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ABSTRACT Onemajor topic for robust face recognition could be the efficient encoding of facial descriptors.
Among various encoders, Fisher vector (FV) is one of the probabilistic methods that yield promising results.
However, its huge representation is fairly forbidding. In this paper, we present approaches to efficiently
compress FV and retain its robustness. First, we put forward a new Compact FV (CFV) descriptor. The CFV
is obtained by zeroing out small posteriors, calculating first-order statistics and reweighting its elements
properly. Second, in light of Iterative Quantization (ITQ) scheme, we present a Generalized ITQ (GITQ)
method to binarize our CFV. Finally, we apply our CFV and GITQ to encode convolutional activations of
convolutional neural networks. We evaluate our methods on FERET, LFW, AR, and FRGC 2.0 datasets, and
our experiments reveal the advantage of such a framework.

INDEX TERMS Fisher vector, face recognition, dimensional reduction, hashing, convolutional activations.

I. INTRODUCTION
The pursuit of fast automatic and precise recognition of face
has motivated researchers in a range of fields, and related
works have been applied to public security, human-computer
interaction, etc. In two recent papers [1], [2], face recognition
is applied to unconstrained settings. The task is rather chal-
lenging and is still an open problem due to high variability.
Additionally, to identify a person of interest, we need to make
use of various sources available (e.g. video surveillances,
sketches), which could be time-consuming. There are two
face recognition tasks: face identification (which is to identify
an unknown person given a gallery set) and face verifica-
tion (which is to decide whether two images are of the same
person). In this work, we address both identification task and
verification task.

The Bag-of-Features (BoF) model is one of the most pop-
ular and effective image classification framework during the
last decade. A standard pipeline of the BoF model consists
of: local descriptors (such as SIFT) extraction; codebook
generation; local feature encoding and classification [3], [4].

Of all the above steps, codebook generation and fea-
ture encoding are the core components. Huang et al. [4]
group the existing coding strategies into five major cate-
gories based on their motivations. They are: voting-based,
Fisher vector-based, reconstruction-based (sparse coding,

local coordinate coding, local-constraint linear coding), local
tangent-based (local tangent coding, super vector coding) and
saliency-based (salient coding, group salient coding). Our
method is based on Fisher Vector (FV).

FV descriptor estimates probability density distribution
and is considered more accurate than other methods. How-
ever, Sánchez et al. [5] stated that the Fisher representation
of ILSVRC 2010 dataset (1.4 million images) with 512K
dimensions per image requires almost 3TBs. Handling TBs
of data makes experimentation difficult if not impractical.
Thus, efficient representation is vital in the context of large-
scale databases. To combat the problem of large-scale image
search, binarization [6] and product quantization [5] are intro-
duced as efficient and effective approaches to performing
lossy compression of FVs.

In this paper, we devise approaches to compressing the
storage of FV. Firstly, we put forward a Compact FV (CFV)
descriptor that halves the dimension of FV. CFV is obtained
by zeroing out small posterior probabilities and then comput-
ing the 1st order statistics. Elements in CFV are reweighted
in a certain way that important geometrical information is
preserved. Secondly, based on Iterative Quantization (ITQ),
we present a new hashing method called General ITQ (GITQ)
to generate short binary codes for similarity search. GITQ is
more flexible than ITQ in that the projection matrix does
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FIGURE 1. Pipeline of our approach.

not need to be square. Finally, we apply CFV and GITQ
to convolutional activations of a Convolutional Neural Net-
work (CNN). These activations can be seen as an alternative
to local SIFT descriptors. The flowchart of the proposed
method is shown in Figure 1.

The novelty of the proposed approach includes: (i) a novel
compact CFV descriptor that achieves decent performance
at a low dimension; (ii) combination of CFV with further
dimension reduction and hashing tools, including a novel
Generalized ITQ for efficient hashing; (iii) generalization of
CFV to encode CNN convolutional activations. We could see
that CFV enhances CNN recognition result.

This paper is built upon our preliminary work reported
in [7] and [8]. The main differences are summarized
as follows. (i) We introduce a parameter to the weight-
ing of CFV elements to achieve better recognition result.
(ii) We extend our previous works by encoding convo-
lutional activations as a ‘local’ descriptor. This extension
could be easily implemented for various pretrained networks.
(iii) We re-evaluate our methods while assessing more recent
state-of-the-art methods based on code provided by the
authors to ensure a fair comparison. Tables and figures are
redone for a better demonstration. Also, we experiment on
AR and FRGC 2.0 Experiment 4 to prove the effectiveness of
our method.

II. RELATED WORKS
A. FISHER VECTOR
Fisher vector (FV) [9] derives from Fisher Kernel (FK),
which describes a feature by the gradient vector derived from
a probability density function. Let θ denote the parameter
of the probability distribution function p. FK characterizes
each sample in X = {xt , t = 1, ...,T } with the gradient
∇θ log p(xt |θ ), which describes the direction in which param-
eters should bemodified to best fit the data. Thus, the gradient
vector provides an intuitive way to describe the geometric
relationships between a data point xt and a probability den-
sity function in feature space. FV is a specific version of
FK that captures the average higher-order statistics between
a local descriptor (such as SIFT) and a center of Gaussian
Mixture Model (GMM). Specifically, θ = {wk , µk , 6k , i =
1, ...,K }, which denote prior, mean vector and covariance
matrix of the k-th Gaussian, respectively. Suppose all features
are independent, the log-likelihood of the extracted features
are

∑
t log p(xt |θ ). The likelihood that xt is generated by the

GMM is p(xt |θ ) =
∑K

k=1 wkpk (xt |θ ), with
∑K

k=1 wk = 1 and

pk (xt |θ ) =
exp{−(x−µk )′6

−1
k (x−µk )/2}

(2π )D/2|6k |1/2
.

Let γt (k) =
wkpk (xt |θ )∑N

j=1 logwjpj(xt |θ )
be the posterior probability

of xt belonging to the k-th Gaussian. The gradients of feature
xt with respect to GMM parameters can be calculated as:

G X
wk =

1
√
wk

∑
t

(γt (k)− wk ) (1)

G X
µk
=

1
√
wk

∑
t

γt (k)
xt − µk
σk

(2)

G X
σk
=

1
√
2wk

∑
t

γt (k)[
(xt − µk )2

σ 2
k

− 1] (3)

where G X
wk is a scalar of 0th order statistics, and G X

µk
,G X

σk
are vectors of D dimensions corresponding to 1st and 2nd
order statistics respectively. G X

wk is often ignored. Thus
the final feature is obtained by stacking the gradients in
Equation 2 and 3. FV is therefore of dimension 2DK .
An issue with FV is that the statistics of all samples with

respect to a Gaussian center are summarized. To enrich the
representation, BossaNova [10] is put forward by keeping a
histogram of distances between the local descriptors found in
the image and those in the codebook.

B. DIMENSION REDUCTION AND HASHING
Representations of images are usually in high-dimensional
spaces and suffer from the curse of dimensionality [11]
and hubness [12]. Therefore, it is often considered essen-
tial to apply proper dimensional reduction tool and hashing
techniques.

Principal Component Analysis (PCA) is an unsupervised
data compressing method that picks bases by looking for
directions in which data varies most. The projected data is
XPCAk×N = Ak×dXd×N , where A is the matrix containing k
eigenvectors. Linear Discriminant Analysis (LDA), on the
other hand, is a supervised method that seeks to maximize the
ratio of between class scatter Sb and within class scatter Sw.
This is equivalent to solving S−1w Sbw = λw [11]. Regularized
Discriminant Analysis (RDA) [13] adds a small parame-
ter ε times the identity matrix to prevent unstable matrix
inversions. Sometimes, we are faced with Single Sample Per
Person (SSPP) face recognition problems, where only one
training sample for each person is available in the database.
If this is the case, we could not use LDA or RDA for dimen-
sional reduction, as intra-person variation cannot be obtained.
In this situation, we could use Whitened PCA (WPCA).
WPCA is the combination of PCA and thewhitening transfor-
mation and its projected data is XWPCAk×N = 3

−1/2
k×k Ak×dXd×N ,

where A is the matrix containing k eigenvectors and 3 =
diag{λ1, λ2, ..., λk} with λi being the i-th leading eigenvalue.

Hashing transforms data to a sequence of bits. Many types
of hashing methods exist. Local-sensitive hashing (LSH) [14]
is a randomized hashing framework. It relies on hash
functions which satisfy locality sensitive property.
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Discriminant Binary Coding [15] trains every binary code in a
way to ensure discrimination and learnability. Iterative Quan-
tization (ITQ) [16] iteratively minimizes the quantization
error of projecting examples from the original feature space to
vertices of a binary hypercube. LetW be the PCA dimension-
ality reduction matrix, and V = XW be the projected data.
ITQ optimization starts with a random orthogonal matrix R,
and the binary code matrix is updated as B = sign(VR). Then
B is fixed and R is updated by solving the classic orthogonal
Procustes problem [17]. Previous steps are done iteratively
to minimize the quantization loss Q(B,R) = ‖B − VR‖2F .
A more detailed description of the methods above and their
interconnections can be found in our previous paper [8].

C. DEEP CONVOLUTIONAL ACTIVATIONS
Recently, deep CNNs have significantly improved the state-
of-the-art in face recognition field. CNNs enhance tradi-
tional features by providing the trade-off between ‘breadth’
and ‘depth’. There are already many deep networks for
face recognition. Facebook’s DeepFace [18], Google’s
FaceNet [19] and Baidu’s deep network [20] are based on
large industrial datasets. There are also some alternatives to
the classic ‘convolution+FC’ framework, such as: [21]–[23].
Following [24], some papers (for example [20], [25]) utilize
a set of CNNs to extract complementary facial features from
multimodal data and then perform data fusion.

Though facial image transforms are highly non-linear, face
images share a relatively similar structure and this is ben-
eficial for transfer learning among databases. Fortunately,
Parkhi et al. [26] have recently developed VGG Face: a deep
network based on more than two million face images. This
pretrained network could be utilized to capture features. The
reasons why we choose VGG Face are as follows. Firstly,
this network is reported to achieve comparable results to the
state of the art with less data (than [18] and [19]) and a
simpler network architecture (than [21] and [23]). Secondly,
the success of utilizing such a classic ‘convolution+FC’ net-
work architecture could be easily extended to other networks.
The details and parameters of VGG Face would be discussed
in Section III-C.

III. COMPRESSING FISHER VECTOR
In Section II-A we introduced FV formulation. Our method
strives to make FV a compact descriptor while retaining its
robustness. In this section, we first put forward CFV that
halves the FV dimension. Then we introduce GITQ as an
efficient hashing technique. Lastly, we extend our CFV to
encode CNN convolutional activations.

A. COMPACT FISHER VECTOR (CFV)
The motivation of CFV is to preserve important geometric
information and lower the storage of FV. CFV is built up
as shown in Figure 2. Firstly, we prune the original FV by
retaining the 1st order statistics. Then, we perform normaliza-
tion within a block surrounding each Gaussian center. Finally,
we devise a reweighting scheme to integrate information

FIGURE 2. Pipeline of CFV.

regarding distances between a feature point and a Gaussian
center. The motivation of the reweighting scheme and why it
can encode geometric information is provided at the end of
this subsection.

We first introduce the concept of the Gaussian block.
FV calculates the posterior probability for each local descrip-
tor xt with respect to each Gaussian center. In practice, this
posterior probability is usually small. Thus, for eachGaussian
center, we zero out posteriors that gone below a certain
threshold c. This would result in a virtual block surrounding
the Gaussian center. We believe this approach could abate the
negative impact of Gaussian centers that are far away from a
local descriptor. We denote this virtual block as a Gaussian
block.

We form the CFV by computing the sum of residuals
in Equation 2 within a Gaussian block. These residuals are
deviations of the local features from the Gaussian visual
word. However, this total deviation is discounted by the sum
of posteriors, rather than the square root of Gaussian prior
in Equation 2. The rationale for this alteration is that: these
residuals are aggregated within a Gaussian block defined by
posterior probability, and the sum of posteriors would depict
the selected range more precisely than the prior. The resulting
KD-dimensional vector is shown in Equation 4 as:

G X
µk
=

1∑
t,γt (k)>c γt (k)

∑
t,γt (k)>c

γt (k)
xt − µk
σk

(4)

Finally, specific weighting for each element G X
µk

is intro-
duced by taking into account the norm of the residual: G X

µk
←

‖G X
µk
‖

(‖G X
µk
‖α+1)G

X
µk
. The weighting function is shown in Figure 3a.

To ensure the plot accord to this figure, α should be greater
than 1. The choice for parameter c and α would be discussed
in Section IV-F, and usually we set c = 0.001 and α = 2. The
rationale behind the function is to reduce the impact of the
faulty classifier based on angle comparison (e.g. cosine mea-
sure). To illustrate, Figure 3b and 3c show two different dis-
tributions of local features with respect to a Gaussian center.
Green diamond-shaped points refer to local features from one
sample while yellow rounded points refer to those of another
sample. The arrows signify the sums of residuals computed
for the two samples. In both settings, the directions of arrows
are distinct, and therefore the classifier would regard the
samples as two different patterns. However, features of the
two samples in Setting 1 lie close to each other and should
be considered as one pattern. The function we proposed has
the property of weakening the weights of features that lie
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FIGURE 3. Specific weighting and its intuitive explanation. (a) Weighting
function. (b) Setting 1. (c) Setting 2.

extremely close to the Gaussian center. The function also
penalizes features that are far away in that they tend to be
unrelated to the Gaussian center concerned. The method we
proposed does not add any extra dimension, yet provides a
way to integrate information regarding distances between a
feature point and a Gaussian center.

B. GENERALIZED ITQ (GITQ)
We discuss how we further reduce storage of CFV with
GITQ hashing algorithm. As we have seen in Section II-B,
ITQ projects the data with PCA before hashing. Unfortu-
nately, the length of the desired code are required to be
smaller than the dimension of the projected data. We believe
this constraint limits its use and may cause lack of stability,
as we are more likely to project the data to higher dimensions
(at least as high as our desired code length). However, due
to noise and the structure of the face, some facial features
are discriminative when they are projected to low dimen-
sions (for instance 20 dimensions). Under that specific set-
ting, ITQ code could not exceed 20 bits, which may not be
enough for robust classification. OurGITQ could utilizemore
bits for classification, and in the experiment section, we could
see that GITQ outperforms ITQ.

GITQ is a generalized form of ITQ where the projec-
tion matrix is not necessarily square. This idea is based on
Sparse Projection [27], where the orthogonal constraint of
R is relaxed to RTR = I . We believe the Procustes problem is
solvable when we use more bits than the original dimension
of data.

The processes of GITQ are as follows. Minimization of
Q(B,R) = ‖Bn×b − Vn×dRd×b‖2F where b > d can be
seen as equivalent to padding V with b − d zero columns
and then solve classic orthogonal Procrustes problem [28].
This transformation can be interpreted as a rotation of V in to
higher dimensional space. Therefore, we compute the SVD
of d × b matrix V TB as UDV T , truncate V to Ṽ by taking
only its first d columns, and then let R = ṼUT .
If we wish to perform LDA prior to GITQ hashing step,

we have to make LDA projection matrix orthogonal to sat-
isfy the constraint of the classic orthogonal Procustes prob-
lem. There are reasons for this. Firstly, as [29] pointed out,
to generate pairwise uncorrelated bits, we need to satisfy
a constraint that hashing hyperplanes should be orthogonal
to each other. Secondly, matching performed at orthogonal
Procrustes analysis stage is based on Euclidean (`2) distance.
In an oblique coordinate system computations of distances
and angles must be modified from Cartesian systems.

Though variables of each dimension are uncorrelated after
LDA step, discriminants extracted by LDAare not necessarily
orthogonal. Therefore, in our experiments, we add an orthog-
onalization procedure simply by doing QR factorization for
the projection matrix of LDA.

C. CFV ON DEEP CONVOLUTIONAL ACTIVATIONS
We now extend our CFV to encode convolutional features of
a CNN. Deep convolutional activation features are extracted
via VGG Face [30] network. The reason why we choose
such a network is already presented in Section II-C. The
network comprises 12 convolutional layers and each of them
is succeeded by ReLU. Convolutional features commence at
64 channels and achieve 512 channels at the final convolution
layer (29th layer). There are also 5 max-pooling layers lie
between convolutional layers. Finally, there are 3 FC lay-
ers and a softmax function layer. The first two FC layers
are of 4,096 dimensions and the last FC layer (FC8) has
2,622 dimensions. The input to the network is a face image
of size 224× 224 with the average face image subtracted.
Our CFV encoder is based on the activations 29th con-

volutional layer. For each image, this layer consists of
512 channels of 14 × 14 activations images, yet dense SIFT
features are a collection of 128-dimensional vectors extracted
at each pixel of the image. However, if we regard dense
SIFT as 128 channels of filtered images (see Figure 1), then
convolutional features and dense SIFT features are virtually
interchangeable. Therefore, to assess CFV encoding scheme,
we densely extract all the 14 × 14 activations, arranging
them as a collection of 512-dimensional feature vector. Then,
we append locality features [x/w− 1/2; y/h− 1/2] to these
512-dimensional vectors extracted at location (x, y), where
w and h represent the height and width of the response image
of the final convolutional layer, respectively. The augmented
features reflect their spatial locations.

IV. EXPERIMENTS
The performance of our CFV encoding algorithm has been
evaluated on four facial databases: FERET, LFW, AR, and
FRGC 2.0 Experiment 4. For FERET and LFW databases,
we extract dense SIFT as local features and encode them with
CFV. On the other hand, deep convolutional activations are
employed for evaluations on AR and FRGC 2.0. There are
two parameters (c and α) in our FV formulation. By default,
we set c = 0.0001 and α = 2. A comparison of parameters
would be given in Section IV-F.

A. DATASETS
The FERET database [31] is an SSPP face database
with 14051 facial images. The set contains a gallery set
of 1196 individuals, and four test sets (fafb, fafc, dup1 and
dup2) with variations on lighting, facial expression, pose,
and age. LFW [32] is a set that contains 13233 training
images of 5749 people and is considered as a standard bench-
mark for face verification. LFW is rather an unconstrained
database, and it contains significant variations in pose,
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illumination, expression, and occlusion. The evaluation pro-
cedure is to divide predefined image pairs into 10 folds and
for each fold verify whether the image pair is of the same
person. AR database [33] contains over 4,000 face images
of 126 persons. In our experiment, we choose a subset con-
sisting of 50 male and 50 female subjects. For each subject,
we exclude images with subjects wearing sunglasses. The
frontal face with the neutral expression of each person is
used to form the gallery and all other images (19 images
each person) are used for testing. FRGC 2.0 [34] Experiment
4measures recognition performances of uncontrolled images.
It produces 3 ROC curves corresponding to images within
different time spans.

B. FERET
Dense SIFT features are extracted for all images with a
stride of 2-pixels. PCA is used to reduce the dimensions of
SIFTs from 128 to 64. Then locality features are appended
to the descriptors. The resulting filtered images are divided
horizontally into 3 blocks, and GMM models are trained
independently for each block. Each GMMhas 256Gaussians.
At the encoding stage, we zero out posteriors which are below
5 × 10−5. Our final CFV is of 3 × 66 × 256 = 50688
dimensions for each image. We apply WPCA to reduce the
dimensions to 500 and classify them with Linear Ranking
Analysis (LRA) [35].

TABLE 1. Recognition accuracies for various methods on FERET.

Some state-of-the-art methods are evaluated on our
machine with codes provided by authors. Some details
are: DCP [36] features are computed by calculating LBP-
like patterns on two radii (3 and 5) and two directions
(0 and π/4). MD-DCP is an improved version of DCP by
computing first Gaussian derivative prior to DCP extraction.
DCP, MD-DCP, DFD and CBFD aggregate features by his-
togramming with an 6 × 6 block division. Table 1 shows
recognition accuracies of various methods, and it shows that
our CFV achieves decent performance with a low feature
dimension. Note that the dimension refers to that of the
original feature.

Hashing algorithms for CFV on FERET are also tested.
Their performances are shown in Figure 4 with groups of
stacked bar plots under a different number of bits. In our
experiment, the length of output varies from 100 to 600 bits.
For each hashed length, performances of our GITQ are com-
pared with ITQ [40], SP [27] and LSH [41]. Each stacked

FIGURE 4. Performances of various hashing algorithms on FERET.

bar represents one method, and from left to right they signify
GITQ, ITQ, SP and LSH respectively. SP is evaluated with a
sparsity of 0.9. Finally, each bar represents stacked accuracies
of a specificmethod on four test sets. The figure demonstrates
the effectiveness of GITQ over other methods.

C. LFW
We evaluate our algorithms under unrestricted LFW protocol
without outside training data. In our experiments, images
are firstly cropped to 150 × 80 pixels. Multiscale Dense
SIFT features are extracted with a stride of 2-pixels and the
SIFT sliding windows are of 16 × 16 and 24 × 24 pix-
els, respectively. Each SIFT filtered image is horizontally
cropped to 3 blocks. Then, in light of [42], we evaluate the
power of the SIFT extracted and retain only 60% of the most
prominent features extracted. After that, we perform PCA and
append locality features, which are similar to our evaluation
on FERET dataset. We train GMMmodels independently for
each block and each scale, and eachGMMhas 128Gaussians.
At the encoding stage, we zero out posteriors which are below
5 × 10−5. Our final CFV is of 50,688 dimensions for each
image. We reduce dimensions first with PCA to 400 and
then with LDA to 40 dimensions. Similarities are calculated
using cosine measure. Verification accuracies of our CFV
along with other local feature learning methods are shown
in Table 2. We also compare accuracies of various hashing
algorithms by which CFVs are projected to 100 bits. We can
see that our CFV performs on par with High-Dimensional
LBP (HD-LBP) [43], yet the dimension of CFV is only less
than a half of HD-LBP. Moreover, CFV outperforms other
features, and hashing with GITQ yields decent verification
accuracy.

D. AR
For each image, we firstly extract convolutional activations
from the final layer of VGG Face network. Next, locality fea-
tures are appended to the 512-dimensional response vectors.
Then the features are PCAed to 64 dimensions and they are
encoded with CFV. To achieve better accuracy, these features
are all reduced to 100 dimensions via WPCA.
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TABLE 2. Comparison of verification accuracies on LFW.

TABLE 3. Recognition accuracies for various methods on AR.

Comparisons of accuracies of many methods combined
with different classifiers are shown in Table 3. State-of-the-
art methods (DCP, MD-DCP, DFD and CBFD) in Table 3
evaluated on our machine by histogramming with an 8 × 8
block division. FC8 feature is formed by extracting the final
FC layer from VGG Face, which is a common practice for
image classification. In the table, K means the number of
Gaussian centers; EUCL means nearest neighbor classifier
based on Euclidean distance; COS means nearest neighbor
classifier based on cosine measure and LRA means lin-
ear ranking analysis classifier. Compared to state-of-the-art
methods, our method achieves the best result with a signifi-
cantly lower dimension. Under various parameters and clas-
sifiers, our CFVs perform on par with FVs with dimensions
halved. A major accuracy boost (more than 2%) is obtained
when CFVs are the same dimensions as FVs, regardless of
the classifier.

Performances of various hashing methods on FV and
CFV are shown in Figure 5. The results align with our
argument: CFV combined with GITQ is consistently prefer-
able compared with FV and other hashing methods. Some
methods, like LSH, are not listed due to their unfavorable
performances.

FIGURE 5. Comparison of features and hashing methods on AR.

E. FRGC 2.0
Similar to that of AR, we feed in multi-scale images
to VGG Face and extract convolutional activations of
29th layer. Due to limitations of our machine, we cluster
GMM (of 128 Gaussians) with only a maximum of 150 con-
volutional activations (of dimension 64) per image. We resort
to PCA and RDA for dimensional reduction of the features,
and the regularization parameter is chosen to be 0.001. Ver-
ification Rates (VRs) at 0.1% False Acceptation Rate (FAR)
for various PCA and RDA choices are shown in Figure 6.
In the figure, ‘CFV w/o L’ and ‘FV w/o L’ denote that we
do not append locality features to convolutional responses.
‘FC8’ and ‘FC7’ are features extracted from the final and
penultimate FC layers, respectively.

We observe that our CFV outperforms FV on all three
test sets with a much lower dimension. Even when locality
information is not present, ‘CFV w/o L’ only suffers from a
minor loss and marginally outperforms both ‘FV’ and ‘FV
w/o L’. Given the low dimension of CFV compared to FV,
we believe our descriptor is robust and functional in various
settings. The figure also shows that hashing CFV with GITQ
is reasonable compared to the unstable ITQ. FC7 and FC8 do
not yield robust performance, which aligns with experiments
on AR.

Comparisons with state-of-the-art methods are provided
in Table 4. Despite the subsampling of convolutional
response, our CFV achieves a satisfactory result: at PCA
dimension 1400 and RDA dimension 200 VRs achieve
0.9269, 0.9305 and 0.9335 for ROC I, II and III respectively.

F. CHOICE OF PARAMETERS
There are two parameters in our formulation of CFV: pos-
terior probability threshold c and weighting parameter α.
As these two parameters are independent, we fix one param-
eter to its default value and change the other. We compare the
choices of c on FERET (using dense SIFT) and FRGC 2.0
(using deep convolutional features), then we compare choices
of α on AR (using deep convolutional features) and LFW
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FIGURE 6. Verification rates on FRGC. (a) ROC I. (b) ROC II. (c) ROC III.

(using dense SIFT).Wewould demonstrate that performances
of our CFV is quite stable even though the parameters vary.

First we increase c from 0 to 0.001, where c = 0 indicates
that all posteriors are taken into account. Other settings are
exactly the same as the CFV descriptor in Section IV-B and
Section IV-E. For FERET our CFV is reduced to 500 dimen-
sions via WPCA, and for FRGC 2.0 our CFV is reduced to
1400 via PCA and then 200 via RDA. The result is shown
in Figure 7. We can see that for both datasets, performance

TABLE 4. Comparison of VRs at 0.1% FAR on FRGC 2.0.

FIGURE 7. Recognition accuracies of CFV on FERET and FRGC under
various c .

FIGURE 8. Recognition accuracies of CFV on AR and LFW under various α.

boosts are observed when c ranges from 0.00005 to 0.0002.
Therefore we choose c = 0.0001 by default.
We compare performances of CFV on AR and LFWwith α

ranging from 1.5 to 4 (as we have mentioned in Section III-A,
α should be greater than 1). The result is shown in Figure 8.
We extract AR and LFW with K = 64 Gaussian centers. For
AR our CFV is reduced to 30 dimensions via WPCA, and for
LFW our CFV is reduced to 400 via PCA and then 40 via
LDA. All other settings are the same as in Section IV-D and
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Section IV-C, respectively. We report accuracies on AR with
three classifiers: EUCL (nearest neighbor classifier based on
Euclidean distance), COS (nearest neighbor classifier based
on cosine measure) and LRA (linear ranking analysis). Ver-
ification experiments on LFW are done according to cosine
similarity. Though these tasks varies, recognition accuracies
are quite stable when α is between 2 and 3, and α = 2 is
overall a reasonable choice.

V. CONCLUSION
We have addressed the issue of compressing FV and retaining
its robustness at the same time. We have proposed a com-
pact version of FV called CFV that preserves the most dis-
criminative information. Moreover, distances between a local
descriptor and a codeword are integrated into CFV formula-
tion. Further, to facilitate its application in extremely large-
scale image databases, we provide a flexible hashing method
called GITQ. The combination of CFV and various dimen-
sional reductionmethods and/or GITQ proves to be beneficial
for face identification and verification tasks. Finally, CFV is
extended to encode deep convolutional activations. The pro-
posed approach shows promising results for face recognition
under both controlled (FERET, AR) and uncontrolled (LFW,
FRGC 2.0) settings. We believe our CFV could be a suc-
cessor to FV given its low dimensionality and robustness in
face description, and our GITQ could further alleviate high-
dimensional issues for large data processing.
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