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ABSTRACT Eye movement is proven to be the most frequent activities of human beings; as a result research
on recognition of unit eye movement has become a hotspot in human activity recognition. In this paper,
we propose a robust online saccade recognition algorithm, which integrates electrooculography (EOG) and
video together. Initially, EOG signals and video data are collected simultaneously from eight saccadic
directions. Then online active eye movement segment detection algorithm is developed to detect the
effective saccadic signal from ongoing eyeball activities. Furthermore, we extract features from different
modalities and explore two fusion strategies [i.e., feature level fusion (FLF) and decision level fusion (DLF)].
In laboratory environment, the average recognition accuracy of FLF and DLF achieves 89.37% and 89.96%,
respectively, which reveals that the proposed method can improve the performance of consecutive saccade
recognition in comparison with sole modality.

INDEX TERMS Electrooculography, video recording, wavelet packets, wavelet transforms, human
computer interaction.

I. INTRODUCTION
The motivation of Human Activity Recognition (HAR) is to
perceive user’s intention and present by a natural language,
which uses comprehensive information such as the kinds of
reflection and patterns of behaviors by signal collecting and
pattern recognizing [1]. Due to the extraordinary ability of
human-computer interaction, HAR system has emerged as a
key research area in intelligent surveillance, video retrieval,
motion analysis, virtual reality, health management system
and so on [2]–[5].

At present, wearable body information sensors and
contact-free environmental sensors have been used to
achieve HAR. Wearable body information sensors refer to
common ambient sensors such as accelerometers, gyroscope
and bio-sensors, etc. In general, common environmental sen-
sors, like reed switches or temperature sensors, are restricted
only by perceived basic behavior states, for example, in and
out of the room or control a device on or off. Acceleration
sensors and gyroscopes are primarily concerned with the
perception of physical activity and cannot be used in the
dominant visual tasks. Therefore, some subtle clues that

provide move valuable information for human behavior
recognition are ignored. Fortunately, wearable bio-sensors
promise to extend the potential applications using HAR
algorithms at anytime, anywhere, through a comprehen-
sive analysis of behavior from the user’s perspective [6].
Compared with peripheral bio-electrical signals, electroocu-
lography (EOG) has the advantages of low cost, easy
operation, non-invasive, less influence, etc.; and it has been
becoming a hotspot in HAR implementation [7]–[9]. Equally
important, video-based sensors, one of the contact-free sen-
sors, play a key role in HAR. Because it does not contact the
user’s skin, it becomes amost acceptable approach to perceive
user’s behaviors.

During the procedure of design and implementation of
online HAR system, several solutions have been proposed to
address detection and recognition of unit saccadic eye move-
ment. In the aspect of EOG-based methods, Bulling et al.
developed the continuous wavelet transform-saccade detec-
tion (CWT-SD) algorithm [10]. The CWT-SD regards EOGh
and EOGv, which are the denoised EOG signal com-
ponents, as input arguments to computes the continuous
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1-D wavelet coefficients, then applies a specific thresh-
old to divide EOGh and EOGv into saccade or non-
saccade. Larsson et al. proposed a new method combining
saccade detection in the acceleration domain with specialized
on- and offset criteria to detect saccades in smooth pursuit
movements [11]. The performance of the algorithm is evalu-
ated by comparing the results of the algorithm with the exist-
ing results based on the velocity detection method. Similarly,
in the aspect of video-based methods, Pauly et al. suggested a
novel method involving Haar based cascade classifier for eye
tracking and a combination of HOG features with SVM clas-
sifier for eye blink detection in video frames [12]. The acqui-
sition device used in this algorithm is an ordinary network
camera; and the algorithm shows good performance under
the uncontrolled lighting condition. Picot et al. used two
energy signals extracted from the video analysis to detect and
characterize blinks from the video [13].

The aforementioned methods have been obtained success
in detection of unit eye movement signals respectively; how-
ever, some limitations to EOG-based or video-based methods
are inevitable. For example, under the condition of EOG
acquisition, although the normal activities are not affected,
the range of activities is limited. Moreover, the user’s slight
movements will lead to serious interference as well as affect
the performance of HAR system. By contrast, video-based
method can effectively overcome this problem, but it is
often interfered by the luminance, especially in the dark
condition, the performance will decrease sharply. Apparently,
since EOG-based or video-based method only focuses on a
certain specific aspect, it is difficult to build a robust sac-
cade detection method using single modality. Considering
the advantages of two different modalities, we propose a
saccadic eye movement recognition method combining EOG
and video, so as to improve the performance and robustness of
online unit saccadic movement simultaneously. In this paper,
we first exploit an online Active Eye Movement Segment
Detection (AEMD) algorithm for continuous eye movement
signals, and then explain how to extract EOG features and
video features respectively. Finally, we propose two fusion
strategies to take advantage of their complementary informa-
tion. This paper is organized as follows: Section II introduces
the principle of EOG, Section III details the methodology
followed in the course of the work. The experiments are
shown in Section IV, and Section V concludes this paper.

II. EOG GENERATION AND ACQUISITION
The eyeball can be seen as a bipolar model with a pos-
itive pole at the cornea and a negative pole at the retina
(see Fig. 1 (a)) and the movement of the eyeballs can
generate a potential between cornea and retina [10]. The
amplitude of eye signal will change with the movement of
eyeball, if draw this potential to the timeline, we can get a
curve called Electrooculogram(EOG). Compared with other
bioelectrical signals, EOG has a relatively large signal to
noise ratio (SNR) and shows signal amplitudes ranging from
5 to 20µV/degree [10]. Therefore, these features make it

FIGURE 1. Anatomy of the eye ball and setting of EOG collecting
electrode. (a) Anatomy of the eye ball. (b) Setting of EOG collecting
electrode.

an ideal signal for eye movement detection. In our work,
we use the NeuroScan instrument to collect EOG signals.
A pair of electrodes which are located at the above and below
of the eyeball are to collect vertical EOG components and
a pair of electrodes arranged near the corner of the left or
right eyeball are to detect horizontal EOG components. The
other two electrodes are the reference electrode (A1) and
the ground electrode (GND) that is attached to the mas-
toid. The distribution of EOG collecting electrodes is shown
in Fig.1 (b).

III. METHODS
To start with, we design the experimental paradigm to ensure
the reliability and validity of both EOG signals and video
data. Then, the raw input signals are preprocessed so as to
detect the active eyemovement segments and extract features.
Finally, the Support Vector Machine (SVM) is utilized to rec-
ognize the eye movement according to up, down, left, right,
upper left, upper right, lower left and lower right respectively.
The overall framework of the algorithm is given in Fig.2.

A. DESIGN OF EXPERIMENTAL PARADIGM
In our work, EOG signals are collected by the Neroscan sys-
tem with a sampling frequency of 250Hz, and video data are
recorded by a high-definition network camera at 30fps. The
camera locates in front of the computer screen, the distance
between them is about 10 cm. The height of the camera is the
same level as the subject’s eyeball and 25cm apart from it.
In order to ensure the synchronization between EOG and
video signals, we use a synchronous acquisition software
which developed by our laboratory. Each trial starts with
characters of ‘‘start’’ following a short warning tone ‘‘beep.’’
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FIGURE 2. Overall frame works of the algorithm and experiment
processing.

During second 1 to second 4, a red arrow, pointing either to
up, down, left, right, upper left, upper right, lower left and
lower right representing one of eight different saccadic tasks,
randomly display in the screen. At the same time, participants
are instructed to perform the corresponding eye movement.
The trial ends with a disappeared arrow and a blank screen
at second 4, then the participant has a rest for 2s to relax.
Each participant is required to collect 20 groups of data, with
each group including 20 saccades. The single experimental
paradigm is shown in Fig. 3.

FIGURE 3. The experimental scene and the experimental paradigm.
(a) Experimental scene. (b) Experimental paradigm.

A total of 8 subjects (five females and three males whose
ages range from 23 to 25) record EOG and video data in a
quiet environment. All the participants are graduate students
with normal hearing and vision, and right-handed. Before the
experiment, they are told that the purpose of the experiment.
Since saccades in the four directions (up, down, left, and
right) are more common in life, these four directions are
scanned 3 times in each group, which is one more than
saccade in the oblique directions.

B. DATA PREPROCESSING
It’s inevitable that the raw eye movement data will be cor-
rupted by different noise sources, such as the measurement
circuitry, participant’s slight movement, power interference
and so on. In order to preserve the effective eye move-
ment components as well as suppress the artificial noises,
a 32-order band-pass digital filter with cut-off frequency
of 0.01-10Hz is used in the proposed method [14].

C. ACTIVE EYE MOVEMENT SEGMENT DETECTION (AEMD)
AEMD, a necessary and important step for achieving online
function, is mainly used to extract the useful saccadic
EOG clips exactly as well as reduce the redundancy infor-
mation. In this paper, we use a sliding window technology to
dynamically estimate energy of saccadic EOG signals. Mean-
while, in order to improve the performance of the AEMD
algorithm in noisy environment, we compute and optimize the
results of energy based EOG detection and results of particle
filter based video detection.

1) EOG DETECTION
To achieve high-speed performance of online processing,
we can derive a recursive algorithm to calculate the energy in
each sliding window. Suppose the index of the current sliding
window is n, the length of this windows is L, the dynamic
estimation procedure can be expressed as follows:

µ(w)(n) =
n
L
[µ(n)− µ(nL)]+ µ(nL) (1)

S(w)2 (n) = S2(n)− S2(nL)−
L × nL
n

[µ(w)(n)− µ(nL)]2 (2)

Where µ(w)(n) and S(w)2 (n) denote the mean and short time
energy of the sliding window according to time point n. The
recursive results will continuously update sample by sample
following the window’s slide. In this way, the short-time
energy at time point n can be acquired and applied to the
AMED algorithm.

The detailed steps are as follows: (1) the filtered EOG data
is processed by frame window, and the energy threshold amp
is empirically set to a certain value. (2) Calculate the energy
value (E) in the current sliding window, compare it with
the energy threshold amp, if E > amp, the corresponding
point will be marked as a possible start-point. (3) Backward
search from start, the corresponding S2 value and the energy
threshold are compared, here are three cases: A. The sample
point is still in EOG signal segment: if S2 value is greater
than amp, then the point is still in EOG active segment,
activecount (sample points in active segment; initial value is
set 0) plus one point; or the point is in nonactive segment,
nonactivecount plus one point. If the nonactivecount (sample
points in nonactive segment; initial value is set 0) is less
than the maxnonactivecount (the maximum allowable sample
points in nonactive segment), it is still in EOG signal segment.
B. The sample point is in nonactive segment: if the nonactive-
count is larger than the maxnonactivecount then determine
whether the activecount is greater than the minactivecount
(the minimum allowable sample points in active segment);
C. If the activecount is greater than the minactivecount: we
find the active segment, conversely, the activecount and non-
activecount will be reset to zero. Return to the start position,
re-search for the start of the EOG signal segment.

2) VIDEO DETECTION
In the first frame of the video, we empirically initialize a
rectangle to select the sclera and pupil, and regard the center
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coordinates of the rectangular frame as the pupil center. Then
the particle filter algorithm is performed to automatically
track the eye movement and record the trajectory of the
pupil center [16]. Once the movement trajectory is obtained,
we will adopt it as a reference coordinates (x0, y0), which is
key factor in determining the direction of saccade. In addition,
baseline shift of the movement trajectory over time is the
biggest hurdle in obtaining a high accuracy rate. The least
square method is being applied on the whold data to remove
baseline shift. Moreover, because of the involuntary blink
is unavoidable during the experiment and will affect the
performance of endpoint detection. Thus, rely on a suitable
threshold (thbl: is the multiple of the maximum amplitude
of video data) and the duration of the vertical signal (Xt : the
time difference between the threshold and two intersection
of the video waveform is set to Xt ), the vertical signal above
the threshold (thbl) value is set to y0. This operation elimi-
nates interference of blink signal. Furthermore, the horizontal
and vertical waveforms are smoothed by moving average
algorithm. The two sets of waveforms are superposed to
obtain the absolute value, and an appropriate threshold is
set up according to the average value as the threshold of
the endpoint detection. The amplitude and threshold value
is compared from the first frame. By applying a thresh-
old (thw) on the video signal, we create a vector W with
element Wi:

Wi =

{
1, Vi > thw
0, Vi < thw

(3)

V stands for vertical signal; i represent the subscript of
each signal point. This step divides video signal into active
(W = 1) and nonactive (W = 0) segment. The start and end
points of the saccade signal are stored in the corresponding
array.

3) OPTIMAL AMED RESULTS SELECTION
Considering the difference of results between the above-
mentioned methods (especially in the noisy environment),
we introduce a comparison algorithm to choose the best
one. For example, if the HAR system is interfered by
luminance, the video-based AMED does not work well
but the EOG-based AMED can exactly detect the end-
point; similarly, if the subject slightly sways his body, the
performance of the EOG-based AMED will decrease due
to micro-movement of bio-electrode, but the video-based
AMED can keep the stable detection. We observe that
the time-domain waveforms will be severely distorted in
the case of noisy environment. As a result, the duration
between the start and end point will become very short
than normal cases. In addition, the longer duration can carry
more eye movement information in the normal case; we
therefore compare the duration of endpoint detected signals
respectively and choose the longer duration as the optimal
results.

D. FEATURE EXTRACTION
1) EOG FEATURE EXTRACTION
Wavelet transform is a powerful transformation analy-
sis method, which can analyze the signal in time and
frequency. Unlike wavelet transform, the wavelet packet
transform (WPT), for the subsequent decomposition level,
not only decomposes the approximation coefficients, but also
decomposes the detail coefficients. Therefore, we use the
wavelet packet decomposition to extract the EOG feature
after preprocessing. This decomposition process generates
a wavelet packet tree structure, and the node representation
of the tree is associated with different frequency location
feature subspace. We chose sym4 as the mother wavelet and
set the decomposition level to 3. Then we randomly select
an EOG segment and decompose it with wavelet packet
transform. As we all know, eye signal is mainly concentrated
in the low frequency band. Bymany comparison experiments,
the algorithm finally selects the low frequency coefficients of
the third layers as the classification feature and feed directly
into the SVM for classification.

2) VIDEO FEATURE EXTRACTION
Two dimensional wavelet transform decomposes the image
into four subimages, as shown in Fig.4, which are the average
image and three details of the image. The four subimages
combined into a general plan which can be seen in Fig.4 that
the dimension is 68 ∗ 88. In order to achieve the purpose of
saccade classification, we use the two dimensional wavelet
transform decomposes the image of the active saccadic eye
movement segments and convert the general plan into an
image feature vector. Then these image feature vector are
integrated in a two-dimensional matrix. Connect each row
in the two-dimensional matrix to get a feature vector that
identifies the saccade state. This feature vector is used as
saccade movement representation for the purpose of saccade
classification.

FIGURE 4. Diagram of the 2-D wavelet decomposition. (a) 2-Dimensional
wavelet transform for one frame image. (b) 2-Dimensional wavelet
transform for saccade sequence image.

3) SACCADE RECOGNITION
a: Saccade Recognition Based On Single Modality
According to the characteristics of EOG and video signals,
we choose SVMwith polynomial kernel and SVMwith linear
kernel as classifier to recognize them respectively [17].
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b: MODALITY FUSION
Signals from different modalities represent different aspects
of eye movement and the complementary information from
different modalities can be integrated to build a more
robust saccadic action recognition model. Within this section,
we present two fusion strategies. Let xeog and xvedio as feature
vector of EOG and video respectively, they can be described
as follows:

c: FEATURE LEVEL FUSION (FLF)
The EOG feature vectors and the video feature vectors are
directly combined into a new feature vector, i.e.,

xFLF = xeog + xvedio (4)

Where xFLF denotes the new FLF feature.

d: DECISION LEVEL FUSION (DLF)
The maximum value method is a kind of decision level fusion
method, which has the advantages of no need of training,
simple method and so on. It selects a maximum possible class
label as the result tag according to the posterior probability.
The max rule is thus defined as follows for a given trial x, i.e.,

C(x) = argmax{P(wa|x)}|a=1...k (5)

Cfinal(x) = argmax{Pq(wa|x)}|a=1...k
q=1...Q

(6)

In (5) and (6), C is the primary class decision output.
Cfinal is the output of the decision level fusion method based
on the max rule. Q is the ensemble of all classifiers that
can be selected for fusion. This experiment has a total of
k categories. P(wa|x) is the posterior probability of having
class wa the sample is x according to classifier q. We first
calculate the posterior probabilities of the eight categories
for the two models. Then, the maximum posterior probability
corresponding to the eight categories in EOG and video are
compared with each other. Finally, we choose the category
with the highest posterior probability as the final decision.

IV. EXPERIMENTS AND RESULTS ANALYSIS
A. ACTIVE EYE MOVEMENT DETECTION
In EOG detection, the initial threshold of energy (amp) is
0.5053 and the length of window is 80 sample points. In video
detection, the initial threshold (thw) is 0.3492. Fig.5 describes
waveform of saccade EOG and video signals that are ran-
domly selected, red vertical lines indicate the start-points,
while black lines denote the end-points.

Furthermore, Probability of correct point detection
(Pc-point) and Probability of false point detection (Pf-point)
are computed to evaluate the validity of the proposed AEMD
algorithm, they are defined in [15]:

The results of algorithm are listed in Table 1. In AEMD
experiments, the average pc-point of the eight-direction sac-
cade are 77.05%, 82.19%, 77.6%, 78.63%, 81.46%, 81.64%,
80.44%, and 81.16% respectively, while, the average pc-point
and pf-point are 80.02% and 7.56%. Experimental results
reveal that the proposed AEMD algorithm can acquire an

FIGURE 5. Eye movement signal endpoint detection. (a) EOG signal.
(b) Short time energy. (c) Endpoint detection result. (d) Original video
data. (e) Vector W. (f) Video endpoint detection result.

TABLE 1. Performance of the endpoint detection algorithm.

ideal accurate ratio in continuous activity eye movement
segment detection.

B. SACCADE RECOGNITION
Recognition results are compared with data labels for acquir-
ing the classification accuracy ratio. If they are the same,
the classification is proven correct, otherwise, it is wrong.
For improving the validity of recognition results, the penalty
coefficient is set to one and 3-fold cross-validation method is
adopted. It works as follows: all samples are sorted at random
and divided into 3 parts, then one part is taken out as test
database and the rest two parts are used to train the classifier;
repeat this procedure 10 times for each participant’s data.

The Fig.6 (a) shows the accuracies for different unimodal-
ities and multi-modalities using SVM as classifier. As we can
see from Fig.6 (a), we achieved 80.33% and 82.41% average
accuracies from EOG and video data, respectively. The fea-
ture level fusion method give an average accuracy of 89.37%.
For decision level fusion, we use maximum value method
to combine two models trained with EOG and video data,
which achieved 89.96% average accuracy. The results show
that, the models with modality fusion perform is better than

VOLUME 5, 2017 18001



X. Ding et al.: Robust Online Saccadic Eye Movement Recognition Method

FIGURE 6. Experimental results expressed in different forms.
(a) The comparison of the performances of unimodalities and
multi-modal. (b) Confusion matrices of single modality and different
modality fusion strategies.

that of unimodality because modality fusion can combine
complementary information in each single modality.

For the No.4 subject, the recognition accuracy obtained by
video-based unimodality method is relatively poor (38.75%)
due to the surrounding luminance interference. Whereas,
EOG-based method, which is a bio-electrical signal, is
less disturbed by light noise, presents a stable performance
(85.66%). Since FLF and DLF strategies can be complemen-
tary to improve the performance of unimodality by com-
bining EOG and video, they achieve 70.16% and 85.83%
average accuracy, which is much better than video modality.
Likewise, for the No.7 subject, the unimodality method gets
a lower recognition rate (75.66% and 74.07%) than fusion
modalities (83.33% and 82.13% respectively) when the num-
ber of blinks is more than normal trials. The experimental
results reveal that the proposed combination feature param-
eters perform a higher robustness than unimodality in noisy
environment.

On closer inspection of the accuracy under two fusion
modalities, it turns out that the overall performance of
FLF method (92.11%) is better than DLF (90.55%) except
for luminance interference condition. The likely reason is that
FLF directly concatenate two feature vectors of EOG and
video to train the detection model, which use more comple-
mentary information than DLF.

The confusion matrices of each unimodality and multi-
modalities are shown in Fig.6 (b), which presents details of

the merits and drawbacks of each modality. Each row of the
confusionmatrices stands for the target class and each column
stands for the predicted class. The elements (i, j) in the matrix
denote the percentage of samples in class i that is classified
as class j.

From Fig. 6 (b) we can find that the largest between-class
substitution error between upper-left and left in all modalities,
i.e., 35% and 16% in case of EOG and video respectively
that means most of upper-left saccades are falsely returned
left saccades. By contrast, the largest error is 18% and 16%
according to FLF and DLF. Compared with EOG modal-
ity, the proposed fusion strategies can effectively decrease
confusion; similarly, compared with video modality, they
can keep a lower confusion rate steady as well as clas-
sify up, down, left and right saccade with higher accuracy.
Therefore, the proposed fusion modalities can be comple-
mentary to improve the results for saccadic eye movement
recognition.

V. CONCLUSION
A robust online saccadic eye movement recognition method
combining electrooculography and video has been proposed
in this paper. We first designed a saccade experiment and col-
lected EOG signals as well as video data in terms of eight sac-
cadic directions. Then we detected the active eye movement
segments and extracted different features including wavelet
packet coefficient and wavelet coefficient for EOG signals
and video data, respectively. The experimental results over
seven subjects indicated that FLF strategies achieve the best
average classification accuracies of 92.11%, which is nearly
12.54% and 3.46% higher than EOG and video strategy,
respectively.

The investigation of HAR system based on EOG would be
promising tool to improve the quality of our life, by provid-
ing a feasible human computer interaction. In this research,
we are mainly concentrated on online recognition of basic
saccadic eye movement. In which, the AEMD algorithm
plays an important role because it is associated with accu-
rate rate of saccadic actions, especially in noisy environ-
ment. Therefore, our future work should prioritize research
to develop a more robust AEMD algorithm to process contin-
uous eye movement and apply it to improve the performance
of HAR system.

REFERENCES
[1] J. K. Aggarwal and M. S. Ryoo, ‘‘Human activity analysis: A review,’’

ACM Comput. Serv., vol. 21, no. 3, pp. 16:1–16:43, 2011.
[2] A. Sathyanarayana et al., ‘‘Robust automated human activity recognition

and its application to sleep research,’’ inProc. IEEE Int. Conf. DataMining
Workshops, Dec. 2016, pp. 495–502.

[3] U. Fareed, ‘‘Smartphone sensor fusion based activity recognition system
for elderly healthcare,’’ in Proc. Workshop Pervasive Wireless Healthcare,
Jun. 2015, pp. 29–34.

[4] H.Wang, O. Dan, J. Verbeek, and C. Schmid, ‘‘A robust and efficient video
representation for action recognition,’’ Int. J. Comput. Vis., vol. 119, no. 3,
pp. 219–238, 2016.

[5] H. Rajabi and M. Nahvi, ‘‘An intelligent video surveillance system for
fall and anesthesia detection for elderly and patients,’’ in Proc. Int. Conf.
Pattern Recognit. Image Anal., Mar. 2015, pp. 1–5.

18002 VOLUME 5, 2017



X. Ding et al.: Robust Online Saccadic Eye Movement Recognition Method

[6] E. M. Tapia, S. S. Intille, and K. Larson, ‘‘Activity recognition in the
home using simple and ubiquitous sensors,’’ in Proc. Int. Conf. Pervasive
Comput., 2004, pp. 158–175.

[7] Z. Lv, X.-P. Wu, M. Li, and D. Zhang, ‘‘A novel eye movement detection
algorithm for EOG driven human computer interface,’’ Pattern Recognit.
Lett., vol. 31, no. 9, pp. 1041–1047, 2010.

[8] M. S. Hossian, K. Huda, S. M. S. Rahman, and M. Ahmad, ‘‘Imple-
mentation of an EOG based security system by analyzing eye movement
patterns,’’ in Proc. Int. Conf. Adv. Electr. Eng., Dec. 2015, pp. 149–152.

[9] C.-C. Postelnicu, F. Girbacia, and D. Talaba, ‘‘EOG-based visual nav-
igation interface development,’’ Expert Syst. Appl., vol. 39, no. 12,
pp. 10857–10866, 2012.

[10] A. Bulling, J. A. Ward, H. Gellersen, and G. Troster, ‘‘Eye movement
analysis for activity recognition using electrooculography,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 33, no. 4, pp. 741–753, Apr. 2011.

[11] L. Larsson, M. Nystrom, and M. Stridh, ‘‘Detection of saccades and
postsaccadic oscillations in the presence of smooth pursuit,’’ IEEE Trans.
Biomed. Eng., vol. 60, no. 9, pp. 2484–2493, Sep. 2013.

[12] L. Pauly and D. Sankar, ‘‘A novel method for eye tracking and blink
detection in video frames,’’ in Proc. IEEE Int. Conf. Comput. Graph., Vis.
Inf. Secur., Nov. 2015, pp. 252–257.

[13] A. Chaudhuri, A. Dasgupta, and A. Routray, ‘‘Video & EOG based inves-
tigation of pure saccades in human subjects,’’ in Proc. 4th Int. Conf. Intell.
Human Comput. Interact., 2012, pp. 1–6.

[14] R. OuYang, Z. Lv, and X. Wu, ‘‘An algorithm for reading activity recogni-
tion based on electrooculogram,’’ in Proc. Int. Conf. Inf., Commun. Signal
Process., Dec. 2015, pp. 1–5.

[15] Y. Luo, W. U. Xiaopei, L. Zhao, K. Peng, and Y. Gui, ‘‘A recursive
calculating algorithm for higher-order cumulants over sliding window and
its application in speech endpoint detection,’’ Chin. J. Acoust., vol. 2015,
no. 4, pp. 436–449, 2015.

[16] F. Zhou, W. Chen, and H. Fang, ‘‘Robust eye tracking and location method
based on Particle filtering algorithm,’’ in Proc. Int. Conf. Cloud Comput.
Intell. Syst., Nov. 2015, pp. 247–252.

[17] Y. Peng and B.-L. Lu, ‘‘Discriminative extreme learning machine with
supervised sparsity preserving for image classification,’’ Neurocomputing,
vol. 261, pp. 242–252, Oct. 2017.

XIAOJUAN DING received the B.E. degree in
network engineering from Jianghuai College,
Anhui University, Hefei, China, in 2015. She
is currently pursuing the M.E. degree with
Anhui University. Her current research interests
include biomedical signal processing and human-
computer interaction.

ZHAO LV received the Ph.D. degree in com-
puter application technology from Anhui Uni-
versity, Hefei, China, in 2011. He is currently
an Associate Professor with the School of Com-
puter Science and Technology, Anhui University.
He is also a key member with the Laboratory
of Intelligent Information Processing and Human
Computer Interaction. His research focuses on
intelligent information processing, biomedical sig-
nal processing, and speech signal processing. He is

the author of over 40 articles. He applied for nine national invention patents,
of which five were authorized. His research is supported by the National
Nature Science Foundation of China and Natural Science Foundation of
Anhui Province.

CHAO ZHANG received the M.E. and Ph.D.
degrees in computer application technology from
Anhui University, Hefei, China, in 2009 and 2014,
respectively. He is currently a Lecturer with the
School of Computer Science and Technology,
Anhui University, Hefei, China. He research inter-
ests include intelligent information processing and
human–computer interaction.

XIANGPING GAO received the bachelor’s degree
in 1998, and the M.E. degree in signal and infor-
mation processing from the School of Electronic
and Information Engineering, Anhui University
in 2006. She is currently a Lecturer with the Anhui
University of Computer Science and Technol-
ogy, Hefei, China. Her research interests include
intelligent information processing and pattern
recognition.

BANGYAN ZHOU is currently pursuing the Ph.D.
degree with Anhui University, Hefei, China. She is
also a Lecturer with the Computer Studies Depart-
ment, Anhui University. Her research interests
include Biomedical Signal Processing and Pattern
Recognition.

VOLUME 5, 2017 18003


