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ABSTRACT The problem of stability analysis for discrete-time switched nonlinear system is investigated
with mode-dependent average dwell time (MDADT) method in this paper. A slow switching strategy is
adopted in the discrete-time nonlinear stable subsystems and unstable subsystems are handled by a fast
switching strategy. Takagi–Sugeno (T–S) fuzzy model is utilized to approximate the switched nonlinear
system. By constructing a multiple discontinuous Lyapunov function approach, the stability condition of
switched T–S fuzzy system is built to get tighter bound on MDADT, which shows that our proposed method
outperforms the classical one. Finally, through a numerical example, the effectiveness of the presented
control approach is illustrated by comparison with result from classical one.

INDEX TERMS Mode-dependent average dwell time, switched system, stability analysis.

I. INTRODUCTION
Switched system [1], [2] is a typical hybrid dynamical sys-
tem, which is composed of continuous states or discrete states
and switching rules. During the last few decades, the switched
systems have drawn much attention in complex dynamic
control and application. This is partially due to its increasing
practical potential applications, such as congestion control
algorithms in packet switching computer networks [3], multi-
autonomous underwater vehicle systems control [4], three-
phase two-level grid-connected power converters [5], robot
modeling control [6] and parallel control and management
for intelligent transportation systems [7] and so on. Recent
challenges may be related stability for switched system, and
it primarily includes: the stability under arbitrary switch-
ing (UAS) [8] and the stability under constrained switch-
ing (UCS) [9]. For the UAS, all the subsystems must share
common Lyapunov function, while it is difficult to find it
in practice. On the other hand, multiple Lyapunov func-
tions (MLFs) [10] are not only an valid method to solve
above constraints but also easy to implement in practical
engineering, which can guarantee system stability UCS. For
now, the development UCS has been mainly focussed on
time-switching signal [9], [11], [12]. In [13], the problems of
stability and l2-gain for discrete-time switched systems were
investigated under average dwell time (ADT) switching by
the extended Lyapunov functions ensuring to increase during
the running time of subsystems. Based on ADT switching

method, the authors extended this switching signal to the
mode-dependent average dwell time (MDADT) signal in [9],
in which the stability condition for switched systems was
firstly proposed by MDADT switching in nonlinear plant.
In practical applications, the MDADT switching signal is
more flexible than ADT. The main reason is that under
MDADT switching, each mode not only has its own ADT but
also has its own control strategy. In this paper, the problem of
stability analysis for discrete-time switched nonlinear system
comprising unstable subsystems is considered by MDADT
switching scheme shown its advantages in dealing with
these problems, in which a multiple discontinuous Lyapunov
function (MDLF) is adopted to obtain the tighter bound
on MDADT.

On the other hand, some complex nonlinear systems are
usually modeled by switched nonlinear systems. As we all
know, Takagi-Sugeno (T-S) fuzzy model [14]–[21] has been
a valid way to approximate the nonlinear systems in any
arbitrary accuracy especially for switched nonlinear systems.
Switched fuzzy systems [22]–[25] have been widely dis-
cussed in the latest academic research. To list a few, aiming
at T-S fuzzy systems, a new switched dynamic parallel dis-
tributed compensation controllers had been proposed in [26].
By piecewise Lyapunov function and a switching fuzzy
model, authors of [27] proposed the relaxed stabilization cri-
teria for discrete-time T-S fuzzy control systems. But in many
cases, the sample of conservatism is relatively high. Thus,
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the relaxed stabilization criteria for T-S fuzzy control systems
was discussed in [28] by minimum-type piecewise Lyapunov
function method. In this paper, based on IF-THEN rules of
T-S fuzzy model, the switched nonlinear system is expressed
as a linear combination of a series of local linear switched
systems.

FIGURE 1. Multiply discontinuous Lyapunov function.

In this paper, the problem of stability analysis for discrete-
time switched nonlinear unstable subsystems will be inves-
tigated. The contributions of the paper are stated as follow.
The MDLF approach is adopted to obtain the tighter bound
MDADT achieving the stability and desired system perfor-
mances. The advantage of this method is that each Lyapunov
function of the activated system mode is only piecewise
continues during the dwell time (as shown in Fig. 1). Then,
a slow switching strategy is applied to stable subsystems and
unstable subsystems are handled by a fast switching strategy.
Finally, T-S fuzzy model is developed to approximate the
switched nonlinear system, and the stability condition for
switched T-S fuzzy system is obtained formulating in terms
of linear matrix inequalities.

The contents of this paper are organized as follows.
Section II establishes the switched T-S fuzzy model.
Section III presents stability analysis for switched nonlinear
system by using a novelMDLFmethod. Section IV shows the
proposed method through a numerical example. Section V is
the conclusion of this paper.
Notations: Rn and Rn×n stand for the n-dimensional

Euclidean space and set of n× m real matrices, respectively.
Notation ‖ · ‖ refers to the Euclidean norm. Function α :
[0,∞) → [0,∞) is regarded of class K, which is contin-
uous and increasing strictly with α (0) = 0. Class K∞ is
consisted of the subset of K with all unbounded functions.
Function β : [0,∞) × [0,∞) → [0,∞) is considered
of class KL, which is of class K, that is t > 0, β (·, t)
and r ≥ 0, t → ∞, β(r, t) → 0. AT stands for the
transpose of matrix A, and P > 0 (≥ 0) denotes that P is
a real symmetric matrix of positive definite (semi-positive
definite).

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider the following class of discrete-time switched
nonlinear system:

x (k + 1) = fσ (k) (x (k) , k) , x (k0) = x0, (1)

where x(k) ∈ Rn denotes the state vector, and x0 and k0
denote the initial state and initial time, respectively; fσ (k) (·),
σ (k) = p ∈ Q = {1, . . . ,m} are nonlinear functions from
Rn
→ Rn; σ (k) is a switched signal; m > 1 is switching

subsystems;Q = S∪U , where S andU are represented stable
modes and unstable modes, respectively.

The discrete-time switched T-S fuzzy system is represented
by :

Model Rule Rjp: If z1(x(k)) is M̃
j
p1 and, · · · , and

zψ (x(k)) is M̃
j
pψ ,

then x(k + 1) = Apjx(k),

where M̃ j
pγ denotes the j

th switched T-S fuzzy set correspond-
ing to the functionzγ (x(k)), α = 1, 2, . . . , ψ , j= 1, 2, . . . , r ;
ψ is a positive integer; Apj ∈ Rn×n is known constant system
matrices; x(k) ∈ Rn denotes the system state vector. The
pth subsystem is obtained as following:

x(k + 1) =
r∑
j=1

w̃pj(x(k))Apjx(k), (2)

where

w̃pj(x(k)) =

∏m
i=1 wpj(x(k))∑r

j=1
∏m

i=1 wpj(x(k))
,

r∑
j=1

w̃pj(x(k)) = 1.

The following definitions are given to facilitate the analysis
below.
Definition 1 [1]: The equilibrium x = 0 of a switched

system is global uniformly exponentially stable (GUES)
under certain switching signal σ (k) if there exists constants
α > 0, 0 < β < 1 satisfies the inequality ‖x(k)‖ ≤ αβk−k0 ‖
x(k0) ‖, ∀k ≥ k0, with u(k) = 0 and any initial conditions
x(k0).
Definition 2 [9]: For any time interval [k1, k2], denote

Nσp(k1, k2) as the numbers of the pth subsystem being acti-
vated, and Kp(k1, k2) as the overall running time of the
pth subsystem, p ∈ S. We can find two constants N0p and
τap satisfying

Nσp(k1, k2) ≤ N0p +
Kp(k1, k2)
τap

, 0 ≤ k1 ≤ k2, (3)

where τap is called the mode-dependent average dwell time
of the switching signal σ (k).
Definition 3 [22]: For any time interval [k1, k2], denote

Nσ%(k1, k2) as the numbers of the %th subsystem being
activated, and K%(k1, k2) as the overall running time of the
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%th subsystem, % ∈ U . We can find two constants N0% and
τa% satisfying

Nσ%(k2, k1) ≥ N0% +
K%(k2, k1)
τa%

, 0 ≤ k1 ≤ k2, (4)

where τa% is called the mode-dependent average dwell time
of the switching signal σ (k).

III. MAIN RESULTS
In practice, a large number of switched nonlinear systems are
inevitably contained some unstable subsystems. Therefore,
it is necessary to investigate the problem of stability anal-
ysis for discrete-time switched nonlinear comprising unsta-
ble subsystem. In this section, the multiple discontinuous
Lyapunov function (MDLF) will be applied to the stability
analysis for the switched systems to obtain the tighter bound
on MDADT. The interval [ks, ks+1) is divided into Cσ (ks)
parts. It is defined that the corresponding length of each
part as D%σ (ks), n ∈ {0, 1, 2, . . . ,Cσ (ks)}. Let the E

n
σ (ks)

=∑n
%=1 D

%

σ (ks)
, where E0

σ (ks)
= 0, ∀n ∈ {0, 1, 2, . . . ,Cσ (ks)}.

Fnσ (ks)
= [ks + Enσ (ks)

, ks + En+1σ (ks)
), n ∈ Rσ (ks) =

{0, 1, 2, . . . ,Cσ (ks)−1}. Then, the Fig. 1 (where Cσ (ks) = 3)
shows [ks, ks+1) = ∪

n
Fnσ (ks)

, n ∈ Rσ (ks) in the time interval

[ks, ks+1). We can describe the MDLF as follows:

V (k) = V ε (k)
σ (k)(x(k)),

where ε (k) = n,∀k ∈ Fnσ (k), n ∈ Rσ (k) =

{0, 1, 2, . . . ,Cσ (k)
− 1}, and V n

p (x(k)) ∈ C1, p ∈ Q, n ∈ Rp. Employing the
above mentioned definitions and sets, the main results are
presented as follows.
Theorem 1: Consider switched nonlinear system (1). For

given scalars −1 < λp < 0, 0 < θp ≤ 1, µp > 1, p ∈
S satisfying (θp)Cp−1µp > 1, and λp > 0, 0 < θp ≤ 1,
0 < µp < 1, p ∈ U , if there are a set of C1 non-negative
functions V n

p (x(k)) : Rn
→ R, p ∈ Q, n ∈ Rp, and two class

K∞ functions κ1 and κ2, such that, ∀n ∈ Rσ (k)

κ1(‖x(k)‖) ≤ V n
p (x(k)) ≤ κ2(‖x(k)‖), p ∈ Q, (5)

1V n
p (x(k)) ≤ λpV

n
p (x(k)), p ∈ Q, (6)

V n
p (x(ks + E

n
p)) ≤ θpV

n−1
p (x(ks + Enp)),

p ∈ Q, n 6= 0, (7)

V 0
p (x(ks)) ≤ µpV

C%−1
% (x(k−s )),

(p, %) ∈ S × Q, p 6= %, (8)

V 0
% (x(ks)) ≤ µ%V

Cp−1
p (x(k−s )),

(p, %) ∈ S × U , (9)

any MDADT switching signals satisfy:
τap ≥ τ

∗
ap = −

lnµp + (Cp − 1)lnθp
ln(1+ λp)

, p ∈ S,

τa% ≤ τ
∗
a% = −

lnµp + (Cp − 1)lnθp
ln(1+ λp)

, p ∈ U ,
(10)

then the switched nonlinear system (1) is GUES.

Proof: In interval [0,K ], k1, k2 . . . ks, ks+1 . . . kNσ (K ,0)
are represented as the switching times, where

∑
p∈Q Nσp

(K , 0) = Nσ (K ,0). According to (6) for k ∈ Fnσ (ks)
, it can

seen that

V n
σ (ks)(k) ≤ (1+ λσ (ks))

(k−(ks+Enσ (ks)))

×V n
σ (ks)(ks + E

n
σ (ks)). (11)

Then, it follows from (7) and (11) that

V
Cσ (ks)−1
σ (ks)

(k−s+1) ≤ (1+ λσ (ks))
(ks+1−(ks+E

Cσ (ks)−1
σ (ks)

))

×V
Cσ (ks)−1
σ (ks)

(ks + E
Cσ (ks)−1
σ (ks)

)

≤ θσ (ks)(1+ λσ (ks))
(ks+1−(ks+E

Cσ (ks)−1
σ (ks)

))

×V
Cσ (ks)−2
σ (ks)

(ks + E
Cσ (ks)−1
σ (ks)

)

≤ θσ (ks)(1+ λσ (ks))
(ks+1−(ks+E

Cσ (ks)−2
σ (ks)

))

×V
Cσ (ks)−3
σ (ks)

(ks + E
Cσ (ks)−2
σ (ks)

)

≤ . . . ≤ (θσ (ks))
Cσ (ks)−1

× (1+ λσ (ks))
(ks+1−(ks+E0

σ (ks)
))

×V 0
σ (ks)(ks + E

0
σ (ks)). (12)

By integrating (8), (9) and (12), one can get that

V
Cσ (kNσ )−1
σ (kNσ )

(K )

≤ (θσ (kNσ ))
Cσ (kNσ )−1(1+ λσ (kNσ ))

(K−kNσ )

×V 0
σ (kNσ )

(kNσ )

≤ µσ (kNσ )(θσ (kNσ ))
Cσ (kNσ )−1

× (1+ λσ (kNσ ))
(K−kNσ )

×V
Cσ (kNσ −1)

−1
σ (kNσ −1)

(kNσ )

≤ µσ (kNσ )(θσ (kNσ ))
Cσ (kNσ )−1

× (θσ (kNσ−1))
Cσ (kNσ−1)

−1

× (1+ λσ (kNσ ))
(K−kNσ )

× (1+ λσ (kNσ−1 )
)(kNσ −kNσ−1 )

×V 0
σ (kNσ −1)

(kNσ−1 )

≤ µσ (kNσ )µσ (kNσ−1 )
(θσ (kNσ ))

Cσ (kNσ )−1

× (θσ (kNσ−1))
Cσ (kNσ−1)

−1

× (θσ (kNσ−2))
Cσ (kNσ−2)

−1

× (1+ λσ (kNσ ))
(K−kNσ )

× (1+ λσ (kNσ−1 )
)(kNσ −kNσ−1 )

× (1+ λσ (kNσ−2 )
)(kNσ−1−kNσ−2 )

×V 0
σ (kNσ −2)

(kNσ−2)

≤ . . . ≤

Nσ∏
%=1

µσ (k%)(θσ (k%))
Cσ (k% )−1(θσ (k0))

Cσ (k% )−1

× (1+ λσ (kNσ ))
(k−kNσ )

× (1+ λσ (kNσ −1))
(kNσ −kNσ−1)
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× · · · × (1+ λσ (kN1 )
)(k2−k1)

× λσ (kN0 )
(k1−k0)V 0

σ (0)(x(0))

≤

Nσ∏
%=1

µσ (k%)(θσ (k%))
Cσ (k% )−1(θσ (k0))

Cσ (k0)−1

×

m∏
p=1,s∈ϕ (p)

(1+ λp)(ks+1−ks)V 0
σ (0)(x(0)), (13)

where ϕ (p) stands for the set of s satisfying σ (ks) = p (ks ∈
{k1, k2 . . . kn, kn+1 . . . kNσ−1}).
In fact, (13) can be rewritten as

Vσ (K−)(K
−) ≤

∏
p∈S

(µp(θp)Cp−1)
Nσp

×

∏
p∈U

(µp(θp)Cp−1)
Nσp (ησ (0))Cp−1

×

∏
p∈S

(1+λσ (kNσ ))
Kp(K ,0)

×

∏
p∈U

(1+λσ (kNσ ))
Kp(K ,0)

×V 0
σ (0)(x(0)), (14)

where (θp)Cp−1µp > 1, p ∈ S and 0 < (θp)Cp−1µp < 1,
p ∈ U . Then according to (3) and (4), the (14) indicates that

Vσ (K−)(K
−) ≤ exp{

∑
p∈S

(N0p +
Kp(K , 0)
τap

)

× lnµp(ηp)Cp−1

+

∑
p∈U

(N0p +
Kp(K , 0)
τap

)

× lnµp(ηp)Cp−1

+

∑
p∈S

Kp(K , 0) ln (1+ λp)

+

∑
p∈U

Kp(K , 0) ln (1+ λp)}

× (θσ (0))Cp−1Vσ (0)(x(0))

≤ exp{
∑
p∈S

(N0p lnµp(θp)Cp−1)

+

∑
p∈U

(N0p lnµp(θp)Cp−1)}

× exp{
∑
p∈S

(
lnµp(θp)Cp−1

τap

+ ln (1+ λp))Kp(K , 0)

+

∑
p∈U

(
lnµp(θp)Cp−1

τap

+ ln (1+ λp))Kp(K , 0)}

× (ησ (0))Cσ (0)−1V 0
σ (0)(x(0)). (15)

Moveover, if τap satisfy (10), we have lnµp(θp)Cp−1

τap
+

ln (1+ λp) < 0, p ∈ Q.

Then, it can be written as

Vσ (K−)(K
−) ≤ exp{

∑
p∈S

(N0p lnµp(θp)Cp−1)

+

∑
p∈U

(N0p lnµp(θp)Cp−1)}

× e
max
p∈Q
{(

lnµp(θp)
Cp−1

τap
+ln (1+λp))Kp(K ,0)}

× (θσ (0))Cσ (0)−1V 0
σ (0)(x(0)). (16)

If MDADT satisfies (10), the consequences of Vσ (K−)(x(K ))
converges to 0 as T → ∞. Therefore, based on (5 ) and
Definition 1, the system (1) is considered as GUES. �
Remark 1: In Theorem 1, the MDLF is adopted to obtain

the tighter bound on MDADT, which will assuredly improve
the flexibility in practice application. MDLF can guarantee
that each Lyapunov function of the activated system mode
is only piecewise continues during the dwell time. Specific
details of MDLF can be seen Fig. 1.
Remark 2: The switched strategy is that slow switching

and fast switched switching are respectively used among
stable subsystems and unstable subsystems in Theorem 1.
In fact, from the above switching strategy, one can observe
that if the stable subsystem is activated, any subsystem can
be activated at the next switching instance.While the unstable
subsystem is activated, the next activated subsystem must be
the stable subsystem.
Remark 3: According to (10), we suppose MDADT for

one of the stable subsystem is that τ1 ≥ τ ∗1 =

−
lnµ1+(C1−1)lnθ1

ln(1+λ1)
. When µ1,C1, θ1 is smaller value and the

λ1 is larger value, we can obtain the τ ∗1 is smaller value.
Namely, there is larger the range of τ1, lowered conservative
to stable subsystems. We choose MDADT for one of the
unstable subsystem is that τ2 ≤ τ ∗2 = −

lnµ2+(C2−1)lnθ2
ln(1+λ2)

.
When the µ2,C2, θ2 are increasing, the λ2 is decreasing,
we can obtain τ ∗2 is increasing. In that way, the lowered
conservative would be able to use all of unstable subsystem
if there was smaller range of τ2.
From Theorem 1, we can derive the following Theorem for

switched linear system(2).
Theorem 2: Consider switched T-S fuzzy system (2). For

given scalars −1 < λp < 0, 0 < θp ≤ 1, µp > 1, p ∈ S,
satisfying (θp)Cp−1µp > 1, and λp > 0, 0 < θp ≤ 1, 0 <
µp < 1, p ∈ U , if there are a set of matrices Pnp > 0, p ∈ Q,
n ∈ Rp such that, ∀n ∈ Rp,[
−(1+ λp)Pnp ∗

ApjPnp −Pnp

]
≤ 0, p ∈ Q, (17)

Pnp ≤ θpP
n−1
p , p ∈ S, n 6= 0, (18)

P0p ≤ µpP
C%−1
% ,

(p, %) ∈ S × Q,

p 6= %, (19)

P0% ≤ µ%P
Cp−1
p ,

(p, %) ∈ S × U , (20)
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then the switched T-S fuzzy system (2) is GUES, if any
MDADT switching signals satisfy (10).

Proof: Consider the following quadratic form with (2):

V (x(k)) = xT (k)Pnpx(k), σ (k) = p ∈ Q, k ∈ Fnp, (21)

where positive definite matrices Pnp( p ∈ Q, n ∈ Rp)
achieved (17)-(20). By (2), (6)-(9), we have, ∀n ∈ Rp,

1V n
p (x(k))− λpV

n
p (x(k))

=

r∑
j=1

w̃pj(x(k))xT (k)

× (ATpjP
n
pApj − P

n
p − λpP

n
p)x(k)

≤ 0, ∀p ∈ S,

V i
p(x(ks + E

n
p))− ηpV

n−1
p

× (x(ks + Enp))

≤ xT (k)(Pn−1p − ηpPnp)x(k)

≤ 0, ∀p ∈ Q, n 6= 0,

V 0
p (x(k))− µpV

C%−1
% (x(k))

= xT (k)(P0p − µpP
C%−1
% )x(k),

≤ 0, ∀ (p, %) ∈ S × Q, p 6= %,

V 0
% (x(k))− µ%V

Cp−1
p (x(k))

= xT (k)(P0% − µ%P
Cp−1
p )x(k),

≤ 0, ∀ (p, %) ∈ S × U .

Finally, based on Theorem 1, switched T-S system (2) is
considered as GUES. �
Remark 4: The tighter bound on MDADT by increasing

Cp and/or decreasing θp is obtained in Theorem 2. However,
Cp = 1 and/or θp = 1, Theorem 2 don’t show superiority.

In the MDADT switching signal, provided all discrete-
time switched nonlinear subsystems are stable. Then Corol-
lary 1 can be obtained as follows.
Corollary 1: Consider switched T-S fuzzy system (2). For

given scalars −1 < λp < 0, 0 < θp ≤ 1, µp > 1, p ∈ S,
fulfilling (θp)Cp−1µp > 1, if there are a set of matrices Pnp >
0, p ∈ S, n ∈ Rp such that, (p, %) ∈ S×Q, p 6= %,∀n ∈ Rp,[

−(1+ λp)Pnp ∗

ApjPnp −Pnp

]
≤ 0,

Pnp ≤ θpP
n−1
p , n 6= 0,

P0p ≤ µpP
C%−1
% ,

any MDADT switching signals satisfy

τap ≥ τ
∗
ap = −

lnµp + (Cp − 1)lnθp
ln(1+ λp)

,

then the switched T-S fuzzy stable system (2) is GUES.
Due to the process of proof is similar to Theorem 2,

we omit it.
Stability conditions of discrete-time switched T-S fuzzy

system (2) is established by MLFs, the result is presented in
Corollary 2 as follows.

Corollary 2: Consider unstable switched T-S subsys-
tem (2). For given scalars −1 < λp < 0, µp > 1, and
λp > 0, 0 < µp < 1, if there are a set of matrices
Pnp > 0, p ∈ S,P% > 0, % ∈ U ,[
−(1+ λp)Pp ∗

ApjPp −Pp

]
≤ 0, p ∈ S,[

−(1+ λ%)P% ∗

A%jP% −P%

]
≤ 0, % ∈ U ,

Pp ≤ µpPs,

∀p ∈ S, ∀s ∈ Q, p 6= s

P% ≤ µ%Pp, ∀p ∈ S, ∀% ∈ U .

Then, the system is GUES for the unstable switched T-S fuzzy
subsystem with MDADT satisfying

τap ≥ τ
∗
ap = −

lnµp

ln(1+ λp)
, p ∈ S,

τa% ≤ τ
∗
a% = −

lnµ%
ln(1+ λ%)

, % ∈ U .

Similar to Theorem 2, Corollary 2 can be obtained directly.
Due to space limitation, the proof process is omitted.
Remark 5: Based on MDADT switching method, the sta-

bility analysis of discrete-time switched T-S fuzzy system
is studied by MLFs in corollary 2. Obviously, by com-
paring the results with Theorem 2 and Corollary 2, it is
shown that one can obtain tighter bound on MDADT in
Theorem 2 in which MDLF is applied to the discrete-time
switched T-S fuzzy system.

IV. ILLUSTRATIVE EXAMPLES
In this section, we use a numerical example to illustrate
the effectiveness of the results developed in the above
section.

Consider nonlinear switched system including two subsys-
tems, one is stable and the other is unstable as follows,

�1 =



x1(k + 1) = −0.2692x1(k)+ 0.3692 sin2(x1(k))
×x2(k)+ 0.3692x2(k)
−0.8692 sin2(x1(k))x1(k),
x2(k + 1) = −0.7692x1(k)+ 0.2692 sin2(x1(k))
×x2(k)+ 0.8692x2(k)
−0.7692 sin2(x1(k))x1(k).

�2 =


x1(k + 1) = −4.84x1(k)− 3.6 sin2(x1(k))x2(k)
+3.54x2(k)+ 3.7 sin2(x1(k))x1(k),
x2(k + 1) = −4.72x1(k)− 4.7 sin2(x1(k))x2(k)
+3.42x2(k)+ 4.8 sin2(x1(k))x1(k).

Based the T-S fuzzy model, the following two switched
T-S fuzzy subsystems are proposed:

R11: IF f (x(k)) is 0, THEN
x(k + 1) = A11x(k),

R21: IF f (x(k)) is 1, THEN
x(k + 1) = A12x(k),
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FIGURE 2. Stable responses for �1 subsystem.

FIGURE 3. Stable responses for �2 subsystem.

R12: IF f (x(k)) is 0, THEN
x(k + 1) = A21x(k),

R22: IF f (x(k)) is 1, THEN
x(k + 1) = A22x(k).

Setting normalizedmembership functions are calculated as
follows:

w̃1(x(k)) = 1− sin2(x1(k)), w̃2(x(k)) = sin2(x2(k)),

where

A11 =
[
−0.2692 0.3692
−0.7692 0.8692

]
,

A12 =
[
−0.8692 0.3692
−0.7692 0.2692

]
,

A21 =
[
−4.84 3.54
−4.72 3.42

]
,

A22 =
[
3.7 −3.6
4.8 −4.7

]
.

Firstly, the state trajectories of switched T-S fuzzy�1 subsys-
tem and�2 subsystem are respectively shown in Figs. 2 and 3
under initial state condition x(0) = [1,−0.5]. From the

TABLE 1. On MDLF for switched T-S fuzzy unstable subsystem.

TABLE 2. On MDLF for switched T-S fuzzy stable system.

TABLE 3. On MLFs for switched T-S fuzzy unstable subsystem.

Figs. 2 and 3 it can seen that the �1 subsystem is unstable
and �2 subsystem is stable. Then, according to Theorem 2,
if we choose C1 = 2, λ1 = −0.55, θ1 = 0.72, µ1 = 2,
C2 = 2, λ2 = 0.7, θ2 = 0.92, µ2 = 0.8, the MDADT
for stable subsystems and unstable subsystems are
obtained

τa1 > τ
∗
ap = −

lnµp + (Cp − 1)lnθp
ln(1+ λp)

= 0.457,

τa2 6 τ
∗
aq = −

lnµp + (Cp − 1)lnθp
ln(1+ λp)

= 0.577.

Therefore, based on MDADT switching signal property
for stable subsystem and unstable subsystem, we choose
τa1 = 0.5, τa2 = 0.6. Compared the result with τ ∗ap and
τ ∗aq, we can see that unstable subsystems can stay longer than
the stable ones, which is different traditional approach. The
corresponding state trajectories of the switched T-S fuzzy
system is shown in Fig. 4. In order to illustrate the pro-
posed results in this example, the corresponding parameters
of Theorem 2, Corollary 1 and Corollary 2 are obtained in
the TABLE 1, TABLE 2 and TABLE 3, respectively. Fur-
thermore, contrasting to the related data for Theorem 2 in
TABLE 1 and Corollary 2 in TABLE 3, it is obvious that
τa1 and τa2 of Theorem 2 is obtained the tighter bound
on dwell time, when the λ1, λ2, µ1 and µ2 are selected
the same values. Therefore Theorem 2 in TABLE 1 is
assuredly improved the application flexibility in practice
application.
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FIGURE 4. On MDLF approach for switched T-S fuzzy unstable subsystem
with MDADT τa1 = 0.5, τa2 = 0.6.

V. CONCLUSIONS
The problem of stability analysis for discrete-time switched
nonlinear system has been investigated in this paper under
MDADT switching. Slow switching strategy and fast switch-
ing strategy are applied to stable subsystems and unsta-
ble subsystems, respectively. A sufficient stability condition
for the switched nonlinear system has been obtained via a
MDLF approach, which can get tighter bound on MDADT.
By using the T-S fuzzy model to approximate the switched
nonlinear system, the stability condition for switched T-S
fuzzy system is also obtained. The merits of the proposed
results in comparison with existing works are shown through
a numerical example.
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