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ABSTRACT To deal with the increasing load demand and environmental effects of conventional power
devices, power system has become an enlarged complex network with the integration of distributed
generators. Real-time control of power system now needs a massive amount of information to be transmitted
between each local device and the central controller. The transmission of a huge quantity of information data
poses great challenge to the communication network. To deal with this issue in reactive power control, this
paper proposes a novel real-time compressive sensing-based optimal reactive power control of a multi-area
interconnected power system. The objective is to minimize the power loss, voltage deviation, and reactive
power generation cost simultaneously. According to the proposed scheme, the measured data in each control
area is compressed before being transmitted through the communication network, and then recovered
accurately by the discrete central controller. Orthogonal matching pursuit algorithm is adopted to recover the
compressed data, owing to its fast convergence speed. Simulation results demonstrate the effectiveness of
the proposed compressive sensing-based approach by significantly reducing the data size of the transmitted
data.

INDEX TERMS Optimal reactive power control, compressive sensing, orthogonal matching pursuit
algorithm, power loss, voltage deviation.

I. INTRODUCTION
For the reliable and stable operation of the power system,
information of real-time parameters, state, and control vari-
ables of the whole power system shall be collected and pro-
cessed. With the recent large-scale integration of Distributed
Generation (DG) and introduction of smart meters in the
power system, the volume of data that needs to be pro-
cessed, has grown drastically [1]. According to [2], in 2014,
94 million smart meters were shipped worldwide and it is
predicted that by 2022, the number of smart meters will reach
1.1 billion.Whenmore andmore devices are being connected
to the same network segments, bandwidth becomesmore lim-
ited with more network participants [2]. The synchrophasor
data is reported on an N frames/s basis, where N can be
selected between 1 and 120. Choosing a higher frame rate
would further accelerate a demand for more bandwidth [3].
Power utilities often find it difficult to arrange large invest-
ments to build/upgrade communication networks to meet the

increased bandwidth demand [4]. Therefore, in this context,
one must focus to achieve an efficient use of the existing
communication channel bandwidth.

It is exhibited in [5] that the energy consumption by the
communication channel increases significantly as the size of
message to be transmitted increases in various applications
of power grid. Furthermore, if the data package exceeds the
maximum allowable data size, it needs to be divided into
several smaller data packets, which may lead to considerable
time delay. Therefore, it is advisable to decrease the size of
real-time data for obvious reasons.

Reactive power control plays a vital role on power loss
reduction and voltage control of the power system [6]. Under
high penetration of new DG units, more and more reactive
power control devices are being integrated into power grids.
The large-scale deployment of these devices requires upgrad-
ing the existing reactive power control solutions [7]. Many
conventional centralized algorithms have been employed to
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solve the optimal reactive power control (ORPC) problem
off-line [8], [9]. However, only few attempts have been made
to control reactive power in real-time applications, which
needs to upgrade the existing communication networks to
meet with the increasing bandwidth demand.

To address the issue of fast two-way communication,
decentralized ORPC techniques, which rely on local con-
trollers only without explicit communication, have been pro-
posed in [10] and [11]. An approximate measure for power
loss is considered by controlling the reactive power genera-
tion from each DG in [10]. The authors in [11] demonstrated
that total voltage deviation is higher using decentralized
ORPC than that of using centralized ORPC. It is because of
the reason that using decentralized control, each local DG
controller tries to satisfy its local load demand while load
buses without having their own reactive power generation
sources, may happen to have large voltage deviation. Thus,
due to the lack of broader available information, decentral-
ized control may not be effective to coordinate all available
resources in the network [12].

Recently, distributed ORPC techniques [7], [13], [14],
which take advantage of sparse communication network,
have been very popular among researchers. In [13], voltage
regulation and power loss were minimized by adjusting the
reactive power generation using a feedback strategy based
distributed control algorithm. Minimization of the approxi-
mate power loss was proposed by controlling the bus volt-
ages in [14], whereas in [7], authors proposed distributed
multiple agent system based ORPC to optimize power loss
and voltage deviation. It is shown that the data loss and
communication delays may slow down the overall converg-
ing speed. Moreover, distributed algorithms require syn-
chronized communication between the neighboring entities
i.e. failing of the communication or delaying of informa-
tion from even a single bus may slow down the distributed
algorithm.

When comparing distributed and centralized schemes, it is
found that centralized protocols show better performance in
data loss recovery than the distributed protocols [15]. Also,
the optimal solution of the centralized optimal control is
found to be better than that of distributed optimal control
[16], [17]. The reason may be that in distributed control,
local information is shared among neighboring entities only,
whereas in the centralized control, all the information of the
system is known which ensures the better optimal control
of reactive power. Also, most of the existing reactive power
control solutions are centralized [7] and it is economical to
improve the existing communication techniques than to com-
pletely reshape the overall communication paradigm. It may
be expensive to deploy a controller on each DG bus.

Reactive power control service is mainly contemplated as
a local control service because the reactive power may not be
transmitted efficiently through long distances in transmission
networks. Thus, it is usually suggested to control the voltage
by using control devices dispersed throughout the power sys-
tem. Therefore, system operators normally provide voltage

control services from resources within their own controlled
area [18], [19].

Although voltage control is primarily a local control prob-
lem, the recent two decades widespread blackouts have
demonstrated that the voltage instability and collapse could
be considered as an important factor in major power outages
worldwide. It may involve several areas of an interconnected
system and increase the scale of blackouts and even affect the
intact areas [20], [21].

The multi-area power system without inter-area voltage
coordination may be operated in a non-optimum state which
means less security and stability margin. For instance, [22]
reveals that in multi-area power systems, the optimization
solution of an area for reducing the active power losses in its
own region might lead to increase the losses globally in the
interconnected system. Additional literature about the coordi-
nated reactive power control in multi-area power system can
be found in [23]–[29].

For centralized schemes, ORPC problem for a large power
system requires a huge amount of data to be transmitted to the
central controller. If the bandwidth of the communication net-
work is not sufficiently large to support transmission of such
massive amount of data, it may deteriorate the performance of
the controller. To address the problem of limited bandwidth,
recently, compressive sensing (CS) which takes advantage of
sparse signal structures is considered as a promising joint data
compression and reconstruction method to transmit informa-
tion efficiently [30]. As the data obtained from observing a
physical system like power system, inherently contains spa-
tial and temporal correlation [31], it can be compressed before
transmitting through the unreliable communication channel
and recovered at the receiving end. A CS-based data loss
recovery algorithm to improve the communication efficiency
by reducing the communication burden and thus, saving the
power demand is presented in [32], which is further improved
in [33] with low space complexity, low floating-point cal-
culations, and low time complexity robust CS framework.
Recently, a data reduction scheme by removing redundant
phasor information before transmission is proposed in [3] in
order to reduce the amount of data.

To the authors’ best knowledge, few attempts have been
made to deploy advanced information processing techniques
in the ORPC problem. In this paper, a centralized real-time
ORPC is proposed for multi-area interconnected power sys-
tem. Real-time data of bus voltages and line currents in each
area is first sampled and compressed before being trans-
mitted through the communication network. At the receiv-
ing end, it is first decoded and recovered accurately by
the central controller. The size of the transmitted data can
be significantly reduced with the use of CS. The proposed
approach is reliable, robust and its effectiveness is validated
through simulations. Major contributions of this paper are as
follows:

1) Real-time optimal reactive power control of multi-area
power system is solved to minimize power loss, voltage
deviation and reactive power cost, simultaneously.
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2) To meet with the challenges of high bandwidth require-
ment for real-time transmission of massive data of
power system, compressive sensing technique is uti-
lized to first compress the data package before trans-
mitting it through the communication network and then
recover it at the end of communication channel.

3) To deal with large control areas with huge amount of
data, an OrthogonalMatching Pursuit algorithm is used
to improve the reconstruction speed of the transmitted
data.

4) Scalability of the proposed approach is investigated.
The rest of the paper is organized as follows. Section II
formulates the CS based ORPC problem. Section III explains
the working of compressive sensing. Section IV presents
the proposed algorithm. Section V discusses the simulation
results of the proposed control approach, and Section VI
concludes the paper.

II. PROBLEM FORMULATION
Optimal reactive power control of DG plays a key role in
the power system control and operation, which can lead to
improved voltage profile, minimal active power loss and
controllable reactive power generation cost. Therefore, the
objective function to be optimize is formulized as:

min
QGi

f1(QGi,Vi, δi) = W1Ploss +W2DV +W3CQ (1)

where W1, W2 and W3 are the weight coefficients. Ploss,
DV and CQ are the power loss, voltage deviation and cost
of reactive power generation, respectively. QGi is the total
reactive power generation from each bus i. Vi and δi are the
bus voltage magnitude and its angle on bus i respectively.
Expressions for the three sub-functions are given as:

Ploss =
n∑
i=1

n∑
j=1

ViVjYijcos(θij + δj − δi)[34] (2a)

DV =
n∑
i=1

(Vi − V ∗i )
2 (2b)

CQ =
n∑
i=1

aiQ
2
Gi + biQGi + ci [35] (2c)

where Yij 6 θij is the element of admittance matrix. V ∗i is the
reference voltage on bus i, whereas ai, bi and ci are the
reactive power cost coefficients. To minimize (1), admittance
matrix, reference voltage and reactive power generation cost
coefficients are usually fixed whereas, voltage phasors, and
real & reactive power flows are the state measurements of the
control area of power system as given in (3).

xi =
[
Vi 6 δi PGi QGi

]
. (3)

For minimization of (1) by a centralized approach, the
state information is required to be transmitted to the cen-
tral controller through communication channel. However, for
real time ORPC, the communication channel bandwidth is
usually limited and cannot execute the data transfer beyond

FIGURE 1. Encoding and decoding of measurement signal using CS.

its limit. To deal with this issue, in this paper, a compres-
sive sensing based ORPC algorithm is proposed where state
measurements data is first compressed before sending on to
the communication channel and is recovered at the end of
communication channel by the central controller. The theory
of encoding and decoding of measurement signals using CS
is explained in Fig. 1. At each time step k , the state mea-
surements x(k) are taken from n sensors of the power system
control area and compressed as (4)

y(k) = 8(k)x(k) (4)

where x(k) is the state information data of the control area,
y(k) is the data after compression and 8(k) ∈ Rm∗n, is the
measurement matrix at time step k where m is the number
of samples after encoding while n is the number of samples
before encoding. The value of n/m defines the compression
ratio (ρ) of the CS.

At the end of communication channel the original n sam-
ples of x(k) can be recovered from m samples of y(k) mea-
surements by solving `1-normminimization problem as given
in (5) [36]

x̂(k) = argmin
x(k)

‖x(k)‖1

s.t. y(k) = 8(k)x(k). (5)

where x̂(k)is the recovered state information data. A number
of methods can be used to solve the optimization problem in
equation (5) [37], [38]. For real-time data recovery, matching
pursuit methods [38] are preferred to prioritize the compu-
tational speed. Matching pursuit approximates the solution
to Eqn. (5) by solving with Orthogonal Matching Pursuit
Algorithm (OMP) as given in Eqn. (6)

x̂(k) = argmin
x(k)

‖y(k)−8(k)x(k)‖22 s.t. ‖x‖0 < λ (6)

where λ is the bound on the `0-norm of the sparse vector x.
Now recovered x̂(k) will be used by the central controller to
generate ORPC control input for the control area of power
system.

The working of CS based centralized control strategy is
explained in Fig. 2, which shows the compression of x(k)
before transmitting it through communication channel. At the
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FIGURE 2. CS based centralized control scheme.

end of communication channel it can be recovered using
OMP recovery algorithm as proposed in (6).

III. DETAILED WORKING OF COMPRESSIVE SENSING
In this paper, matrices are represented by bold and italic
letters, vectors are represented by bold letters whereas scalar
quantity is neither bold nor italic. The theory of CS states that
a sparse or compressible signal can be recovered with high
probability from a few measurements, which is far smaller
than the size of the original signal. Power system state signals,
having spatial-temporal correlation, thus, can be regarded
as compressible. For a control area with n sensors, a data
window X(k) which contains w ≥ 1 consecutive readings
of n sensors at the time step k is given as

X(k) =

 x1(k − w+ 1) · · · x1(k)
...

. . .
...

xn(k − w+ 1) · · · xn(k)

 (7)

Denote the ith row of X(k) by xr,i(k) = [xi(k − w +
1), . . . , xi(k)]T , which contains readings of sensor i at time
steps {k − w+ 1, . . . , k}. Similarly, denote the jth column of
X(k) by xc,j(k−w+ j) = [x1(k−w+ j), . . . , xn(k−w+ j)]T ,
which contains the readings of all sensors i at the time step
k − w+ j.

If there exists a basis 9S ∈ Rn∗n and a basis 9T ∈ Rw∗w

for spatial and temporal domains respectively, X(k) can be
written in a compressible expression using spatial basis as (8)

X(k) = 9SθS (k) (8)

θS (k) = [θS (k − w+ 1), ....,θS (k)]n×w (9)

where θS (k) ∈ Rn contains the spatial transform coefficients
of n sensors at the time step k and θS (k) is its matrix for the
whole data window of w. Similarly, X(k) can also be written
in a compressible expression using its temporal basis as

XT (k) = 9T θT (k) (10)

θT (k) = [θT ,1(k)....θT ,n(k)]w×n (11)

where θT ,i(k) ∈ Rw contains the temporal transform coeffi-
cients of sensor i for all w steps.

Kronecker sparsifying bases can succinctly combine the
individual sparsifying bases of each signal dimension into a
single transformation matrix [36], [39]. Hence, we can merge
the transformations in (8) and (10), and represent X(k) as

x(k) = vec(X(k)) = vec(9SθS (k))

= vec(9SθS (k)9
−T
T 9T

T ) = vec(9SZ(k)9T
T )

= (9S ⊗9
T
T )vec(Z(k)) = 9z(k) (12)

where 9 = (9T ⊗ 9S ) ∈ Rnw×nw is the Kronecker sparsi-
fying basis and z(k) contains the joint transformation domain
coefficients. x(k) = [xTc,1(k−w+1), . . . , x

T
c,n(k)]

T is vector–
reshaped data window of X(k), Z(k) can be interpreted as
the matrix representation of spatial domain θS (k) in temporal
basis 9T , i.e. θTS (k) = 9TZT (k).

It should be noted that any universal data independent basis
can be considered as9S and9T . Some of the transformations
found suitable for revealing the underlying sparsity of many
natural signals include the discrete Fourier transform (DFT)
basis, discrete cosine transform (DCT) basis and the discrete
wavelet transform (DWT), etc.

x(k) can be represented by 9T z(k) in (4) and (6) for
encoding and decoding of the system data respectively. For
recovery of the state measurements by (6), initially ẑ(k) will
be recovered and then x̂(k) can be reconstructed using (13)

x̂(k) = 9 ẑ(k) (13)

Flowchart of the proposed CS based data transmission
algorithm is shown in Fig. 3, which shows the steps required
to transmit the data using CS.

FIGURE 3. Proposed CS based data transmission algorithm.

The performance of CS is mainly evaluated by two criteri-
ons:

1. Compression ratio (ρ):

ρ =
size of data being transmitted without CS
size of data being transmitted with CS

(14)

2. Signal to error ratio (SNR):

SNR = −20(log
∥∥x− x̂

∥∥)/‖x‖ (15)

where x is the original signal, x̂ is the recovered signal. The
compression ratio (ρ) decides the size of the measurement
matrix. It decides the number of rows (m) in the measurement
matrix as given in (4). Higher the compression ratio, lower
the amount of data to be transmitted on the communication
channel.
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IV. PROPOSED ORPC ALGORITHM
Optimization of the multi-objective function of (1) can be
performed using optimal reactive power control of the gener-
ators. However, the inequality constraints of reactive power
generation limits should be included to ensure that the reac-
tive power generator limits are not violated. Here, reac-
tive power optimization can be solved using Interior Point
Method (IPM) algorithm [40], [41], as given in (16a) [42].

min
x

f (x)

s.t. x ≤ xu
x ≥ xl (16)

PGi − PLi − Vi
n∑
j=1

VjYij cos(δi − δj + θij) = 0 (16a)

QGi − QLi + Vi
n∑
j=1

VjYij sin(δi − δj + θij) = 0 (16b)

where xui and xli are the maximum and minimum rated
capacities of state variable for bus i. x = [x1, . . . , xn],
µ > 0 is the vector of barrier parameters which keeps on
decreasing until the optimal solution is achieved. (16a & b)
are the power flow constraints which need to be satisfied
during the control operation and can be written as c(x) in
a compact form. These constraints can be included in the
formulation using lagrangian approach. Lagrangian of (16a)
can be written as (17)

L(x, λ,wl,wu)= f (x)+c(x)Tλ−wT
l (x−xl)−w

T
u (xu − x)

(17)

(16a) consists of nonlinear equality constraints. It is
convenient to utilize a Primal-dual based Interior Point
method (PDIPM) to solve nonlinear optimization problems
with equality constrains. Hence, the primal-dual equation of
(16a) is given as (18a) [43]

g(x)+ A(x)λ− wl + wu = 0 (18)

c(x) = 0 (18a)

(X − X l)wl − µel = 0 (18b)

(Xu − X)wu − µeu = 0 (18c)

where g(x) is the dual of f1(x). λ is the vector of equality
constraint dual variables. wl and wu are the vectors of non-
negative dual variables of inequality constraints. Xu and X l
are the matrix of maximum and minimum limits of state
variables for a specified window length as given in (7).
el and eu are two indicator variables to restrict states within
feasible regions.

For a fixed u at each iteration and counted by k, the solution
of (16a) can be achieved by Newton method where search
directions of states can be calculated as (19) [44][

H(k) A(k)
AT (k) 0

][
dx(k)
dλ(k)

]
=

[
∇f (x(k))+ A(k)λ(k)

c(k)

]
(19)

where dx(k) and dλ(k) are vectors of search direction of x and
λ. Here, H(k) is a matrix given by (20)

H(k)=V (k)+W l(k)(X(k)−X l))−1+Wu(k)(Xu−X(k))−1

(20)

where V(k) is the Hessian of Langrangian of (17). X(k) is
the matrix of state information as given in (7). W l and Wu
are the matrices of non-negative dual variables of inequality
constraints for a window length of w. In case of using CS
to transmit network data to the central controller, rate of
compression and recovery is usually very high. Thus, it is rea-
sonable to approximate the gradient and Hessian of function
of f1 numerically as

∂L
∂x

(k) =
L(k)− L(k − 1)
x(k)− x(k − 1)

(21)

∂2L
∂x2

(k) =
∂L
∂x (k)−

∂L
∂x (k − 1)

x(k)− x(k − 1)
(22)

Similarly, search direction of the dual variables can be calcu-
lated as given in (23a) & (23b)

dwl (k) = µ(k)(X(k)− X l)−1el −Wl(k)

−wl(k)(X(k)− X l)−1dx(k)) (23a)

dwu (k) = µ(k)(Xu − X(k))−1eu − wu(k)

−Wu(k)(Xu − X(k))−1dx(k)) (23b)

Finally, update of next iteration of PDIPM can be obtained
by (24(a-d))

x(k + 1) = x(k)+ α(k)dx(k) (24a)

λ(k + 1) = λ(k)+ α(k)dλ(k) (24b)

wl(k + 1) = wl(k)+ α(k)dwl (k) (24c)

wu(k + 1) = wu(k)+ α(k)dwu (k) (24d)

where α(k)ε(0, 1] is the step size. In classical PDIPM, µ is
decreased at each iteration by using a fixed decrement ratio
which may slow down the convergence speed of the algo-
rithm. In this paper, authors propose an improved version
of PDIPM which decreases the barrier parameter at a super
linear rate by using (25)

µ(k + 1) = max
{
εtol

β
, min{κµµ(k), µ(k)τµ(k)}

}
(25)

where εtol is the given tolerance, βκµτµ(k)ε (5, 15) , ε (0, 1) ,
and ε (1, 2) . To check the convergence of the proposed
improved PDIPM, error can be calculated by finding the
maximum violation in the primal-dual equations as given
in (26)

Eµ = max


‖g(x)+ A(x)λ− wl + wu‖∞/sd , ‖c(x)‖∞ ,∥∥(x(k)− xl)wl − µel

∥∥
∞
/scl ,∥∥(xu − x)wu − µeu
∥∥
∞
/scu


(26)

where sd, scl and scu are the scaling parameters. Detailed
working of the proposed improved PDIPM algorithm is pro-
vided in Fig. 4.
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FIGURE 4. Proposed Improved PDIPM algorithm.

It is proved to be an efficient technique for nonlinear
constrained optimization and thus, suitable for our optimal
reactive power control application. Using improved PDIPM,
the central controller needs to collect the real-time data of
voltage phasors and power flows which in this case is being
achieved by using CS based communication network. After
obtaining the real-time data, the central controller generates
the optimal control input for each reactive power source in the
control area. The optimal control input is the optimal reactive
power generation and it is decided based on the minimization
of (16a).

Finally, a comprehensive flowchart of the proposed CS
based ORPC algorithm is shown in Fig. 5. At the begin-
ning of the algorithm, PDIPM and CS preset parameters are
stored in the central controller. Measured data from control
area of a power system is compressed as per Fig. 3, before
transmitting it through the communication channel. For com-
pression of measured data, two matrices Kronecker sparsi-
fying basis (9) and measurement matrix 8(k) are required.
9 is achieved by taking Kronecker tensor product of Discrete
Cosine Transform basis. Measurement matrix 8(k) depends
on the selected compression ratio for each simulation. If com-
pression ratio rises, number of the rows in the measurement
matrix decreases. It is obtained dynamically for each iteration
by randomly selecting a sparse matrix with only one non-zero
value in each row.

At the end of communication channel, ẑ(k) is recovered
using OMP algorithm applied on (27).

y(k) = 8(k)9 ẑ(k) (27)

It is an under-determined system of equations and is solved
using the method of least squares to get an estimate of
the solution. However, the information of the sparsity for
ẑ(k) does help to derive a more deterministic solution set
by incorporating λ with the optimization problem as given
in (28) [45].

min
ẑ(k)

∥∥8(k)9 ẑ(k)− y(k)
∥∥2
2

s.t.
∥∥ẑ(k)∥∥0 ≤ λ (28)

FIGURE 5. 5. Comprehensive flowchart of the proposed CS based ORPC
approach.

where λ is the number of non-zeros in the least squares
problem and optimal λ is calculated by solving (29)

λ =

∥∥∥2 [8(k)9]T y(k)
∥∥∥
∞

(29)

Calculation of λ is very important in the recovery algorithm
of CS and performance of CSwidely depends on the selection
of λ. SNR ratio of the recovered signal decreases if we choose
value of λ away from optimal value.
After ẑ(k) is achieved using above recovery algorithm, it

is reshaped using (13) as explained in chapter III. Then at
the central controller, control input QGi(k + 1) is generated
using improved PDIPM as explained in Fig. 4. Finally, the
generated control input is sent back to the control area of
power system to improve the objective function (1).

V. SIMULATION STUDIES
In this section, 3 different case studies of 18 bus, 129 bus and
486 bus power system are presented to test effectiveness of
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CS for various sizes of control area. Each power system is
obtained by combing multiple control areas through tie lines
to test the proposed algorithm for multi-area power systems.

FIGURE 6. A power system of 18 buses with 6-bus in each control area.

FIGURE 7. 6-bus radial distribution network used as one control area.

A. 18-BUS SYSTEM
The proposed algorithm is applied to a multi-area power
system of 18-bus network as shown in Fig. 6. It is built by
connecting 3 control areas with 6-bus radial system in each
area as shown in Fig. 7. The impedances for all the tie-lines
are set to 0.02+j0.07 p.u. In the first control area, bus 1 is a
slack bus of the power system and it is connected to the main
grid. Three generators with reactive power ranges −3.75 to
3.75MVAR, −3.75 to 3.75 MVAR and −5.0 to 5.0 MVAR
are attached at buses 4, 5 and 6, respectively. Reactive power
generation from these DGs is utilized to minimize the power
loss and voltage deviation of the system, taking the reactive
power generation cost into account simultaneously. Refer-
ence voltages for 6 buses are assigned as [1.04 1.025 1.025
1.0 1.01 1.015] in an ascending order. Weight coefficients
for Power loss, voltage deviation and reactive power cost are
set as W1 = 0.2, W2 = 100 and W3 = 1.0, respectively.
To analyze the real-time dynamic behavior of CS based
ORPC approach, a sequence of load changing events are
launched as given in Table 1.

To begin with, the first load change is initiated on
bus 5, 11 and 17 by doubling the reactive power load at 12s.
The increased load is compensated by the reactive power
generation source at bus 5, 11 and 17 as shown in Fig. 8.
Similarly, decrease in reactive power load and change in real

TABLE 1. Event sequences of load changes on 18-Bus power system.

FIGURE 8. Reactive power generation updates of 9 generators for 18-bus
system.

FIGURE 9. Voltage improvement of the non-PV buses for 18-bus system.

power load is counteracted by their respective generators.
Fig. 9 shows that none of the above changes in load has
introduced significant long-term voltage deviation on any of
the bus voltage and all the voltages return to their original
optimal values, immediately after the load change. Buses
regained their initial optimal values because controllable
reactive power sources adjusted their reactive power gener-
ation to maintain the optimal bus voltages. Convergence of
the proposed algorithm in case of varying loading conditions
shows that CS works even when the events of load change
occurs in the multi-area power system.

CS has been used to transmit the network data to the central
controller. Difference in the voltage updates of two cases:
with andwithout CS is shown in Fig. 10, in which only a small
error (of the order of 10−3) is observed in voltage updates
during the load variation period. However, after the algorithm
reaches the steady-state load condition, error in the voltage
vanishes. It is inferred that the proposed CS based approach
does not affect the optimal control setting of the reactive
power; at the same time, decreasing the data size. Commonly,
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FIGURE 10. Error in the voltage updates with CS.

the power system operates in the steady state condition with
only few dynamics in the whole day. It can be concluded that
CS is an excellent means of reducing the data size of power
system real-time data without affecting the control settings.

FIGURE 11. Updates of the individual sub-function.

FIGURE 12. Minimization of the overall objective function.

Figs. 11 & 12 show the updates of each sub-function
and the overall objective function, respectively. The reactive
power generation increases as reactive power load rises on
bus 5, 11 and 17 at 12s. In comparison, the reactive power
generation decreases when reactive power load declines at
24s. A rise in real power load increases reactive power cost
and power loss of the network. A significant decrease in
the reactive power cost and power loss is observed at 48s

when real power load is reduced. According to the power
system theory, the less real power demand is, the lower real
power loss will be, which in turn, decreases the reactive power
demand in the network.

To analyze the effect of compression ratio (ρ) on the
recovered signal, OPRC algorithm was initially implemented
without CS. After that, CS based ORPC algorithm was sim-
ulated with varying compression ratios. Results from both
algorithms are compared in Fig. 13 which shows the error in
voltage of bus 18 of area 3 by changing the compression ratio.
It is clear that higher the compression ratio, more is the error
in the voltage. For large compression ratios, proposed algo-
rithm takes more time to converge. Thus, large compression
ratio makes the algorithm slow down but converges to same
optimal value. It is noteworthy that in small power system,
the achievable compression ratio is small.

FIGURE 13. Error in V18 with the use of CS.

FIGURE 14. 14 Voltage updates of area 2 with white noise of SNR=50 on
V10.

B. EFFECT OF RANDOM DISTURBANCE
Effect of random disturbance is studied by introducing ran-
dom white noise in the voltage of bus 10 in area 2 from 25s
to 33s as shown in Fig.14 where white noise with SNR=50
is added. It is observed that adding random disturbance in the
voltage of one bus introduces disturbance in the neighboring
buses as well. It validates our assumption that power system
states have spatial correlation in them and thus are compress-
ible. To analyze the behavior of proposed ORPC algorithm in
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FIGURE 15. Reactive power updates of area 2 with white noise of
SNR=50 in V10.

presence of random disturbances, reactive power generation
updates are shown in Fig. 15. It shows that all generators in
area 2, particularly generator on bus 10 act by changing their
generation to deal with any abrupt random disturbances.

FIGURE 16. Error in V10 for different SNR ratios.

FIGURE 17. Reactive power generation updates of bus 10 for different
SNR ratios.

To study the effect of random disturbances of higher mag-
nitudes on the recovered data, SNR ratio was decreased from
60 to 30, as shown in Fig. 16. Fig. 16 exhibits that when the
random disturbance increases in the system states, error in
the recovered data rises. Similar response is observed in the
reactive power generation updates as shown in Fig. 17, which
shows reactive power generation output of bus 10 for different
SNR.

FIGURE 18. A power system of 129 buses with 43-bus in each control
area.

C. 129-BUS POWER SYSTEM
CS is used to deal with the signals from the 129-bus power
system as shown in Fig. 18 formed by connecting three
43-bus control areas, with the line data and bus data as
given in [46]. In each area, 14 controllable reactive power
generators attached on [3, 5, 7, 12, 14, 16, 18, 20, 24, 26,
27, 38, 41, 42] buses are used for ORPC. Voltages of non-PV
buses and line currents are taken as the data for transmission
through communication channel using CS. Real-time load
changes are introduced on several buses, as shown in Table 2.

TABLE 2. Event sequences of load changes on 129-bus power system.

FIGURE 19. Reactive power updates of 14 generators.

Reactive power generation updates, as shown in Fig. 19,
converge to their optimal values before a dynamic load
change occurs at 33s, when reactive power generation
increases, as exhibited in Figs. 19 & 22. This rise in reactive
power load causes the voltage dip for a very short interval
and it immediately recovers its optimal voltage profile by
applying the proposed approach, as shown in Fig. 20. Similar
behavior is observedwhen real power load demand is reduced
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FIGURE 20. Voltage improvement of the 33 non-PV buses in area 2.

FIGURE 21. Error in the voltage updates of the 33 non-PV buses.

FIGURE 22. Updates of the individual sub-functions for 129-bus power
system.

by 0.6 times of the initial load. Reactive power generation
cost decreases as can be observed in Fig. 22. Notice that,
the fall in real power demand at 66s reduces the current
flow through the network, which in turn, reduces power loss,
reactive power generation requirement and hence reduces the
overall objective function, as shown in Fig. 23.

The result in Fig. 21 exhibits the effectiveness of the
proposed CS based approach as the difference for the state
variables for the two cases: with and without using CS, con-
verges to zero within a few seconds of any dynamic change.
Results in Figs. 19-22 of reactive power generation, voltage
magnitudes and objective function, all are obtained using CS
based control scheme, which validates the effectiveness of
using compressive sensing for ORPC.

FIGURE 23. Minimization of the overall objective function.

FIGURE 24. Large power system of 648 buses with 162-bus in each
control area.

D. 648- BUS POWER SYSTEM
In order to test the proposed algorithm’s performance with
a large scale control area, a test case on 648-bus power
system, built by connecting 4 areas with 162-buses each as
shown in Fig 24, is conducted here. Parameters of 162-bus
system can be found in [47]. The resistance and reactance
for all the tie-lines are set to 0.028 p.u and 0.096 p.u.,
respectively. The overall system has 1144 branches and 200
reactive power generation controllers, with 50 reactive power
controllable sources in each control area. 153 buses are
non-PV buses, and their state information data needs to be
transmitted to the central controller for controlling the 50
reactive power sources. Reactive power loads on buses [15,
21, 22, 23, 27, 36, 67, 68, 84, 89, 94, 98, 137, 142, 148]
are increased to 1.6 times of their initial values at 100s
to test the system’s dynamic behavior under the proposed
approach.

Update of reactive power generation using CS for data
transmission is shown in Fig. 25, which shows increase in its
generation at 100 s when the reactive power load is increased.
Fig. 26 shows the convergence of the error to zero, immedi-
ately after the load change. Subjected to an abrupt increase
in the reactive load, bus voltages deviate from their refer-
ence voltages and thus voltage deviation is increased. Similar
increase is observed in power loss when load increases at
100s, as shown in Fig. 27.
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FIGURE 25. Reactive power updates of 50 reactive power controllers.

FIGURE 26. Error in the voltage updates.

FIGURE 27. Updates of three sub-objective functions.

E. ANALYSIS OF CHOOSING OPTIMAL λ AND ITS EFFECT
ON THE RECOVERED DATA
λ is the number of non-zeros used in the least squares problem
of data recovery and it has an optimal value for each power
system. If λ used in OMP problem changes from the optimal
λ, the recovered signal may be of poor quality. To visualize its
effect on the signal quality, various values of λ are used and
corresponding SNR value of the recovered signal is measured
as shown in Fig. 28. It shows that each power system has an
optimal value of λ for which SNR value is the highest. For rest
of the λs, quality of the recovered signal decreases. It also
exhibits that λ changes with the size of power system. For
large power systems, amount of data transfer is large and thus
optimal λ will be large for high quality signal recovery.

FIGURE 28. Effect of λ on the quality of the recovered signal.

F. EFFECT OF THE COMPRESSION RATIO ON THE
RECOVERED DATA
Each of the three case studies is tested for various compres-
sion ratios and it is observed that by increasing the compres-
sion ratio, the quality of recovered signal is affected.

FIGURE 29. Curves showing the relation between ρ and SNR for the three
cases.

Fig. 29 shows the curves between SNR and the compres-
sion ratio for the three case studies, which exhibits that SNR
drops as the compression ratio increases. It is also shown
that as the network size increases, the value of achievable
compression ratio grows i.e. the values of achievable com-
pression ratio for 6-bus, 43-bus and 162-bus control areas
are 2.4, 5.445 and 9.3636, respectively. Thus, the proposed
CS based approach is promising for the large system appli-
cations where data size can be reduced to 1/9 of the original
size.

VI. CONCLUSIONS
Issue of limited-bandwidth communication network in ORPC
has been addressed by using CS for data transmission from
dispersed control areas to the central controller. OMP based
algorithm, which can significantly accelerate the recovery
speed, is utilized to recover the data at the receiving end of
communication channel. It is shown that data size can be
reduced 1/9 times with the help of CS without deteriorating
the performance of the proposed approach using CS.
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Three case studies are presented, ranging from small to
large power systems, to validate the effectiveness of the pro-
posed CS based approach for ORPC problem. Various load
changes are introduced to different buses in the network to
test the performance of the proposed approach on the real
time power system. It is observed that difference in the state
variables (with and without using CS) approaches to zero,
immediately after the occurrence of load changes. The value
of achievable compression ratio is higher for the large control
areas than that of the small control areas, which indicates the
promising applications of the proposed approach in the large
systems. Error in the recovered data depends on the com-
pression ratio of the measurement matrix. It also varies with
number of non-zero values taken in the recovery algorithm.
Recovery algorithm has an optimal number of non-zeros for
each power system. Any deviation from this value will cause
rise in the error of the recovered data.
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