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ABSTRACT The problem of output regulation for a class of cascade switched nonlinear systems is
investigated in this paper. Sufficient conditions for the problem to be solvable are given using the average
dwell time method and the multiple Lyapunov function method. The problem for each subsystem to be
solvable and may not be solvable are discussed, respectively. The main results are obtained based on full
information feedback and error feedback. In addition, the method of designing the switched law is also
presented in this paper. Finally, the simulation examples show that the results are very effective.

INDEX TERMS Output regulation, switched cascade nonlinear systems, average dwell time, multiple
Lyapunov function.

I. INTRODUCTION
Output regulation is an important problem in the control
theory. This problem aims to asymptotically track a class
of reference trajectories and/or disturbances. It is generated
by an autonomous finite-dimensional dynamical system. The
problem of output regulation has been widely used in prac-
tical engineering. Thus, many researchers investigated this
problem. For non-switched linear and nonlinear systems, this
problem has been generally studied in references [1]–[5].

The switched system is a special kind of hybrid systems.
It consists of a family of continuous time or discrete-time
subsystems and a rule orchestrating the switching between
these subsystems. Switched systems are used widely in the
engineering applications, for instance, control of industrial
processes and air traffic control [6], [7]. Generally, stability
analysis and stabilization problems are fundamental issue
of switched systems. The average dwell time method is an
effective tool to solve these problems. Themultiple Lyapunov
function method is the other effective tools [8]–[13].

The output regulation problem is more challenging than
stabilization, because the hybrid nature of the switched sys-
tems makes the problem more complicated. Actually, even if
under the arbitrary switching, the solvability of the output reg-
ulation problem for switched systems could not be obtained
from the solvability of the problem for each subsystem.

Up to now, there are few results about the output regula-
tion problem of the switched systems. For linear switched

systems, the solvability of the problem was solved using
a convex combination method [14]. In order to reduce the
conservativeness, reference [15] studied the output regulation
problem for switched discrete-time linear systems. The mul-
tiple Lyapunov function method was used in this reference.
References [16], [17] discussed the optimal output regulation
problem for switched discrete-time linear systems. In [18],
the problem was considered for non-switched systems with a
switched exosystem. Reference [19] has solved the problem
based on an error feedback according to an output error-
defendant method. Reference [20] presented the sufficient
condition for the problem to be solvable. The sufficient con-
dition is based on the multiple quadratic Lyapunov convex
null. At the same time, reference [21] discussed the output
regulation problem for a class of switched linear multi-agent
systems with a distributed observer approach. In [22], the
problem was solved by a geometric approach. For nonlinear
switched systems, reference [23] considered the solvability
of the problem. The average dwell time method was used in
this reference. Reference [24] applied the concept of geo-
metric steady to research the solvability of the problem.
References [25]–[27] presented the sufficient conditions for
the problem based on the concept of the switched internal
model. However, to the authors’ best knowledge, the output
regulation problem has not been investigated for cascade
switched nonlinear systems. In the present work, this problem
will be investigated.
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In this paper, we investigated the output regulation problem
for cascade switched nonlinear systems. The average dwell
time method and the multiple Lyapunov function method are
used to solve this problem. Firstly, the regulation equations
are derived for the solvability of the problem for the cas-
cade switched nonlinear systems. Secondly, switching laws
and controllers are designed to ensure the output regulation
problem of switched systems is solvable. The problems for
each subsystem with the assumption of the solvability are
considered, while the problems with no assumption of the
solvability are also considered. In addition, the above results
are presented based on the full information feedback and the
error feedback.

II. PROBLEM STATEMENT
Consider a cascade switched nonlinear system described by
the equations of the form

ẋ1 = A1σ (t)x1(t)+ A2σ (t)x2(t)+ Bσ (t)u(t)+ Pσ (t)ω
ẋ2 = f2σ (t)(x2(t))
e(t) = Cσ (t)x1(t)+ Qσ (t)ω

(1)

where x1 ∈ Rn−d and x2 ∈ Rd are state vectors, u ∈ Rm

and e ∈ Rp are control input and error variable respectively.
The switching signal σ : [0,∞) → IN [1, . . . ,N ] is a
piecewise constant function of time, A1i,A2i,Bi,Pi,Ci and
Qi are known constant matrices of appropriate dimensions,
f2i(x2) are known smooth functions. The exogenous input
variable ω ∈ Rr includes disturbances and/or reference input
and satisfies the following neutrally stable exosystem

ω̇ = Sω (2)

where S has only simple eigenvalues on the imaginary axis.
In this paper, we consider the structure of controllers with

two forms. When x(t) and ω(t) are available, we adopt the
full information controller, such as

u = K1σ x1 + K2σ x2 + Lσω (3)

and when the output error e is available for measurement, we
apply the error feedback, that is,

ξ̇ = Fσ ξ + Gσ e

u = Hσ ξ (4)

Definition 1 (see [23]): For any switching signal σ (t) and
any t > t0 ≥ 0, let Nσ (t0, t) denote the number of switching
of σ (t) on the interval (t0, t). If Nσ (t0, t) ≤ N0 + t − t0/τa
holds, then the positive constant τa is called the average dwell
time. In general, we assume N0 = 0.
We now state the output regulation problem of the switched

system (1).

A. OUTPUT REGULATION VIA FULL INFORMATION
Find, if possible, feedback laws (3) and a switching law σ (t)
such that:

i) the system (1) with the controllers (3) is asymptotically
stable under the switching law σ (t) without the distur-
bance input.

ii) for each (x (0) , ω (0)), the solution (x (t), ω (t)) of

ẋ1 = (A1σ + BσK1σ ) x1 + (A2σ + BσK2σ ) x2
+ (BσLσ + Pσ ) ω

ẋ2 = f2σ (x2)

ω̇ = Sω (5)

satisfies

lim
t→∞

e(t) = lim
t→∞

(
Cσ(t)x + Qσ(t)ω

)
= 0.

B. OUTPUT REGULATION VIA ERROR FEEDBACK
Find, if possible, feedback laws (4) and a switching law σ (t)
such that:

i) the system (1) with the controllers (4) is asymptotically
stable under the switching law σ (t) without the distur-
bance input.

ii) for each (x (0) , ξ (0) , ω (0)), the solution (x (t) , ξ (t),
ω (t)) of

ẋ1 = A1σ x1 + A2σ x2 + BσHσ ξ + Pσω
ẋ2 = f2σ (x2)
ξ̇ = GσCσ x1 + Fσ ξ + GσQσω
ω̇ = Sω (6)

satisfies

lim
t→∞

e(t) = lim
t→∞

(
Cσ(t)x + Qσ(t)ω

)
= 0.

III. OUTPUT REGULATION UNDER THE GIVEN
SWITCHING LAW
In this section, we will give sufficient conditions for the
solvability of the output regulation problem, based on the
average dwell time method.

A. OUTPUT REGULATION VIA FULL INFORMATION
FEEDBACK
Now, we will give a sufficient condition for the output regu-
lation problem is solvable via full information feedback.
Theorem 1: Suppose there exist constants λ0 > 0, δ > 0,

χ1 > 0, χ2 > 0, γ > 0, µ > 0, positive definite matrices P̃i,
and matrices K1i, i = 1, 2 · · ·N , and a smooth positive
definite function G(x2), such that

AT1iP̃i + P̃iA1i + K
T
1iB

T
i P̃i + P̃iBiK1i + γ I + λ0P̃i < 0

P̃i ≤ µP̃j i, j ∈ IN (7)

χ1 ‖x2‖2 ≤ G(x2) ≤ χ2 ‖x2‖2

∂G(x2)
∂x2

fi(x2) ≤ −δ ‖x2‖2 (8)

If there exist 5,0i, for ∀i ∈ IN , satisfying the following
equations

5S = A1i5+ Bi0i + Pi
0 = Ci5+ Qi (9)
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then, under the switching law satisfying the following average
dwell time

τa ≥ τ
∗
a =

lnµ
λ

λ ∈ (0, λ0) (10)

the full information feedback controllers (3) solve the prob-
lem of output regulation for the switched system (1), where
x̃1 = x1 −5ω.

Proof: Set Li = 0i − K1i5, and consider the coordinate
transformation x̃1 = x1 −5ω. According to (9), we have

˙̃x1 = ẋ1 −5ω̇

= A1σ (x1 −5ω)+ BσK1σ (x1 −5ω)

+ (A2σ + BσK2σ ) x2
= (A1σ + BσK1σ ) x̃1 + (A2σ + BσK2σ ) x2

ẋ2 = f2σ (x2)

e = Cσ x1 + Qσω

= Cσ (x1 −5ω)+ (Cσ5+ Qσ ) ω

= Cσ x̃1 (11)

We define the following Lyapunov function candidate
V (t) = Vσ (t) = x̃T1 P̃σ x̃1 + kG (x2) and for the i-th activated
subsystem, the derivative of V (t) along the trajectory of the
corresponding subsystem is

V̇ (t) = ˙̃xT1 P̃ix̃1 + x̃
T
1 P̃i ˙̃x1 + k

∂G (x2)
∂x2

ẋ2

= x̃T1 (A1i + BiK1i)
T P̃ix̃1 + x̃T1 P̃i (A1i + BiK1i) x̃1

+ xT2 (A2i + BiK2i)
T P̃ix̃1 + x̃T1 P̃i (A2i + BiK2i) x2

+ k
∂G (x2)
∂x2

f2i (x2)

= x̃T1
(
AT1iP̃i + P̃iA1i + K

T
1iB

T
i P̃i + P̃iBiK1i

)
x̃1

+ 2x̃T1 P̃iA2ix2 + 2x̃T1 P̃iBiK2ix2

+ k
∂G (x2)
∂x2

f2i (x2)

there exist constants ci > 0, qi > 0 and di > 0, such that

‖A2ix2‖ ≤ ci‖x2‖,
∥∥∥x̃T1 P̃i∥∥∥ ≤ qi‖x̃1‖, ‖BiK2ix2‖ ≤ di‖x2‖,

we set m = max {ciqi, diqi|i ∈ IN }, according to (7) and (8),
we get

V̇ (t) ≤ −γ ‖x̃1‖
2
− λ0x̃T1 P̃ix̃1 + 4m ‖x̃1‖ ‖x2‖ − kδ ‖x2‖2

≤ −λ0x̃T1 P̃ix̃1 − kλ0G(x2)+ kλ0G(x2)− γ ‖x̃1‖
2

+ 4m ‖x̃1‖ ‖x2‖ − kδ ‖x2‖2

≤ −λ0V (t)+ kλ0χ2 ‖x2‖2 − γ ‖x̃1‖
2

+ 4m ‖x̃1‖ ‖x2‖ − kδ ‖x2‖2

≤ −λ0V (t)− γ
(
‖x̃1‖ −

2m
γ
‖x2‖

)2

−

(
−
4m2

γ
+ kδ − kλ0χ2

)
‖x2‖2

where k > 4m2

γ (δ−λ0χ2)
, thus V̇ (t) < −λ0V (t). By virtue of (7),

we have

Vi ≤ µVj i, j ∈ IN

For any t > 0, denote t1, t2, · · · , tk−1, tk , · · · , tNσ (0,T ) as the
switching instants on the interval (0, t), we get

V (t) ≤ e−λ0(t−tNσ (0,t))V (tNσ (0,t))

≤ µe−λ0(t−tNσ (0,t))V (t−Nσ (0,t))

≤ · · ·

≤ µNσ (0,t)e−λ0tV (0)

According to (8), there exist constants ϕ1, ϕ2, such that

ϕ1

(
‖x̃1‖

2
+ ‖x2‖2

)
≤ V (t) ≤ ϕ2

(
‖x̃1‖

2
+ ‖x2‖2

)
Based on the above inequalities, we have

‖x̃(t)‖ ≤
√
ϕ2

ϕ1
e
Nσ (0,t) lnµ−λ0t

2 ‖x̃(0)‖

where x̃(t) =
[
x̃T1 , x

T
2

]T . Because of the formula (10) and
Definition 1, we have

‖x̃(t)‖ ≤
√
ϕ2

ϕ1
e
(λ−λ0)t

2 ‖x̃(0)‖

Therefore, under the average dwell time (10), the system (11)
is asymptotically stable and lim

t→∞
e(t) = 0.

Thus, the problem is solved via the full information
feedback.

B. OUTPUT REGULATION VIA ERROR FEEDBACK
In this part, we consider the exosystem state ω(t) is not
available, and the output error is available for measurement.
Under these conditions, we will give a solvability condition.
Theorem 2: Assume that there exist constants λ̄0 > 0,

δ̄ > 0, χ̄1 > 0, χ̄2 > 0, γ̄ > 0, µ̄ > 0 and positive
definite matrices P̄i and matrices Gi, i = 1, 2 · · ·N , and a
smooth positive definite function Z (x2), satisfying the follow-
ing inequalities

ĀT1i P̄i + P̄iĀ1i + γ̄ I + λ̄0P̄i < 0
P̄i ≤ µ̄P̄j i, j ∈ IN (12)

χ̄1 ‖x2‖2 ≤ Z (x2) ≤ χ̄2 ‖x2‖2
∂Z (x2)
∂x2

fi(x2) ≤ −δ̄ ‖x2‖2 (13)

If there exist 5,6, such that

5S = A1i5+ BiHi6 + Pi
6S = Fi6

0 = Ci5+ Qi (14)

then, under the switching law satisfying the following average
dwell time

τa ≥ τ
∗
a =

ln µ̄

λ̄
λ̄ ∈

(
0, λ̄0

)
(15)
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the output regulation problem is solved by output feedback

controllers (4), where Ā1i =
[
A1i BiHi
GiCi Fi

]
.

Proof: Define
(
x̃1
ξ̃

)
=

(
x −5ω
ξ −6ω

)
, according to (14),

we have

˙̃x1 = ẋ1 −
∏

ω̇

= A1σ (x1 −
∏

ω)+ BσHσ (ξ −6ω)

+ (A1σ
∏
+BσHσ6 + Pσ −

∏
S)ω + A2σ x2

= A1σ x̃1 + BσHσ ξ̃ + A2σ x2
˙̃
ξ = Fσ ξ̃ + GσCσ x̃1
ẋ2 = f2σ (x2)

e = Cσ x̃1 (16)

Set X1 =
(
x̃T1 ξ̃T

)T
, then

Ẋ1 = Ā1σ Ẋ1 + Ā2σ x2
ẋ2 = f2σ (x2)

e = C̄σX1 (17)

where Ā2i =
[
A2i
0

]
, C̄i =

[
Ci 0

]
.

We choose V (t) = Vσ (t) = XT1 P̄σX1 + k̄Z (x2) and for
the i-th activated subsystem, the derivative of V (t) along the
trajectory of the corresponding subsystem is

V̇ (t) = ẊT1 P̄iX1 + X
T
1 P̄iẊ1 + k̄

∂Z (x2)
∂x2

f2i (x2)

= XT1
(
ĀT1i P̄i + P̄iĀ1i

)
X1 + 2XT1 P̄iĀ2ix2

+ k̄
∂Z (x2)
∂x2

f2i (x2) (18)

There exist constants c̄i > 0 and q̄i > 0, such that

‖Ā2ix2‖ ≤ c̄i‖x2‖,
∥∥∥XT1 P̄i∥∥∥ ≤ q̄i ‖X1‖,

we set m̄ = max {c̄iq̄i|i ∈ IN }, according to (12) and (13), we
have

V̇ (t) ≤ −γ̄ ‖X1‖2 − λ̄0XT1 P̄iX1 + 2m̄ ‖X1‖ ‖x2‖ − k̄ δ̄ ‖x2‖2

≤ −λ̄0XT1 P̄iX1 − k̄λ̄0Z (x2)+ k̄λ̄0Z (x2)− γ̄ ‖X1‖
2

+ 2m̄ ‖X1‖ ‖x2‖ − k̄ δ̄ ‖x2‖2

≤ −λ̄0V (t)+ k̄λ̄0χ̄2 ‖x2‖2 − γ̄ ‖X1‖2

+ 2m̄ ‖X1‖ ‖x2‖ − k̄ δ̄ ‖x2‖2

≤ −λ̄0V (t)− γ
(
‖X1‖ −

m̄
γ
‖x2‖

)2

−

(
−
m2

γ
+ k̄ δ̄ − k̄λ̄0χ̄2

)
‖x2‖2

where k̄ > m̄2

γ̄ (δ̄−λ̄0χ̄2)
, then V̇ (t) < −λ̄0V (t).

Therefore, based on the proof of Theorem 1, the system
(16) is asymptotically stable and lim

t→∞
e(t) = 0.

Thus, the problem is solved via the error feedback.

IV. OUTPUT REGULATION UNDER THE CONSTRAINED
SWITCHING LAW
In this part, solvability conditions for the problem will be
presented based on the multiple Lyapunov function method,
where the problem for each subsystem may not be solvable.

A. OUTPUT REGULATION VIA THE FULL
INFORMATION FEEDBACK
Now, we will give a solvability condition under the con-
strained switching law via the full information feedback.
Theorem 3: Suppose that there exist constants βij > 0,

β > 0, α1 > 0, α2 > 0, γ > 0, and positive definite matrices
P̃i and matrices K1i, i, j = 1, 2 · · ·N , and a smooth positive
definite functionW (x2), satisfying the following inequalities

AT1iP̃i + P̃iA1i + K
T
1iB

T
i P̃i + P̃iBiK1i

+ γ I +
N∑

j=1,i 6=j

βij

(
P̃j − P̃i

)
< 0 ∀i ∈ IN (19)

α1 ‖x2‖2 ≤ W (x2) ≤ α2 ‖x2‖2

∂W (x2)
∂x2

fi(x2) ≤ −β ‖x2‖2 (20)

If there exist 5,0i, for ∀i ∈ IN , such that the formula (9) is
satisfied, then, under the switching law

σ (t) = argmin
i∈IN

{
x̃T1 P̃ix̃1 +W (x2)

}
(21)

the problem is solved by controllers (3), where x̃1 = x1−5ω.
Proof: Set Li = 0i−K1i5, and consider the coordinate

transformation x̃1 = x1 −5ω. According to (9), we have

˙̃x1 = ẋ1 −5ω̇

= A1σ (x1 −5ω)+ BσK1σ (x1 −5ω)

+ (A2σ + BσK2σ ) x2
= (A1σ + BσK1σ ) x̃1 + (A2σ + BσK2σ ) x2

ẋ2 = f2σ (x2)

e = Cσ x1 + Qσω = Cσ (x1 −5ω)+ (Cσ5+ Qσ ) ω

= Cσ x̃1

Define the following Lyapunov function V (t) = Vσ (t) =
x̃T1 P̃σ x̃1 + lW (x2) and for the i-th activated subsystem, the
derivative of V (t) along the trajectory of the corresponding
subsystem is

V̇ (t) = ˙̃xT1 P̃ix̃1 + x̃
T
1 P̃i ˙̃x1 + l

∂W (x2)
∂x2

ẋ2

= x̃T1 (A1i + BiK1i)
T P̃ix̃1 + x̃T1 P̃i (A1i + BiK1i) x̃1

+ xT2 (A2i + BiK2i)
T P̃ix̃1 + x̃T1 P̃i (A2i + BiK2i) x2

+ l
∂W (x2)
∂x2

f2i (x2)

= x̃T1
(
AT1iP̃i + P̃iA1i + K

T
1iB

T
i P̃i + P̃iBiK1i

)
x̃1

+ 2x̃T1 P̃iA2ix2 + 2x̃T1 P̃iBiK2ix2 + l
∂W (x2)
∂x2

f2i (x2)
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there exist constants ai > 0, pi > 0, and bi > 0, such that

‖A2ix2‖ ≤ αi ‖x2‖ ,
∥∥∥x̃T1 P̃i∥∥∥ ≤ pi ‖x̃1‖ ,

‖BiK2ix2‖ ≤ bi ‖x2‖,

we set k = max {aipi, bipi|i ∈ IN }, according to (19) and (20),
we get

V̇ (t) ≤ −γ ‖x̃1‖
2
+ 4k ‖x̃1‖ ‖x2‖ − lβ ‖x2‖2

= −γ

(
‖x̃1‖ +

2k
γ
‖x2‖

)2

+
4k2

γ
‖x2‖2 − lβ ‖x2‖2

where l > 4k2
βγ

. Thus V̇ (t) < 0. Therefore, under the
switching law (21), the system (1) is asymptotically stable
without disturbances ω(t) and lim

t→∞
e(t) = 0.

Thus, the problem is solved by the dual design of con-
trollers and the switching law.

B. OUTPUT REGULATION VIA THE ERROR FEEDBACK
The same as the part 3.2, we still consider the exosystem
state ω(t) is not available, and the output error is available
for measurement. Under these conditions, we will give a
solvability condition.
Theorem 4: Assume that there exist constants β̄ij > 0,

β̄ > 0, ᾱ1 > 0, ᾱ2 > 0, γ̄ > 0, and positive definite matrices
P̄i and matrices Gi, i, j = 1, 2 · · ·N , and a smooth positive
definite function U (x2), satisfying the following inequalities

ĀT1iP̄i + P̄iĀ1i + γ̄ I +
N∑

j=1,i 6=j

β̄ij
(
P̄j − P̄i

)
< 0, ∀i ∈ IN

(22)

ᾱ1 ‖x2‖2 ≤ U (x2) ≤ ᾱ2 ‖x2‖2

∂U (x2)
∂x2

fi(x2) ≤ −β̄ ‖x2‖2 (23)

If there exist 5,6, such that the formula (14) is satisfied,
then, under the switching law

σ (t) = argmin
i∈IN

{
eT P̄11ie

}
(24)

the output regulation problem is solved by output feedback
controllers (4), where

Ā1i =
[
A1i BiHi
GiCi Fi

]
, P̄i =

[
CT
i P̄11iCi 0

0 P̄22

]
.

Proof: Define
(
x̃1
ξ̃

)
=

(
x −5ω
ξ −6ω

)
, according to (14),

we have
˙̃x1 = ẋ1 −

∏
ω̇

= A1σ (x1 −
∏

ω)+ BσHσ (ξ −6ω)

+ (A1σ
∏
+BσHσ6 + Pσ −

∏
S)ω + A2σ x2

= A1σ x̃1 + BσHσ ξ̃ + A2σ x2
˙̃
ξ = Fσ ξ̃ + GσCσ x̃1
ẋ2 = f2σ (x2)
e = Cσ x̃1

Set X1 =
(
x̃T1 ξ̃T

)T
, then

Ẋ1 = Ā1σX1 + Ā2σ x2
ẋ2 = f2σ (x2)

e = C̄σX1

where Ā2i =
[
A2i
0

]
, C̄i =

[
Ci 0

]
.

We choose V (t) = Vσ (t) = XT1 P̄σX1 + lU (x2) and for
the i-th activated subsystem, the derivative of V (t) along the
trajectory of the corresponding subsystem is

V̇ (t) = ẊT1 P̄iX1 + X
T
1 P̄iẊ1 + l

∂U (x2)
∂x2

f2i (x2)

= XT1
(
ĀT1iP̄i + P̄iĀ1i

)
X1 + 2XT1 P̄iĀ2ix2

+ l
∂U (x2)
∂x2

f2i (x2) (25)

Because of

Vi(t) = XT1 P̄iX1 + lU (x2)

=
(
x̃T1 ξ̃T

) (CT
i P̄11iCi 0

0 P̄22

)(
x̃1
ξ̃

)
+ lU (x2)

= x̃T1 C
T
i P̄11iCix̃1 + ξ̃

T P̄22ξ̃ + lU (x2)

= eT P̄11ie+ ξ̃T P̄22ξ̃ + lU (x2)

and

σ (t) = argmin
i∈IN

{
eT P̄11ie

}
= argmin

i∈IN

{
XT1 P̄iX1 + lU (x2)

}
There exist constants āi > 0, and p̄i > 0 such that

∥∥Ā2ix2∥∥ ≤
āi ‖x2‖ ,

∥∥∥XT1 P̃i∥∥∥ ≤ p̄i‖X1‖, we set k̄ = max {āip̄i|i ∈ IN },

according to (22)-(25), we have

V̇ (t) < −γ̄ ‖X1‖2 + 2k̄ ‖X1‖ ‖x2‖ − lβ̄ ‖x2‖2

= −γ̄

(
‖X1‖ −

k̄
γ̄
‖x2‖

)2

+
k̄2

γ̄
‖x2‖2 − lβ̄ ‖x2‖2

We choose l > k̄2

β̄γ̄
, then V̇ (t) < 0. Therefore, under the

switching law (24), the system (1) is asymptotically stable
without disturbances ω(t) and lim

t→∞
e(t) = 0.

Thus, the problem is solved by the dual design of con-
trollers and the switching law via the error feedback.

V. SIMULATION
In this part, we will adopt the main method presented in
this paper to solve two numerical examples and a practical
example.
Example 1: Now, we will solve the output regulation prob-

lem via the full information feedback by the average dwell
time method.

Consider the switched system (1) consisting of the follow-
ing two subsystems.

The first subsystem with the parameters as follows:

A11 =
[
−1.2 0.2
0.2 −0.5

]
, B1 =

[
0
1

]
,
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A21 =
[
0.5
1

]
, P1 =

[
1.6 0.9
−0.45 −0.95

]
, f21 = −x2 − x32 ,

C1 =
[
1 1

]
, Q1 =

[
−1.5 0

]
.

The second subsystem with the parameters as follows:

A21 =
[
−0.5 0.1
0.1 −1.2

]
, B2 =

[
1
0

]
,

A22 =
[
2.5
0.5

]
, P2 =

[
1.25 0.4
0.15 −1.65

]
,

f22 = −2x32 − x2 cos
2 x2, C2 =

[
1 1

]
,

Q2 =
[
−1.5 0

]
.

In (9),

S =
[

0 −0.5
0.5 0

]
, 01 = 02 =

[
0 0
0 0

]
,

5 =

[
1 1
0.5 −1

]
.

Set γ = 1, λ0= 0.5, µ = 1.2, we have τa ≥ 0.364.
Based on the above parameters, we have

P̃1 =
[
1.3652 0.0449
0.0449 1.7917

]
, P̃2 =

[
1.7904 0.0173
0.0173 1.4273

]
,

K11 =
[
−0.4140 −1.2570

]
,

K12 =
[
−0.9513 −0.2044

]
,

K21 = −0.25, K22 = −0.75.

Therefore, the conditions of Theorem 1 are satisfied, and the
output regulation problem is solved via the full information
feedback. Figs. 1-3 depict the simulation results. Fig 1 gives
the state response of the switched system; Fig 2 illustrates
the output of the switched system. Fig 3 demonstrates the
switching law.

FIGURE 1. State responses of the switched systesm.

Example 2: Now, we will solve the output regulation prob-
lem via the error feedback by the multiple Lyapunov function
method.

Consider the switched system (1) consisting of the follow-
ing two subsystems.

FIGURE 2. Output of the switched system.

FIGURE 3. The switching law.

The first subsystem with the parameters as follows:

A11 =
[
−2.5 0
0 0.2

]
, A12 =

[
0.2 0
0 −2.2

]
,

B1 =
[
1
0

]
, P1 =

[
−2 2.25
0.8 −1.2

]
, C1 =

[
1 0
0 1

]
,

Q1 =

[
1 −0.05
−1 −1

]
, f21(x2) = −x2 − x32 .

The second subsystem with the parameters as follows:

A21 =
[
0.8
2

]
, A22 =

[
2.3
0.5

]
, B2 =

[
0
1

]
,

P2 =
[
0.7 0.9
3.2 2.2

]
, C2 =

[
1 0
0 1

]
,

Q2 =

[
1 −0.5
−1 −1

]
,

f22(x2) = −2x32 − x2 cos
2 x2, S =

[
0 −1
1 0

]
.

Based on the above parameters, there exist followingmatri-
ces satisfying (14)

5 =

[
1 −0.5
1 1

]
, 6 =

[
0 0
0 0

]
,

H1 = [0.5 − 0.5], H2 = [−0.5 0.5],

F1 =
[
−1.5 0
0 −1.1

]
, F2 =

[
0 −0.5
0.5 0

]
.
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Let β̄12 = 0.2, β̄21 = 2 and γ̄ = 0.5, according to
Theorem 4, we have

P̄111 =
[
9.7336 0

0 11.1797

]
,

P̄112 =
[
35.3093 0

0 35.3543

]
,

P̄22 =
[
14.8794 0.7878
0.7878 19.6276

]
,

G1 =

[
2.7409 −35.0432
−47.8321 49.7168

]
,

G2 =

[
−3.1334 35.4921
48.1333 −50.0612

]
.

Therefore, the conditions of Theorem 4 are satisfied, and
the output regulation problem is solved via the error feed-
back. Figs. 4-9 depict the simulation results. Fig.4 and Fig.5
give the state response and the output of the subsystem 1,
Fig.6 and Fig.7 illustrate the state response and the output of
the subsystem 2, Fig.8 and Fig.9 give the state response and
the output of the switched system.

FIGURE 4. The state responses of the subsystem 1.

Figure 4-9 show that the output regulation problem is not
solvable for the subsystem 1 and the subsystem 2, but the
problem is solvable for the switched system under the dual
design of the controller and the switching law.
Example 3: Consider a switched RLC circuit in Figure 10,

the capacitor C1 and C2 could be switched. The switched
RLC circuit is described by the following equations

ẋ1 =

[
0 1/L

1/Ci −R1/L

]
x1(t)+A2ix2(t)+

[
0
1

]
u(t)+Piω

ẋ2 = −
1

R2C3
x2,

i = 1, 2

where x1 =
[
qc φL

]
, x2 is the voltage of the capacitor C3, ω

is the disturbance of the circuit, which satisfies the dynamic
equation ω̇ = Sω, our control objective is the output e =
Cx1 + Qω tends to zero. We choose the system parameters
are L = 0.5H , C1 = 50µF , C2 = 100µF , C3 = 50µF ,
R1 = 1� and R2 = 0.1�.

FIGURE 5. The outputs of the subsystem 1.

FIGURE 6. The state responses of the subsystem 2.

FIGURE 7. The outputs of the subsystem 2.

Therefore, we have

A11 =
[

0 2
−0.02 −2

]
, B1 =

[
0
1

]
,

A21 =
[
0
0

]
, P1 =

[
−1.8 1.6
1.84 2.18

]
, f21 = −0.2x2,

C1 =
[
2 −2

]
, Q1 =

[
−2 −4

]
.

A21 =
[

0 2
−0.01 −2

]
, B2 =

[
0
1

]
,
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FIGURE 8. The state responses of switched systesms.

FIGURE 9. The outputs of switched systems.

FIGURE 10. A switched RLC circuit.

A22 =
[
0
0

]
, P1 =

[
−1.8 1.6
1.82 2.18

]
,

f22 = −0.2x2, C2 =
[
2 −2

]
, Q2 =

[
−2 −4

]
.

In (9),

S =
[

0 −0.2
0.2 0

]
, 01 = 02 =

[
0 0
0 0

]
,

5 =

[
2 1
1 −1

]
.

Set γ = 1, λ0 = 0.3, µ = 1.1, we have τa ≥ 0.333.

FIGURE 11. State responses of the switched systesm.

FIGURE 12. Output of the switched system.

FIGURE 13. The switching law.

Based on the above parameters, we have

P̃1 = P̃2 =
[
4.3061 2.4527
2.4527 3.9382

]
,

K11 =
[
−4.6326 −2.2592

]
,

K12 =
[
−4.6426 −2.2592

]
,

K21 = −0.3675, K22 = −0.2525.

Therefore, the conditions of Theorem 1 are satisfied, and
the output regulation problem is solved via the full informa-
tion feedback.
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Figs. 11-13 depict the simulation results. Fig 11 gives
the state response of the switched system; Fig 12 illustrates
the output of the switched system. Fig 13 demonstrates the
switching law.

VI. CONCLUSION
In this article, we considered the output regulation problem
for cascade switched nonlinear systems. The problem for
each subsystem to be solvable and may not be solvable are
considered respectively. The average dwell time method and
the multiple Lyapunov function method are employed to
insure the problem is solvable for switched systems. The
developed results are an extension to the output regulation
problem for non-switched cascade nonlinear system.
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