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ABSTRACT A 6-bit digital-controlled attenuator with low phase imbalance for a K-band phased array sys-
tem is presented in this paper. To decrease the insertion phase difference, the proposed design adopts a phase
correction capacitor in the shunt branch of the conventional switched T/Pi structure. The capacitor and the
parallel resistor compose a phase compensation network to correct the insertion phase error. The attenuator
is designed and fabricated in 0.18 µm CMOS process. From 19 to 21 GHz, the insertion loss is 7.2–8 dB.
The rms phase imbalance is less than 3.8◦ over 19–21 GHz. The attenuator has a maximum attenuation
range of 32 dB with 0.5-dB step (64 states). The core cell chip size is 1.32 mm × 0.34 mm excluding pads.

INDEX TERMS Attenuator, CMOS, phase imbalance.

I. INTRODUCTION
In modern wireless communication system, variable gain
amplifiers (VGA) and attenuators are extensively utilized
as amplitude control circuits [1]–[5]. As attenuators pos-
sess better performance on linearity and power consumption
compared with VGA, variable attenuators are more suitably
adopted in the transceivers of phased-array systems to attain
precise and broad amplitude control in different paths. Also,
as the absence of digital-to-analog converters in the con-
trol units, digital step attenuators are used prior to VGA
and the analog attenuator to reduce control complexity [3].
For averting tracking error and complex phase and amplitude
calibration in phased array, attenuators need to maintain con-
stant transmission phase while controlling the amplitude [4].

The distributed attenuators and switched T/Pi attenuators
are mostly used topologies in the current design, shown
in Fig. 1. The distributed topology usually employs the
half or quarter-wavelength transmission lines and transistors
as varistors to achieve relative attenuation. And it has low
insertion loss because of the lack of switches between the
series transmission lines, but covers very large chip area [5].
The T/Pi topology uses RF switches to transform the signal
path between the series bypass and the resistive network
for attenuation. It has compact chip size, however, its’ per-
formance is significantly influenced by the parasitic effects

FIGURE 1. Topologies of traditional attenuator: (a) Distributed attenuator.
(b) Switched T type. (c) Switched Pi type. (d) Switched bridge-T type.

of the switches, especially the insertion phase [4], [6], [7].
As the constant phase change is requisite for phased array sys-
tem [4], the method to reduce the insertion phase imbalance
is necessary. Therefore, this paper proposes a 6-bit attenuator
with low phase imbalance for a K-band phased array system.
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FIGURE 2. (a) T type attenuator with tail capacitor, and its’ equivalent
circuits at: (b) the reference state and (c) the attenuation state. (d) The
equivalent circuits of the phase correction branch at the attenuation state.

II. CIRCUIT DESIGN
A. PROPOSED STRUCTURE
As shown in Fig. 2(a), a tail capacitor is added to the shunt
branch of the traditional T attenuator. The body and series
inductance parasitic is neglected in the simplified equivalent
circuits. When switch M1 is on and M2 off, the attenuator
works at the reference state. The signal passes through the
series path, as shown in Fig. 2(b). When switch M1 is off
and M2 on, it works at the attenuation state. The signal flows
to the ground from the shunt attenuation branch, as shown
in Fig. 2(c). The tail capacitor is introduced as a phase cor-
rection device in the attenuation branch. Thus, the correction
network can affect the performance of the attenuation state.
The phase correction branch at the attenuation state can be
simplified to a T-type topology as shown in Fig. 2(d). The
equation of transmission phase θ of this network can be
derived as:

θ= tan−1
−CTZ0

ω(2C2
T(Rp+Ron)

2+C2
T(Rp+Ron)Z0)+2/ω

, (1)

where ω is the operating frequency. For simplicity, all param-
eters but the operating frequencyω are treated as the constant.
Therefore,

θ = tan−1
−A

B · ω + 2/ω
, (2)

where

A = CTZ0

and

B = 2C2
T(Rp + Ron)

2
+ C2

T(Rp + Ron)Z0. (3)

Therefore, θ is ploted in Fig. 3(a). The slope of θ alters
from negative to positive value at certain critical frequency,
where the slope is zero. This phenomenon can be used to
correct the transmission phase error.

Fig. 3(b) exhibits the simulation results of the transmission
phase of the phase correction branch in Fig. 2(d). The phase
declines to a minimum value, where the slope is zero, and
then rises with the frequency increasing, which verifies the
mathematical functional image of (2), in Fig. 3(a).

In Fig. 3(c), the T-type attenuator’s transmission phases of
reference and attenuation states are simulated with various

FIGURE 3. (a) The mathematical functional image of (2). The simulation
results of the transmission phase of (b) the phase correction branch,
and (c) the T type attenuator with tail capacitor. (d) The phase difference
of reference and attenuation states with various CT value.

FIGURE 4. (a) The nMOS switch in the proposed attenuator (b) The
equivalent circuit of the nMOS switch.

tail capacitor value (swept from 200 fF to 600 fF). The phases
of attenuation states have the same variation trend with those
of the phase correction branch in Fig. 3(b). It is obvious
that the capacitance variation influences the attenuation state
significantly, whereas it has less effect on the reference state.
With the capacitance variation, the attenuation-state trans-
mission phase intersects with the reference-state transmission
phase at different frequencies with the zero phase differ-
ence. According to controlling the tail capacitor value, low
phase imbalance within a particular frequency band can be
achieved, as shown in Fig. 3(d).

Furthermore, as the insertion loss of the reference state
is mainly introduced by the series switch, a large resistor
RB is added to the body terminal of the switch to enhance
the insertion loss performance, as shown in Fig. 4 (a). The
equivalent circuit of the switch is shown in Fig. 4. (b). When
the bulk parasitic resistor Rbulk is small, the RF signal has
access to the ground due to the capacity coupling effect
caused by the parasitic capacitors of the reverse biased diodes
and the parasitic capacitors of source/drain and the body.
However, the added RB is a considerable impedance for RF
signal, so that it can prevent the signal from leaking to the
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FIGURE 5. The insertion loss of the switches with and without the large
resistor RB.

FIGURE 6. The system topology of the proposed 6-bit attenuator.

FIGURE 7. Micrograph of the proposed 6-bit switched Pi/T attenuator.

ground. In the simulation, the switch with the large resistor
RB of over 5000 ohm has better insertion loss than the switch
without RB by approximate 0.4dB, as shown in Fig. 5.

The proposed tail capacitor and switch can also be
employed in Pi and bridge-T type attenuators to compose
a phase correction network. They have the same operation
principal to realize low phase imbalance as the analyzed
T-type attenuator.

B. IMPLEMENTATION AND MEASUREMENT
A 6-bit digital attenuator has been designed using the Pi and
bridge-T structures with the ‘‘tail capacitor.’’

Fig. 6 shows the ordering of the six attenuation bits of 0.5,
1, 2, 4, 8, and16 dB. The bridge-T type attenuators are used
to realize 0.5, 1, 2, 4 dB attenuation, and Pi type attenuators
are used to achieve 8, 16 dB attenuation. Inductors inserted
between the attenuation units are used as the matching

FIGURE 8. Simulated insertion loss of different the input power at 20 GHz.

FIGURE 9. Measured (a) input return loss and (b) output return loss.

networks to connect the every single bit. The 6-bit attenuator
has been integrated in the TSMC 180-nm process. From the
chip photograph shown in Fig. 7, the attenuator core cell
covers an area of 1320um × 340 um (0.45 mm2) excluding
the pads.

In simulation, the input P1dB is better than 23 dBm, as
shown in Fig. 8. In measurement, Fig. 9 shows the input
and output return loss respectively, both of which are better
than 10 dB from 19 to 21 GHz. In the input and output
matching design, conventional LC networks are utilized to
match the 50-ohm input and output impedance. There are
totally 64 states including the reference state and the largest
measured attenuation range is 32 dB. Fig. 10 shows the
63 relative attenuation states, which is calculated as the dif-
ference of the measured insertion loss of 63 attenuation states
and the reference state. As shown in Fig. 11, the measured
insertion loss of the attenuator is between 7.2 to 8 dB over
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FIGURE 10. Measured relative attenuation.

FIGURE 11. Simulated and measured insertion loss, and rms attenuation
error.

FIGURE 12. Measured relative insertion phase and calculated rms phase
error.

19-21 GHz, higher than the simulated 6.4-7.6dB. This is
caused by the lower quality factor of the matching inductors
than the simulation. The maximum rms amplitude error is
0.6 dB from 19 to 21 GHz. As shown in Fig. 12, the relative
insertion phase is between −8◦ to 12◦ and the rms phase
imbalance is below 3.8◦ over 19-21 GHz.
Table I compares the performance of the proposed dig-

ital attenuator with the state-of-art CMOS attenuators.
Compared with the distributed attenuators in [4] and the
switched T/Pi attenuators in [9], the proposed attenuator has

TABLE 1. Comparison of CMOS/Bicmos digital attenuators.

larger attenuation range and more attenuation states, and it
maintains low phase imbalance even if it’s more difficult to
realize this with dynamic range increasing. Apparently, it has
worse overall insertion loss because of consisting more atten-
uation units, however, the average insertion loss of each atten-
uation bit is still competitive. The switched T/Pi attenuators
in [5] and [6] utilized similar principle to decrease the phase
imbalance. Compared with them, the proposed attenuator
possesses better insertion loss due to less inductors and in
the series path. And with the limitation of the resonance
effect, the phase compensation structures in [5] and [6] may
not function properly over a higher frequency, about over
14 GHz. The proposed attenuator without frequency limita-
tion is able to work at 19-21 GHz with low phase imbalance
of rms phase error less than 3.8◦.

III. CONCLUSION
A 6-bit digital attenuator with low phase imbalance for a
K-band phased array system is presented in this letter. In this
design, a tail capacitor is inserted into the attenuation branch
of the traditional Pi, T and bridge-T type attenuation units
to form a phase correction network with the parallel resister.
With the help of this technique, the transmission phase error
of the attenuation state can be corrected, thus leading to a low
phase imbalance. In measurement, the attenuator achieves a
phase imbalance less than 3.8◦ (rms) and amplitude error less
than 0.6 dB over 19-21 GHz. It has a maximum amplitude
control range of 32dB with the approximate 0.5-dB step.
Compared with other works using CMOS process, it has a
larger range and more attenuation states and lower phase
imbalance over a relatively higher frequency band.
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