44), we use the identities [38, eq. (7.11.1.12)]
and [19, eqs. (44) and (46)] successively, and then arrive at
the result (16).

APPENDIX D
PROOF OF THEOREM 4
When α = β, α = 0 or β = 0, the problem boils down to
theWishart cases and hence, we can obtain the corresponding
ψ∞ (α, β) using (11) together with Remark 1.

For α 6= β and α, β > 0, let us decompose a matrix
W ∼ HW̃(2)

m

(
{n1, n2},

{
α
m Im,

β
m Im

})
into W = H̄T̄H̄

†
,

then H̄ ∼ Ñm,n1+n2

(
0, 1
√
m Im, In1+n2

)
is the Grammian

matrix and T̄ = αIn1 ⊕ βIn2 is the positive definite matrix.
Following [23, Definitions 2.11 and 2.12], the transforms for
the matrix T̄ are given by

ηT̄ (γ ) = lim
n1,n2→∞

1
n1 + n2

tr
((
In1+n2 + γ T̄

)−1)
=

1
κ1 + κ2

(
κ1

1+ αγ
+

κ2

1+ βγ

)
, (46)

VT̄ (γ ) = lim
n1,n2→∞

1
n1 + n2

ln det
{
In1+n2 + γ T̄

}
=

1
κ1 + κ2

(κ1 ln (1+αγ )+κ2 ln (1+βγ )) , (47)

respectively. Then, using [23, Th. 2.39], we have

VW (γ ) = lim
m→∞

1
m

E {ln det (Im + γW)}

= V
H̄T̄H̄

† (γ )

= (κ1 + κ2)VT̄ (γ η)− ln η + η − 1 (48)

where η is the solution to

κ1 + κ2 =
1− η

1− ηT̄ (γ η)
(49)

which complete the proof.
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