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ABSTRACT Measuring perceived quality of audio-visual signals at the end-user has become an important
parameter in many multimedia networks and applications. It plays a crucial role in shaping audio-visual
processing, compression, transmission and systems, along with their implementation, optimization, and
testing. Service providers are enacting different quality of service (QoS) solutions to issue the best quality
of experience (QoE) to their customers. Thus, devising precise perception-based quality metrics will
greatly help improving multimedia services over wired and wireless networks. In this paper, we provide a
comprehensive survey of the works that have been carried out over recent decades in perceptual audio, video,
and joint audio-visual quality assessments, describing existing methodologies in terms of requirement of a
reference signal, feature extraction, feature mapping, and classification schemes. In this context, an overview
of quality formation and perception, QoS, QoE as well as quality of perception is also presented. Finally,
open issues and challenges in audio-visual quality assessment are highlighted and potential future research
directions are discussed.

INDEX TERMS Subjective quality assessment, objective quality metric, multimedia quality, signal-driven

model, audiovisual perception, quality of service, data-driven analysis.

I. INTRODUCTION

The recent evolution of digital communication systems
(e.g., 3G and 4G) has led to an explosion of multimedia ser-
vices and applications, such as IPTV, mobile multimedia on
smartphones, social networking (e.g., Facebook), immersive
multimedia and virtual reality based games, video confer-
encing, and educational multimedia presentations, to name
a few. These multimedia applications now have become an
integral (if not indispensable) part of daily lives, and expected
to grow further exponentially. Multimedia service providers
are formulating various techniques to provide better quality
of experience (QoE), which is increasingly being demanded
by end-users. Thus, human’s opinion about quality is critical
in the design and deployment of any current and future mul-
timedia networks and services [1].

Audio and video are two core modalities in most mul-
timedia applications. Despite recent advances, audio-visual
signals suffer from impairments through both lossy source
encoding and transmission over error prone channels, leading
thereby to degraded quality of the multimedia signal [2]. For
instance, as shown in Fig. 1, a video sample received by the
end user may posses a wide range of quality due to differ-
ent transmission or rendering errors. Accurately estimated
quality of the transmitted audio-visual signals may contribute

hugely in multimedia services and communication networks.
In fact, quality assessment for digital signals is one of the
basic and challenging problems in the field of multime-
dia processing and its practical situations, such as process
evaluation, implementation, optimization of encoding and
decoding, testing and monitoring (e.g., in transmission and
manufacturing sites). Moreover, how to evaluate audio and
video quality plays a central role in shaping most (if not all)
multimedia services, algorithms and systems [3]. Few other
examples of technological dependence upon audio-visual
quality assessment are signal acquisition, synthesis, enhance-
ment, compression, watermarking, storage, retrieval, recon-
struction, rendering, and presentation (e.g., display on mobile
device).

Quality assessment (QA) of an audio, video, or audio-
visual signal measures it’s degradation during acquisition,
compression, transmission, processing, and reproduction.
In today’s highly interconnected digital societies, reliable
quality assessment decidedly helps not only in meeting
the promised QoS (quality of service) but also in improv-
ing the end user’s QoE [4]. QA methods can be cate-
gorized into two broad classes: subjective and objective.
Subjective (perceptual) QA methods are based on groups
of trained (or naive) users viewing multimedia content, and
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FIGURE 1. Examples of video frames with different quality received on user’s mobile device.

providing ratings for quality [9]. However, subjective meth-
ods are time-consuming, laborious and not applicable in real-
time. It is thus imperative to devise computational models
that are able to predict the evaluation of an average observer.
To this end, objective methods have been proposed, which
are based on signal fidelity measures (e.g., signal-to-noise-
ratio) or network parameters (e.g., packet loss rates). Despite
objective audio-visual QA algorithms being computationally
simple and well defined with clear physical meanings, they
have been shown to be poor predictor of perceived qual-
ity because they usually disregard the viewing conditions,
the characteristics of human audio-visual perception, and
not every change in a multimedia content is noticeable, not
each fragment receives the same attention level, and not
every change yields the same extent of perceptual effect with
the same magnitude of change [6]. Therefore, the Interna-
tional Telecommunication Union (ITU) has outlined basic
requirements for objective perceptual multimedia quality
modeling [1].

Multimedia quality assessment can be of first (the multi-
media content maker), second (the subject(s) of a multimedia
sample), or third party (neither the maker nor the subject(s))
level [12]. The main focus of this survey is the perception
of third-party observers, since it represents the most prac-
tical and meaningful situation in applications as well as in
modeling. Though recent progress in developing objective
quality assessment models in line with the human perceptual
system for multimedia services, it is still a long and chal-
lenging odyssey [1], [6], [7] owing to the multi-disciplinary
complex nature of the problem (related to psychology,
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physiology, vision and audio research and computer science),
the limited understanding of the human vision and auditory
mechanisms, and the diversified scope of available applica-
tions and requirements. Moreover, it is easy to notice in the
literature that most published works on quality assessments
have been focused on individual modalities only, i.e., audio
and video independently.

Over the years, several survey papers [6], [10], [11] and
books [4], [9], [12] on quality assessment have been pub-
lished, but with limited scope. For instance, [10], [12] dis-
cussed only video quality assessment methods, while [9], [11]
gives details about audio quality evaluation techniques mostly
focusing on objective quality models. You et al. [6] pro-
vided a review on audio-visual perceptual quality assess-
ment methods. However, they focused mainly on so-called
full-reference quality models (i.e., that require a refer-
ence signal) and coding distortions, thus ignoring several
issues such as quality degradation by packet losses during
transmission and so on. Further, You et al. [6] did not
detail QoS, QoE and QoP (quality of perception), which
have newly emerged and raising great research interest.
This paper significantly differs from the previous arti-
cles as it provides comprehensive overview of the evolu-
tion of multimedia perceptual quality assessment methods
including quality formation and perception, datasets and
current challenges and future research directions. Among
the significant contributions of this survey article, we can
cite:

e A description of quality formation and perception

including various quality influential factors,
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o A general overview of QoS, QoE, and QoP in context of
audiovisual quality assessment,

o A survey of a wide range of audio, video, and audio-
visual quality assessment methodologies following a
systematic categorization with use of reference signals,
and feature extraction and mapping schemes,

o A synopsis of publicly available databases for audio,
video and audio-visual perceptual quality assessment,
and

« A discussion of open issues and future research direc-
tions for uni- and multi-modal quality assessment and
QoE.

The rest of the paper is structured as follows. Section II
discusses quality assessment, perception and formation.
Different quality influential factors are discussed in
Section III. Section IV summarizes the existing QoS, QoP and
QoE methods. Section V presents a survey of existing quality
assessment pertaining to audio, video, and audio-visual chan-
nels. In Section VI, publicly available databases for quality
evaluation purposes are enlisted. Future research directions,
and conclusions are described in Sections VII and VIII,
respectively.

Il. AUDIO-VISUAL MULTIMEDIA QUALITY ASSESSMENT
This section introduces the key notions related to concept of

multimedia quality and its formation and evaluation.

A. DEFINITION OF QUALITY

The notion of quality is an abstract concept and contemplated
as a construct of the mind, which is easy to understand but dif-
ficult to define. In multimedia field, quality is typically used
with an engineering goal in mind due to the fact that quality
is a key criterion to evaluate systems, services or applications
during both design and operation phases [13]. While accord-
ing to QUALINET white paper [15], “quality is the outcome
of an individual’s comparison and judgment process, which
includes perception, reflection about the perception, and the
description of the outcome”. Contrary to definitions/concepts
in which quality is seen as ‘“‘qualitas”™ (i.e., a set of inherent
characteristics), QUALINET considers quality in terms of
the evaluated excellence or goodness, of the degree of need
fulfillment, and in terms of a “quality event”, where event is
an observable occurrence and determined in space (i.e., where
it occurs), time (i.e., when it occurs), and character (i.e., what
can be observed) [15].

Fundamentally speaking, quality is the outcome of a
human judgment based on various criteria. Some of them can
be based on measurable intrinsic information of the signal,
while others are based on cognitive processes thereby usually
unmeasurable. Namely, quality can be conceived of as an
umbrella term, since several variables contribute to form a
cognizance of quality. For instance, for audio quality, covari-
ates such as listening effort, loudness, pleasantness of tone
and intelligibility are vital. For visual and audiovisual quality,
in turn, factors such as image size, frame rate, and packet loss,
degree of audio-visual synchronization, respectively, play a
crucial role.
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Quality can be gauged both at the service provider or
user sides. QoS and QoE describe aspects related to the
acceptability of a service and degree of sentiment of a person
experiencing an application, system, or service, respectively.
Understanding human (quality) perception processes would
help to apprehend how the quality impression is created in
the mind of the user. Therefore, in the following subsection
we discuss the human perception process.

B. QUALITY FORMATION PROCESS

A critical design goal for an audio-visual multimedia
coding/transmission/decoding/display system is to produce
audio and video signals of quality to be acceptable and
pleasant to the human observer. It is well known that the
formation of quality hugely depends on the human perception
process [4]. There are various theories and studies attempt-
ing to describe how humans perceive physical events via
their sensory system [16], [17]. Understanding how human
observers view/hear, interpret and respond to visual/audio
stimuli would help to formulate not only design principles for
audio/video encoding, decoding and display but also methods
for their perceived quality evaluation. Human quality percep-
tion may be defined as a conscious sensory experience and
process made of low-level sensorial and high-level cogni-
tive processing levels [16]. The physical stimulus or signals
(e.g., a sound wave for an auditory signal) are converted
into electric signals for the nervous system by the low-level
sensorial processing level. In turn, the conscious processing
(i.e., interpretation and understanding) of the neural signals
are carried out by high-level cognitive processing to form a
perceived quality judgment. Though, quality judgment orig-
inates from the neuronal processing of a physical stimulus,
it is also influenced by contextual information (i.e., physical
environment), other modalities, mental states (e.g., mood,
emotions, attitude, goals, intentions) and previous knowledge
or experiences.

Visual perception is the ability to interpret the surround-
ing environment through what we see. Due to great com-
plexity, many theories regarding the relationships among
visual psychological phenomena are in the hypothesis stage.
However, several studies have shown that luminance non-
linearity, contrast sensitivity, masking effects, multi-channel
parallel and visual attention are necessary building blocks of
visual perception [19], [20]. Visual attention refers to a cog-
nitive operation that selects relevant and filters out irrelevant
visual information. Existing visual attention theories can be
grouped into space-based (i.e., attention is directed to discrete
regions of space within the visual field) and object-based
(i.e., attention is directed to the object, rather than its location
per se). From a Psychology point of view, visual attention
can be either bottom-up saliency (i.e., influenced by low-
level features of the environment/target) or top-down saliency
(i.e., influenced by person’s cognitive processing).

Auditory perception is regulated by two prominent ele-
ments, i.e., masking and binaural hearing [21], besides atten-
tion. Auditory masking is a perceptual event in which subject
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cannot respond in the presence of one perceived auditory
stimulus to another one (i.e., generally lower level signal).
While, the perception of the direction of a sound source
in the space including blur of a sound is feasible due to
binaural hearing. It has been experimentally proved that
the differences in the intensity and timing of sounds per-
ceived by both ears are exploited as cues for directional
perception [19].

On the whole, like many functions of the nervous sys-
tem, there exist several unproven audio and video perception
theories. However, there are two main processing schemes
(which are commonly adopted in the literature as well as in
the practice): bottom-up and top-down. It is believed by the
bottom-up and top-down processing theorists that low-level
sensory information and higher-level cognitive processes,
respectively, are the most vital determinants of what humans
perceive; while some scientists state that the truth may be
lying somewhere in between.

C. QUALITY ASSESSMENT
There are basically two categories of quality assessment (QA)
methods, namely the subjective methods that involve human
observers to assess the quality of multimedia contents, and
objective methods that compute the quality automatically
using mathematical models.

1) SUBJECTIVE QUALITY ASSESSMENT

In order to reliably measure the perceived quality by human
auditory and/or visual systems, subjective tests are performed
where groups of trained or naive human observers provide
quality ratings [1]. This evaluation procedure is known as
subjective quality assessment that seeks to quantify range of
opinions that users express when they see/hear the digital
content. Subjective quality assessment is carried out gener-
ally in a well-controlled environment using standardized rec-
ommendations (e.g., International Telecommunication Union
Radiocommunication Sector [ITU-T] guidelines). Subjective
quality assessment can be categorized as double stimulus or
single stimulus methods. In double stimulus methodology,
subject is presented with the source and test samples to
evaluate their qualities. In single-stimulus methodology, the
subject is presented with the test only without the source as
reference to evaluate quality. The single-stimulus method-
ology is more useful in realistic test environment, such as
conversational tests in which two subjects interactively listen
and talk through transmission system under evaluation to
provide quality. The scale for rating can be either numerical or
categorical, and either continuous or discrete. The rating can
be obtained after or during stimulus presentation to acquire
overall quality or temporal quality variations, respectively.
Generally, the absolute category rating (ACR) is employed
asking users to make a single rating for the test sample using
ITU recommended 5-point category scale ranging from ‘bad’
to ‘excellent’ as depicted in Fig. 2. The final quality score is
obtained by averaging the rating values registered by multiple
subjects, which is referred as mean opinion score (MOS)
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FIGURE 2. The ITU recommended ACR quality measurement scale. Human
observers are usually asked to rate the digital multimedia sample in
terms of annoyance, where annoyance is a measure of how ‘bad’ the
observer believe impairment is; as annoyance value is correlated with
strength of the impairment.

and difference mean opinion score (DMOS) for single- and
double-stimulus methodologies, respectively [6].

To study the impact of environmental or contextual fac-
tors on MOS, an international experimental study using
10 datasets from different laboratories was conducted in [23].
The study concluded that the performance obtained from
24 users under a controlled environment was analogous to
the one obtained from approximately 35 users under a pub-
lic environment. Though subjective quality assessment tech-
niques can reliably determine the perceived quality, they are
time consuming, expensive, laborious, not instantaneous, and
could not be incorporated in adaptive systems that adjust
their operating parameters automatically based on measured
quality feedback. Moreover, subjective ratings usually have
high variance between subjects possibly due to different
expectations/experiences of technology, viewing/hearing dis-
tance, digital media player, subject’s mood and vision/hearing
ability.

2) OBIJECTIVE QUALITY ASSESSMENT
Although subjective quality assessment provides reliable
human perception quality cues, it cannot be applied in real-
time in-service quality evaluation. Thus, objective quality
assessment methods have been developed to replace the
human panel by a computational model for predicting results
of a subjective test. Namely, the goal of objective quality
assessment is to automatically estimate MOS values, which
are as close as possible to quality scores obtained from
subjective quality assessment [9], [10], [24]. The numerical
measures of quality obtained from the objective method (also
referred to as objective or predicted MOS) are expected to
better correlate with human subjectivity. There are various
metrics to measure the relationship between subjective MOS
and predicted MOS. Two most common statistical metrics
used to report the performance of objective quality assess-
ment methods are ‘Root Mean Square Error (RMSE)’ and
‘Pearson Correlation’. An objective quality assessment algo-
rithm having a high correlation (usually greater than 0.8) is
apprised as efficacious [13].

Two main advantages of objective quality assessment
usage are defining meaning of MOS for a given application
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(i.e., people know what a MOS of 3 means in terms of
quality), and reproducible MOS prediction (i.e., different
people utilizing the tool for the same test samples obtain the
same results). Objective quality measurement techniques can
be classified into five groups, as per the ITU recommenda-
tion, based on the type of input data being utilized by the

metrics [13], [25]:

i Media-layer models—The models in this category do not
require any information about the system in question. Par-
ticularly, these models utilize only audio or video samples
to estimate the quality, and can be applied to applications
such as codec optimization and codec comparison.

it Parametric packet-layer models—The solutions to pre-
dict quality in this group are lightweight since parametric
packet-layer models have to only process the packet-
header information without dealing with the media
signals.

iii Parametric planning models—These models employ
encoding and networks parameters to predict quality.
Thus, they demand a priori knowledge about the system
in question.

iv Bitstream-layer models—These models predict the qual-
ity using encoded bitstream and packet-layer information
that is utilized in parametric packet-layer models.

v Hybrid models—The models in this class usually inte-
grate two or more of the above-mentioned models.

On the other hand, objective quality assessment tech-
niques can also be classified into three categories: full-
reference (FR), reduced-reference (RF) and no-reference
(NR) according to the availability of the reference (origi-
nal/ideal), partial information about the reference, or no ref-
erence for evaluating quality, respectively.

Reference Medium

Quality

uality Measure
Distorted Medium Assessment Q Y

Reference Medium
Distorted Medium

Distorted Medium

(2)
Fea@e Quality Quality Measure
Extraction Assessment
(b)

Quality

Quality Measure
Assessment

(©)

FIGURE 3. Overview of (a) Full-reference method, (b) Reduced-reference,
(c) No-reference method.

FR methods measure the impairment in the test signal with
respect to a reference signal, thereby requires availability of
entire original signal. Though it provides a highly accurate
objective quality assessment owing to the use of original
signal (as shown in Fig. 3a), this is considered expensive
and often not applicable for all services and applications,
e.g., IPTV monitoring. RR methods evaluate the quality by
comparing a small amount of respective features extracted
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from reference and test samples. Since the RR methods utilize
information from source signal, they are fairly precise but
less than FR methods. Both FR and RR are vital for non-
real-time quality monitoring. NR methods predict the quality
using only the test signal without the requirement of an
explicit reference signal. Since these methods do not need
the reference signal and make assumptions about the multi-
media content and types of distortions, they are less accurate.
With respect to reference requirements, FR and RR are also
termed as double-ended, while NR as single-ended metrics.
In addition, depending on usability, objective methods can
also be categorized as out-of service and in-service methods.
In the former, no time constraints are placed and the original
sequence can be available. In the latter, time constraints are
placed and quality is evaluated during streaming.

3) AUDIOVISUAL QUALITY ASSESSMENT (AVQ)

The psychophysical processes responsible for the perception
of uni-modal stimuli (i.e., audio or video) have been exten-
sively studied and well accepted. However, little research
on audiovisual quality perception (i.e., a multimodal process
involving both human visual and auditory systems) has been
conducted leading to the lack of theoretical and practical
understandings of perceived multimodal quality. In other
words, from a engineering point of view, it is still unknown
how to most efficiently model the perception of audiovisual
quality. Likewise, from a neurophysiological point of view,
there is a long way to go to answer the question ‘for mul-
timodal quality processing, at what stage is the information
originated from various brain’s functional areas and how are
they aggregated?’

Although detailed understanding of low-level multimodal
quality perception is yet available, some experimental analy-
ses have observed that there is a noteworthy mutual influence
between auditory and visual stimuli in the overall perceived
quality [13], besides other factors (e.g., audio-visual con-
tent itself) that are detailed in Section III-A. According to
the well-adopted ‘late fusion’ theory, the audio and visual
modalities are internally processed to yield individual audi-
tory and visual qualities, which are then integrated towards
the end stages of the overall perceived quality estimation
procedure. It seems rational to utilize relatively matured audio
and video perceptual quality measures as primary inputs to
the AVQ models. As depicted in Fig. 4, the elementary inputs
to perception-based multimodal quality assessment model are
derived from independent psychophysical based audio and
video quality assessment modules. The multimodal fusion
schemes are then applied to individual base information from
elementary inputs (modalities) to produce perceived multi-
modal quality. As such, the choice of fusion rule(s) is a very
decisive and vital for design and performance of AVQ meth-
ods. A fully functional AVQ model is expected to account for
different quality attributes (e.g., spatial-temporal properties),
other influential factors and missing data issue (i.e., when
any (or more) of the unimodal input is missing). There can
be seven combinations of stimulus types and quality assess-
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FIGURE 4. Basic multimedia quality estimation model.

TABLE 1. Quality estimation for seven different presentations.

Stimuli | Assessment

Audio Audio quality
Audio Audiovisual quality
Video Video quality
Video Audiovisual quality

Audio + Video
Audio + Video
Audio + Video

Audio quality
Video quality
Audiovisual quality

ment tasks, as presented in Table 1. For instance, Stimuli—
Assessment:Audio—Audiovisual quality pair indicates the
audiovisual quality when information from video modality
is missing and only audio stimulus is present. Since audio
and visual information play most dominant roles in perceived
audiovisual quality, therefore the multimodal quality is com-
monly derived by a linear combination and a multiplication
using audio and video qualities as:

Oav = ag +a104 + a2Qv + azQ4a0v (D

where Qav, Q4, Qv and {ay, ai, az, a3} are predicted audio-
visual quality, audio quality, video quality and weights,
respectively. Though aqp is irrelevant to the correlation
between the predicted and perceived qualities, it improves
the fit in terms of the residual between them. It is also
worth noticing that the multiplication of Agp and Vy has high
correlation with the overall predicted quality [6].

1Il. AUDIOVISUAL MULTIMEDIA QUALITY:

FACTORS AND DEGRADATION

This section describes the factors that may influence quality
of audio or/and visual samples. Further, audio and visual fea-
tures that are commonly utilized in objective quality assess-
ment are studied.

A. FACTORS INFLUENCING AUDIOVISUAL
MULTIMEDIA QUALITY
For better assessment algorithms, it is appreciated to under-
stand complex and strongly interrelated factors that impact
user interaction behaviors as well as perceived quality. Some
factors are inevitable, while some are due to inherent lim-
itations of the multimedia signal itself. These factors can
be grouped into three categories: human, technological and
contextual influential factors.

o Human Influential Factors: encompass variant or invari-

ant characteristics of the human user that may impact
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quality judgment, which includes physical/mental con-
stitution/emotional state, demographic, and socio-
economic background. These attributes are either
static (e.g., gender, age) or dynamic (mental states,
motivation). The user factors may take part in sensory
or/and cognitive quality processes. The early sensory
(i.e., low-level) quality process is affected by user’s
physical, emotional and mental states, e.g., user’s audi-
tory acuity, user’s mood, and attention. The cognitive
(i.e., higher-level/top-down) quality process relates to
the interpretation of stimuli based on user’s knowledge
and background that include individual’s need, motiva-
tion, preference, and so on.

o Technological Influential Factors: encompass agent
(an interaction partner) and functional factors of the
system. The examples of agent factors are techni-
cal attributes (e.g., speech recognition). The exam-
ples of functional factors are functional capabilities
(e.g., number of tasks) and domain characteristics
(e.g., entertainment system). The system factors may
be further divide into four classes as network-related
(i.e., associated to data transmission over a network, e.g.,
bandwidth), device-related (i.e., associated to
communication end system/device, e.g., high reso-
lution smartphone), media-related (i.e., associated to
media configuration, e.g., frame rates) and content-
related (i.e., associated to amount of media information,
e.g., voice/spoken vs musical contents).

o Contextual Influential Factors: encompass physi-
cal environment (e.g., office) and service factors
(i.e., non-physical system attributes, e.g., system access
restrictions). The context factors can also be broken
down as physical context (i.e., location and space char-
acteristics, e.g., peaceful/noisy place), temporal con-
text (i.e., experience’s temporal aspect, e.g., month
June or spring season), social context (i.e., interrela-
tionship among users, e.g., hierarchical dependencies
like boss and employee), economic context (i.e., busi-
ness perspective, e.g., cost per usage), task context
(i.e., experience of user for perceived quality, e.g., effect
of multitasking while quality rating), and technical
and information context (i.e., relationship between the
involved or optional systems and devices, e.g., intercon-
nectivity of devices over Bluetooth). Table 2 presents
some possible causes of each of the aforementioned
quality factors.

B. DEGRADATIONS OF AUDIO AND VISUAL SIGNALS

In order to better understand audiovisual quality assessment
it might be helpful to closely inspect the different artifacts
that commonly manifest in audio and video signals. The
audio/visual degradations are manifested by the properties of
the signal capture device, encoding, decoding, compression
or transmission mechanism, or end device being used by the
human subjects. The typical examples of visual degradations
are blurring (i.e., loss of spatial information or edge sharpness
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TABLE 2. Summary and examples of potential quality influential factors.

| Explanation

Factors | Examples

Human Influential Factors

Low-level:
physical Gender, age, visual or auditory acuity
emotional Mood
mental Attention level

High-level:
understanding Socio-cultural background, socio-economic state
interpretation Goal, motivation
evaluation Previous experiences and knowledge, skills

Each user has their own perception
towards a multimedia quality based
on individual expectation and attitude.

Technological Influential Factors
Content-related

Media-related

Network-related

Audio bandwidth, dynamic range, video motion and detail
Encoding, resolution, sampling rate, frame rate, synchronization
Bandwidth, delay, jitter, loss, error rate, throughput

Attributes, properties and
characteristics which dictate the
technically produced quality of
a service or application.

Contextual Influential Factors
Physical context

Temporal context

Social context

Economic context

Task context

Technical or

informational context

Time, periodic cycle of use
Inter-personal relations
Costs, subscription type, brand

Compatibility, interoperability

Location, space, environmental characterstics, motion

Nature of experience, task type, interruptions, parallelism

Describes situational ambient properties

to indicate how a user may perceive the
multimedia content, since perceived quality
varies according to when, where, and with
whom the media is exploited.

due to incorrect focus, motion or context factors), edginess
(i.e., the distortions happened at the edges), motion jerkiness
due to jitter (i.e., time-discrete intermission of the original
continuous, smooth scene), blockiness (i.e., discontinuity at
the boundaries of two adjacent blocks owing to video coding
schemes), jerkiness (i.e., non-fluent and non-smooth presen-
tation of frames), flickering (i.e., noticeable discontinuity
between consecutive frames), color bleeding (i.e., smearing
of colors between areas of differing chrominance), ringing
(i.e., shimmering effect around high contrast edges) illumi-
nation, and color naturalness (affected by color rendering).
The typical examples of audio degradations are loudness
(i.e., a psycho-physiological attribute correlating of physi-
cal strength), reverberation, naturalness, pitch fluctuations,
distortion, and delay. Spatial or temporal misalignment or
unsynchronization, in turn, is most vital degradation in audio-
visual multimedia content. Alignment between degraded and
original audio-visual signals, and synchronization of audio
and video channels more considerably affect objective quality
assessment than subjectively [6]. Hollier and Rimell [27] and
Peltoketo [28]conducted several experimental studies on tem-
poral asymmetry with different stimuli samples considering
audio-visual communications systems. They pointed out that
audio cannot lead the visual stimuli/percept owing to the
difference in sound and light travelling rates. The findings
in [27] and [28] have hugely influenced the synchronization
thresholds recommendation in ITU-T J.100 [29], which are
40 ms for video lead and 20 ms for audio lag.

IV. QUALITY OF SERVICE, QUALITY OF EXPERIENCE

AND QUALITY OF PERCEPTION

Recently, research and industry have been shifting towards
encompassing the end user as the most prominent fac-
tor in the multimedia quality assessment to attain broader
aspects, such as Quality of Experience (QoE) or Quality of
Perception (QoP) rather than only Quality of Service (QoS).
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This section discusses the underlying concepts of QoS, QoP,
and QoE.

A. QUALITY OF SERVICE (QoS)

QoS is often used to express the performance level of mul-
timedia applications and networks. The QoS de-facto def-
inition generally used in the literature based on physical
and measurable performance factors of networks including
delivery platforms is ““a collection of networking technolo-
gies and measurement tools that allow for the network to
guarantee delivering predictable results [13]”’. The term QoS
is usually utilized with two different meanings. First, it
refers to the concepts and measures of network performance
(e.g., jitter, delay). Second, it refers to mechanisms such as
Integrated Services. Several characteristics, such as perfor-
mance, responsiveness, availability, adaptivity, dependability,
security and application aspects are involved to form the
QoS. Due to heterogeneities of the applications, QoS has
been explained diversely in independent publications. In this
section, we aim to systematically present the QoS taxonomy,
influencing factors and performance aspects. Considering
multimedia end-to-end architecture, QoS can be divided into
three layers: user, application, and resource.

1) USER-LAYER

A user-layer QoS specification is required, so that at the start
a user can specify, at abstract level, the QoS requirements,
e.g., frame and sampling rates, resolution, cost, and security
criteria, perhaps using a GUI. At the end, he/she can provide
perceived QoS parameters, such as multimedia content detail,
resolution, etc.

2) APPLICATION-LAYER

Once the users have specified their requirements, the next
stage is to translate and map those requested QoS to lower
layer parameters. This layer is known as application-layer
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that normally makes no assumption regarding operating sys-
tems and network conditions, thus is hardware and platform
independent. There are two types of features that are used at
the application-layer, i.e., performance-specific (quantitative
parameters, e.g., resolution) and behavior-specific (qualita-
tive parameters, e.g., how to manage the service in case of
any network bandwidth issue). A specification language is
used to provide definite notions to system designer to avoid
misconception and time consumption.

3) RESOURCE-LAYER

QoS requirements are specified in a high-level abstract man-
ner, which are then translated into more concrete resource
demands, i.e., description of physical resources needed for
the application including their allocation, mechanisms and
transport protocols. The resource-layer specifications can be
classified into coarse granularity and fine granularity cat-
egories. The coarse granularity expect a meta-level speci-
fication, where generally resource-layer QoS specifications
only specify resource requirements without allocation time
or detailing resource instances. The fine granularity expects
concrete descriptions of required resources, which include
explicit narration of quantitative and qualitative QoS require-
ments, allocation time and adaptation rules.

As also discussed in Section III, QoS is influenced by
system as well as user factors. Thus, QoS performances can
be evaluated at the system and the user side during the quality
formation process. At the system side, the performance can
be quantified in terms of input performance (i.e., accuracy
of biometrics/emotion/behavior recognizers), input modal-
ity appropriateness (i.e., theoretical knowledge of modality
properties and its aptness according to environment), inter-
pretation performance (i.e., accuracy of underlying semantic
concepts), dialogue management performance (i.e., count-
ing of dialogue success rate), contextual appropriateness
(i.e., quantification of Grice’s Cooperativity Principle), out-
put modality appropriateness (i.e., interrelations between
modalities) and form appropriateness (i.e., the output pro-
vided to the user which can be measured via its intelligibil-
ity, comprehensibility, etc.). At the user side, the interaction
performance can be quantified by efforts (i.e., perceptual,
cognitive and physical) required from the user and freedom
of interaction.

B. QUALITY OF PERCEPTION (QoP)

QoS describes technical quality of system but neglects the
fidelity and utility aspect from users. Thus, to address this
limitation, Ghinea and Thomas [181] introduced the notion of
Quality of Perception (QoP) and defined it as “QoP is a term
which encompasses not only a user’s satisfaction with the
quality of multimedia presentations, but also his/her ability
to analyze, synthesise and assimilate the informational con-
tent of multimedia displays”. Defining multimedia quality
using only either subjective or objective factors is insuf-
ficient because of multidimensional nature of multimedia,
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therefore QoP combines both subjective evaluation based
on first part of the definition, i.e., user’s satisfaction with
the quality of multimedia presentations (denoted as QoP-S),
and objective one based on second part of the definition,
i.e., user’s ability to analyze, synthesize and assimilate the
informational content of multimedia (denoted by QoP-IA).
QoP-S is made of two components, i.e., QOP-LOE (user’s
level of enjoyment while experiencing multimedia content)
and QoP-LOQ (user’s judgement concerning the objective
level of quality assigned to the multimedia content being
experienced). Specifically, QoP-IA usually expressed as a
percentage measure to reflect a user’s level of information
assimilated from experienced multimedia content. While,
QoP-LOE and QoE-LOQ are obtained by users’ traditional
rating methods. Authors in [182] investigated effect of vary-
ing multimedia presentation frame rates on user’s QoP and
eye paths. The presented results show that higher frame rates
normally do not lead to higher QoP or level of participant
information assimilation, besides not influencing median
coordinate value of eye path either. But, it does enhance over-
all user enjoyment and quality perception. Apteker et al. [183]
studied video at varying bandwidths and frame rates to deter-
mine user QoP termed as ‘user watchability’. In this work,
it was explicitly found that content of video and fidelity
remarkably impact QoP.

C. QUALITY OF EXPERIENCE (QoE)

User satisfaction and perception are shaped by various other
aspects, which may/may not necessarily be regulated by
the performance of specific service components. Therefore,
recently the term Quality of Experience (QoE) has been
introduced to describe how a user perceives the usability,
acceptability and satisfaction of the service [4]. QoE goes
beyond conventional end-to-end QoS integrity parameters to
cover a multitude of different aspects (e.g., user’s mental
state) to improve the experienced quality by the user. Namely,
QoE is the perceptual QoS from perspective of the users.
In [13], QoE is stated as ‘“‘the degree of delight or annoyance
of a person whose experiencing involves an application, ser-
vice, or system. It results from the person’s evaluation of the
fulfilment of his or her expectations and needs with respect
to the utility and/or enjoyment in the light of the person’s
context, personality and current state”.

QoE is determined by psychological as well as cognitive
determinants, e.g., habits, feelings, requirements and expecta-
tions. It is paramount to obtain quantified QoE by translating
system’s performance together with users’ perception in the
form of statistical and interpretable values. The quantified
QoE can be obtained employing either ‘direct QoE mea-
surements’ (i.e., rating done by real subjects; also called
subjective QoE) or ‘indirect QoE measurements’ (i.e., log-
ging user behavior and relating it to perceived QoE; also
called objective QoE). In the latter category, use of physio-
logical measures have been recently investigated in several
studies [167].
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1) SUBJECTIVE QoE ASSESSMENT METHODS

Since human consumers are the ultimate judges for any
multimedia content/service, for optimization and analysis
subjective QoE assessment methods are usually carried
out by surveying, interviewing, and statistical sampling
of users/customers for their perceptions, requirements, and
quality. Broadly speaking, subjective QoE studies can be
labeled as qualitative or quantitative techniques. The qualita-
tive techniques capture human perceptions, feelings and opin-
ions through verbal behaviors, e.g., comments on blogs. The
quantitative techniques capture human perceptions, feelings
and intentions through numbers and statistics.

2) OBJECTIVE QoE ASSESSMENT METHODS

Objective QoE assessment methods are grouped into QoS
(technology) centric or human cognitive (physiological) cen-
tric techniques. As a former group’s approach, most of the
time perceptual-based (objective) quality assessment meth-
ods for audio, video and audiovisual signals discussed below
in Sections V-A, V-B, and V-C are applied to quantify
the QoE. Anyway, Skowronek and Raake [168] specifi-
cally investigated the relationship between number of inter-
locutors, cognitive effort and perceived QoE of multimedia
conferencing and telemeetings. They found that better tech-
nical solutions causes less cognitive efforts and better QoE.
Adaptive video streaming protocols have been proposed
in [169] to achieve better QoE over multimedia wireless
networks that schedules video chunks and their qualities at
given time. Wang and Dey [170] devised a mobile gaming
user experience (MGUE) model to quantify user’s QoE using
cloud mobile gaming (CMG). Other studies attempted to
identify the relationship between QoE and QoS. For instance,
an expression to capture the exponential relation between the
QoE and QoS parameters was proposed in [171]. Particularly,
QoE is expressed as a function of loss and reordering ratio
caused by jitter, and considered that the change of QoE is
based on the current level of QoE such that same amount of
change in QoS value happens with different sign, as shown
in (Eq. 2):

dQ0E
3008

~ (QoE —y). @

Similarly, Shaikh et al. [172] defined a linear relationship
between the QoE and multiple QoS parameters such as band-
width, throughput and delay on the QoE as:

log(QoE)=agy + a1QoS1 + a2Q08> + ... + a,Q0S,,. 3)

Finally, the QoE/QoS exponential correlation was mod-
elled by applying an exponential transformation on (Eq. 3) as:

QOE — % + ealQ0S1+a2Q0S2+...+anQ0S,,’ (4)

where constants a; were estimated by the least squares
method. Alberti ef al. [173], in turn, defined the relation-
ship between QoE and QoS parameters as non-linear by the
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following expression:

N—-1

QoE = Z aiQOSfi, (5

i=0
where a; are the constants and k; are the exponents for N
parameters.

TABLE 3. Comparison of different neuroimaging technologies.

Method | Neuronal | Hemoglobin | Time Spatial Subjects
‘ Activity Dynamics Resolution | Resolution | Mobility
EEG Yes No ms cm Yes
MEG Yes No ms cm Limited
fMRI Yes Yes S Imm Limited
NIRS Yes Yes ms 10mm Yes

The approaches in the cognitive centric group try to use
neurophysiological insight for perceived QoE through human
body area sensors and networks using techniques, such
as electroencephalography (EEG), magnetoencephalogra-
phy (MEG), functional magnetic resonance imaging (fMRI),
and near-infrared spectroscopy (NIRS). The EEG and MEG
data provide high time resolution, while fMRI and NIRS
provide good spatial resolution but poor temporal resolu-
tion [174], [175], as presented in Table 3. Although each
physiological/cognitive centric technique has its strengths
and weaknesses, they provide precise quantitative informa-
tion about human behavior and perceived QoE. Thus, studies
on fusion of cognitive centric and existing quality assessment
methods have received a recent spurt by the research com-
munity. For instance, it was reported in [177] that NIRS and
physiological biosignal sensors may be used to characterize
subjective image preferences with up to that 72% accuracy.
Arndt et al. [178] and Moldovan et al. [179] utilized EEG to
correlate perceived quality of videos with varying properties.
Likewise, [167], [175], [176], [180] investigated user’s EEG
signals to characterize speech/audio QoE. Particularly, the
study in [176] showed that measuring human affective states
is important for objective measurement of perceived QoE.
The studies [167], [175] concluded that speech quality is
inversely proportional to EEG feature (perceived QoE).

Immersive 360-degree virtual reality (VR360) applica-
tions are burgeoning and users interact with virtual elements
in 3D environments created by VR techniques. Particular
devices, e.g., head-mounted displays, stimulate 3D sight,
hearing and touch. Usually, in VR360 the simulated envi-
ronment is built by real-time dynamic 3D stereo/Binocular
and binaural rendering. Up to some extent, VR QoE may be
defined as a compelling and immersive experience, which
does not drive the user sick. Traditional objective QoE meth-
ods can not be applied directly for VR QoE. Recently,
few works have focused on VR360 QoE assessment. For
instance, Zhou et al. [110] devised a stereoscopic images
quality assessment method based on disparity map, which
can be used not only for three dimensional multimedia sys-
tems but also for 3D image/video broadcasting. In turn,
Rozenn et al. [198] studied how to evaluate QoE of 3D
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TABLE 4. A representative list of audio quality assessment algorithms. CC: Correlation Coefficient; RMS: Root Mean Squared Error; AES: Absolute Error

Score.
Category Method Feature description Database Figure of | Year
merit
PSQM [52] Time synchronized spectral power densities CCITT LD-CELP CC 1994
on frames
PEAQ [36] Fast Fourier transform and filter bank-based MPEG90, MPEGY1, CC, AES 2001
models for masking ITU92DI, ITU92CO,
ITU93, MPEGY5,
EIA95, CRC97
Intrusive methods PESQ [57] Perceptual frgquencies and compressive ITU-T P-series CC 2001
loudness scaling
POLQA [59] Disturbance density (additive distortions NB_BT_P862_BGN_ENG, CcC 2011
and subtracted distortions) ‘WB_GIPS_EXP3,
SWB_48kHz303_OPTICOM
ViSQOL [46] Spectro-temporal short-term fourier transform IEEE Harvard Speech Corpus CcC 2012
spectrogram
AutoMOS [60] Recurrent long short-term memory cells Corpus of Google’s TTS engines | CC, RMS | 2016
PLP [66] Perceptual linear prediction coefficients Bell Lab CC 1995
and vector quantization
ANIQUE+ [200] | Frame, mute and non-speech distortions Private datasets CcC 2005
POSQE [69] Vector quantization and self-organizing map Nortel Networks CcC 2010
Nonintrusive methods | HASQI [74] Linear and nonlinear measurements of envelope Private dataset CC 2010
and temporal fine-structure modifications
SRMR [70] Auditory-inspired modulation filterbank analysis | IEEE sentence corpu CC 2014
PREQUEL [77] Acoustic output and binaural recordings with a Private dataset CC 2016
head and torso simulator

audio binaural rendering. Perrin et al. [199] predicted sense of
presence as a variant of QoE in immersive audiovisual com-
munications by using also physiological signals (i.e., EEG,
ECG (electrocardiography), and respiration). Likewise, [200]
evaluated heart rate and electrodermal activity as an objective
QoE parameter for immersive VR environments. Besides
VR360, in the past few years, high dynamic range (HDR) and
high frame rate (HFR) applications have also emerged and
their QoE assessment has turned into emerging research top-
ics. Representative examples of works on HDR/HFR quality
assessment include those reported in [13], [145], and [191],
where authors investigated subjective quality assessment
experiment on videos compressed at different frame rates,
quantization levels and spatial resolutions. The progress on
perceptual QoE of VR, HDR and HFR remains limited, how-
ever, thereby making it difficult to assess the exact gain by
switching from 2D to 3D or from low to high frame rates.

V. AUDIO, VIDEO AND AUDIOVISUAL MULTIMEDIA
QUALITY: EXISTING ASSESSMENT METHODS

AND METRICS

In this section, a comprehensive overview of perceptual
(objective) quality assessment methods for audio, video and
audiovisual multimedia signals are presented. Each signal
type (i.e., audio, video, and audiovisual) is addressed in a
different subsection (i.e., Sections V-A, V-B, and V-C). This
way, the reader can gain a more clear perspective of the cur-
rent panorama in the field of multimedia perceptual quality
assessment.

A. STATE-OF-THE-ART IN AUDIO QUALITY ASSESSMENT

Sound can generally be categorized into two groups as
high-fidelity audio (i.e., all kinds of sound) and speech
(i.e., language content). It is of fundamental importance
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to measure sound quality! in several applications to meet
human user’s quality expectations and feelings. Aside from
the widely used ACR scale, another popular subjective
method is the double blind Multi Stimulus with Hidden
Anchor (MUSHRA) [31], adopted as a ITU-recommendation
(ITU-R BS.1534) [9]. In turn, audio objective quality assess-
ment algorithms can be broadly classified into three classes:
intrusive (also known as full-reference, comparison-based, or
input-to-output), nonintrusive (also known as no-reference,
output-based or single-ended) and parametric (also known
as planning or glass box) methods. A brief description of
representative audio quality assessment methods is presented
in Table 4.

1) INTRUSIVE METHODS

Intrusive models compare an original signal with a degraded
signal under test. The published works on intrusive methods
can be further sub-classified as psychoacoustic and cogni-
tive/perceptual models.

a: PSYCHOACOUSTIC MODELS
According to the domain transformation utilized, psychoa-
coustic models are grouped into two clusters: time domain
and spectral domain measures.

a.l: TIME DOMAIN MEASURES

Time domain analysis is useful mostly for analog or wave-
form coding systems where target is to reproduce the wave-
form. The signal-to-noise ratio (SNR) and total harmonic
distortion (THD) [11] are well-known examples of time
domain measures in which signals are time aligned to

n this article, we use the terms audio quality and sound quality inter-
changeably, unless explicitly stated otherwise.
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compute the noise and corresponding quality. Different vari-
ants of SNR measures have been presented in the litera-
ture, e.g., segmental SNR (SNR measurement over short
periods), frequency weighted segmental SNR (different
weights for different frequency bands), granular segmental
SNR (for granular noise), noise-to-masked ratio (i.e., level
difference between masked threshold and noise signal),
signal-to-interference ratio (SIR), signal-to-distortion
ratio (SDR), and signal-to-artifact ratio (SAR) [9]. Though
SNR measures are good estimators for waveform codecs
audio quality, they are poor estimator of subjective audio
quality especially under a larger range of distortions [14].

a.2: SPECTRAL DOMAIN MEASURES

Spectral domain measures are more practical since they are
less sensitive to time misalignments and phase shifts in
the signals. In recent years, several spectral domain based
audio quality evaluation schemes have been proposed, e.g.,
psychoacoustic model of PEAQ (perceptual evaluation of
audio quality; ITU standard for audio quality (BS.1387) [32].
Specifically, PEAQ transforms the time domain signals into
a frequency basilar membrane representation via Fast Fourier
Transform (FFT) to model outer and inner ear, and/or fil-
ter bank-based models to model human ear with backward
masking to obtain perceived quality estimation. A novel
method that models sound pressure levels and tracks tem-
poral maskers frame to frame with boundary detection was
presented in [33]. Huber and Kollmeier [34] proposed a
technique named PEMO-Q that maps the internal ear rep-
resentation via psychoacoustically validated model of audi-
tory processing for internal ear representation. The reported
results showed better accuracy than PEAQ for a wide range
of distortions except linearly distorted signals. Other notable
spectral domain audio quality assessments works are LLR
(log likelihood ratio) based on speech production mod-
els [35], Itakura-Saito distortion measure (i.e., a variant
of LLR) [14], cepstral distance based on linear prediction
coefficients [36], DIX (disturbance index) based on temporal
resolution analysis using filter bank [37], NCM (Normalized
Covariance Metric based on covariance between auditory-
inspired envelopes of the clean and processed signals) [38],
STOI (Short-Time Objective Intelligibility like NCM but
over short time frames including both signals are time-
aligned) [39], MSSIM (mean structural similarity of spectro-
gram of frequency) [40], NSIM (Neurogram Similarity Index
Measure based on responses from auditory nerves) [41],
ViSQOL (Virtual Speech Quality Objective Listener based
on spectro-temporal-Short-term Fourier Transform (STFT)
spectrogram—measure to account for human sensitivity to
degradations in speech quality) [42], and VISQOLAudio
(an extension of ViSQOL to increase the hearing frequency
bandwidth) [43]. Generally speaking, spectral domain mea-
sures are mostly related to speech codecs design and speech
production models, thus their performance is limited by
the constraints of the speech production models as well as
models’ failure.
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b: COGNITIVE/PERCEPTUAL MODELS
The work in [44] is one of the very first attempts to devise
a perceptual-based audio quality assessment. The proposed
method is based on auditory spectrum distance (ASD) model
that compares time frequency and loudness representation of
both reference and test signals. Numerous novel cognitive
quality assessment methods inspired by the work in [44]
have been proposed in the literature. For instance, bark
spectral distortion (BSD) technique in [45], which models
frequency scale warping using bark transformation, besides
other features of audio perceptual processing, e.g., ear sensi-
tivity, loudness level and band integration in the cochlea. The
method in [45] has been extended in [46], named as Modified
BSD measure, which incorporates noise-masking threshold
and difference and normalization of loudness. Beerends and
Stemerdink [47] devised a scheme named perceptual speech
quality measurement (PSQM) that analyzes temporal and
continuous distortions and spectral power densities in both
signals. Latter, PSQM was approved and recommended by
ITU-T P.861. However, PSQM did not account for temporal
masking effects and impacts caused by packet loss or other
time clipping effects. PSQM was extended in [48] to address
its limitations; the extended method was named PSQM+-.
It was empirically concluded in [49] that listeners adapt and
respond differently to spectral deviations spanning different
time and frequency scale, which was adopted in [50] to
annex PSQM. The annexed method, also called measuring
normalizing blocks (MNB) model, measures the perceptual
distance between the signals across multiple time and fre-
quency scales. A logistic regression is employed to compute
the final perceived audio quality using time- and frequency-
measuring blocks. Rix and Hollier [51] proposed a algorithm
called perceptual analysis measurement system (PAMS) that
estimate the perceived audio clarity of an output signal as
compared with the input signal. Though PMS is quite similar
to PSQM, it utilizes different signal processing techniques as
well as different perceptual model. The training process of
PAMS is computationally expensive, since it is not easy to
optimize the model parameters and mapping function.
Beerends et al. [47] improved the traditional PSQM to bet-
ter correlate the subjective MOS. The improved version was
dubbed PSQM99. A new measure that integrates the robust
time-alignment techniques of PAMS and the accurate percep-
tual modelling of PSQM99 was approved by ITU-T under
recommendation P.862 as perceptual evaluation of speech
quality (PESQ) [52]. PESQ was originally conceptualized
to approximate the listening audio quality in wireless, VoIP
and fixed networks, and has been widely adopted by many
vendors as a standard method. However, it was empirically
found in [53] that PESQ performs better mainly for signals
processed by modern vocoders compared to the signals with
distortions generated by the transmission channel limited to
8 KHz with P.862.3 for 16 KHz. Thus, it is better to use
PESQ in conjunction with other methods that consider dif-
ferent parameters as well (e.g., frequency response, loudness
ratings) [5]. Thus, POLQA (Perceptual Objective Listening
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Quality Assessment) [54] was introduced by ITU-T to predict
overall speech quality in narrowband (300-3400 Hz), wide-
band (50-7000 Hz) and super-wide band (50-14000 Hz) and
their speech processing components. More recently, assessing
perceived quality of synthesized audio (speech) [55], multi-
channel and automotive audio [56] and blind source separa-
tion [57] has become areas of growing interest. All in all,
several studies found that cognitive models are very data-
dependent and perform poorly under strong time-wrapping
distortions and Enhanced Variable Rate Codecs (EVRC).

2) NONINTRUSIVE METHODS

Although intrusive methods are more accurate, they normally
are unsuitable for real-time applications, besides requiring
difficult synchronization between the reference and pro-
cessed signals. Objective audio quality assessment meth-
ods that estimate the audio quality using only the test
(or degraded) signal are known as nonintrusive methods.
Nonintrusive techniques can be divided into two classes: a
priori-based and source-based approaches.

a: A PRIORI BASED APPROACHES

A priori based approaches first learn a set of well-
characterized distortions and then establish a statistical
relationship between this set and subjective opinions. For
instance, the technique in [58] measured output-based speech
quality for wireless communication systems by analyzing
visual features of the spectrogram of audio signal. The
method computes variance and dynamic range in a block-
wise manner, and then averages all the blocks to yield final
quality score. Gray et al. [60] proposed a novel use of the
vocal-tract modelling technique that can be employed for
nonintrusive quality assessment of speech stream over net-
works. The reported results showed efficacy of the technique,
but also the sensitivity to speaker gender. In turn, an audi-
tory non-intrusive quality estimation (ANIQUE) model [195]
was formulated using temporal envelope representation of
speech motivated by functional roles of human auditory sys-
tem both at peripheral and central levels to be later mapped
to a final quality score by artificial neural network (ANN).
Since ANIQUE'’s accuracy is inversely proportional to speech
naturalness, ANIQUE+ has been devised to overcome the
limitation.

b: SOURCE BASED APPROACHES

The source-based approaches can be considered as more uni-
versal methods, since they make a priori assumptions about
expected clean signal properties rather than the distortions
that may occur; this way they can deal with ample range of
distortion types. One of the initial attempts to develop source-
based audio quality assessment algorithms is [61], where the
model compared the variety of clean with distorted audio
signals using perceptual-linear prediction (PLP). However,
the method is computationally expensive because is based
on Vector Quantizers (VQ) technique, and its generalized
capability is inferior. To overcome some of these drawbacks,
Falk and Chan [62] replaced VQs by Gaussian mixture
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models (GMMs) and proposed a consistency measure to esti-
mate quality. Improved results were later achieved once clean
and degraded GMMs were utilized [62]. A perception-based
quality evaluation is presented in [63] that computes objective
distances between perceptually-based parametric vectors rep-
resenting degraded speech signal to appropriately matching
reference vectors extracted from a pre-formulated clean refer-
ence codebook. Similarly, POSQE (Perceptual Output-based
Speech Quality Evaluation) based on vector quantization and
self-organizing map was devised in [64]. Falk et al. [65]
devised SRMR (speech-to-reverberation-modulation energy
ratio) normalized metric based on auditory-inspired modula-
tion filterbank analysis of temporal envelopes of the speech
and pitch signals. Also, few models have been developed to
predict the audio quality ratings by hearing impaired listen-
ers [66]—[68]. For instance, the Hearing-Aid Speech Quality
Index (HASQI) in [69] takes into account the effect of noise,
nonlinear distortion and linear filtering for the perceived
speech quality; however it is very senstive to loudness pattern
distortion. In turn, Beerends et al. [72] have presented the
PREQUEL (Perceptual Reproduction Quality Evaluation for
Loudspeakers) that simulates the binaural recordings of the
reference signals using head and torso simulator to quantify
the overall loudspeakers’ perceived sound quality by assess-
ing their acoustic output. In recent years, developing hybrid
methods, e.g., [70], [71], [73], that combine properties of
both a priori- and source-based techniques is also gaining
momentum.

3) PARAMETRIC METHODS

Parametric models estimate the quality using specifications
of network design process and/or parameters, such as echo,
delay, frequency-weighted insertion loss (so-called “loud-
ness rating’’) and packet loss. Most of these specifications
can be accurately modelled by a small number of statistical
measures. A well-known example of parametric approach is
ITU recommendation P.563 that utilizes in-service, nonintru-
sive measurement devices (INMD) [59]. An INMD evaluates
objective parameters of voice channels on live call traffic
without hindering the call, and with knowledge of network
and human auditory system produces quality values. Such
quality estimates are only applicable for transmission plan-
ning purposes but not for actual customer opinion prediction.
To address this drawback, there exist one more ITU-T recom-
mended computational model known as the E-model [22] that
can be used in conjunction with INMD by transmission plan-
ners to estimate the quality and users’ satisfaction. Though
proven to be proficient for network related perceptual effects,
E-model becomes less precise with modern terminal equip-
ments (e.g., handsets involving noise reduction) because of
several simplifying assumptions (e.g., linearity and order
independence).

B. STATE-OF-THE-ART IN VIDEO QUALITY ASSESSMENT
Over the years, a large number of video objective qual-
ity models has been proposed and different international
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FIGURE 5. Classification of multimedia quality assessment methods.

organizations have tried to standardize video quality evalua-
tion metrics. The objective video quality assessment (OVQA)
methods may be considered as a two-stage process com-
posed of feature detection and feature pooling into a final
quality score. OVQA metrics are typically rooted on either
vision based modelling or signal-driven approaches. The for-
mer exploits relevant psychophysical properties and phys-
iological knowledge (thus also known as ‘psychophysical
approaches’), while the latter uses signal extraction and anal-
ysis (thus also referred as ‘engineering approach’ or "natural
visual characteristics based approach’). From Fig. 5, it can be
seen that objective methods can be FR, RR, and NR. Usually
FR is based on psychophysical approaches, while RR and NR
belong to engineering approach. In the following subsections,
these three main categories (and subcategories) are described
and a brief summary is presented in Table 5.
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1) FULL-REFERENCE METRICS

These video quality metrics/algorithms can be coarsely
classified as pixel-based, psychophysical, and engineering
methods.

a: PIXEL-BASED METHODS

Methods in this category are also referred to as ‘data metrics’.
Two widely used pixel-based techniques are Mean Squared
Error (MSE) and Peak-Signal-to-Noise Ratio (PSNR). The
former measures the video (frame/image) difference to
denote the power of the distortion, while the latter measures
fidelity to denote the resemblance between two samples.
Though pixel-based metrics are simple and computationally
inexpensive, they correlate poorly with perceived quality,
as neither features of HVS nor video content or viewing
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TABLE 5. A representative list of video quality assessment algorithms. CC: Correlation Coefficient; RMS: Root Mean Squared Error; SRCC: Spearman

Rank-order Correlation Coefficient; PSNR: Peak signal-to-noise ratio; CART: Classification And Regression Tree; Generalized Linear Model (GLM).

Category Method Feature description Database Figure of Year
merit
PVQM [86] Luminance edginess, color error Database with digital codec, CcC 2002
and temporal decorrelation analog PAL, VHS and
Betacam distortions
Multi-scale SSIM [99] | Luminance, contrast, structure, image LIVE JPEG/JPEG2000 CC, RMS, 2003
details at different resolutions (Multi-scale) OR, SRCC
Full-Reference Video-VIF [96] Natural scene statistics and video motion VQEG Phase I FR-TV CC, SRCC 2005
MOVIE [93] Sapatial, temporal and VQEG Phase I FR-TV CC, OR, 2010
spatio-temporal distortions SRCC
AFViQ [85] Contrast sensitivity, foveated LIVE and VQEG HDTV CC, RMS 2013
vision, visual attention
STME [94] Correlation between spatio-temporal LIVE VQA CC 2016
motion energies
PQSM [113] Visual saliency, attention, and Videos with framerate PSNR 2003
eye movement at 25/30Hz
Packet loss visibility Content-independent and Private database of packet CART 2006
in MPEG-2 [104] content-dependent factors losses based MPEG-2 videos | GLM
Reduced-Reference Packet loss visibility SSIM, camera motion and proximity to H.264 videos with PRIM 2007
in H.264 [108] a scene change 352 %240 resolutions
RR-GGD [119] Discrete cosine coefficients and LIVE, MICT, CC, SRCC, | 2013
mutual information CSIQ RMS
RR-VQA [116] Motion in stereo videos and NAMA3DS1-COSPAD CC, SRCC, | 2016
binocular perception characteristics RMS
Hybrid [154] Packet lengths, motion intensity SDTV CC, RMS 2007
and luminance discontinuity
LBM [129] Blocking artefacts and properties of HSV LIVE CC, SRCC 2008
T-V-model [146] Coding bit-rate and packet loss percentage | Private dataset CC 2008
N ANFIS [144] Video content based encoding and Private encoded dataset CC, RMS 2009
o-Reference -
transmission parameters
Video quality without Size of frames and motion in video H.264 videos of CC, RMS 2010
decoding[148] size 1440x 1080 CC, RMS
SACONVA [142] 3D shearlet transform and convolutional LIVE, IVPL, CSIQ CC, SRCC 2016
neural network (CNN)

conditions are taken into account [8]. Engelke er al. [201]
designed a temporal trajectory aware video quality measure
(TetraVQM) by combining PSNR and a simple saliency
model.

b: PSYCHOPHYSICAL METHODS

FR psychophysical methods are modelled based on HVS
characteristics related to visual perception, such as con-
trast sensitivity, colors perception, masking effects, spatial
and temporal features and frequency selectivity [74]. Most
psychophysical methods construct a sensitivity or response
computational model of the HVS as a function of stimulus.
In other words, in these approaches perceptual attributes
motivated from computational models of low-level vision are
computed to produce a reduced description of the video to be
used latter to quantify effects of distortions and content on
perceived quality. Psychophysical approaches can further be
divided into frequency domain and pixel domain.

b.1: FREQUENCY DOMAIN

The quality is determined by measuring impairments in dif-
ferent frequency regions using transforms such as wavelets,
Gabor filters, Fourier, DCT (Discrete Cosine Transform),
etc. One of the pioneering video quality metrics based on
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HVS was devised by Lukas and Budrikis [75]. The developed
model is composed of two stages: a nonlinear spatio-temporal
model of a visual filter, and a masking function. The mask-
ing function describes the spatial and temporal activity by
point-by-point weighting of the filtered error for non-uniform
backgrounds, while the former stage describes the threshold
attributes on uniform backgrounds. The error averaged over
the video frames is finally used as a perceived (predicted)
quality. Lambrecht et al. [76] developed MPQM (Moving
Picture Quality Metric) to simulate spatio-temporal model
of HVS with a filter bank technique. The MPQM is par-
ticularly based on two characteristics of human perception,
i.e., contrast sensitivity and masking effect, since eye’s sen-
sitivity varies as a function of spatial frequency, orientation
and temporal frequency, while perception of a stimulus is
a function of its background. The authors in [77] proposed
Digital Video Quality (DVQ) model to calculate visual dif-
ference between reference and distorted videos using DCT.
The model incorporates contrast masking, spatial and tempo-
ral filtering, aspects of luminance and chromatic channels,
probability summation, and spatial frequency channels to
assess quality. After pre-processing, the video sequences are
then processed with block DCT of size (8§ x 8 pixels) to
estimate local contrast and just-noticeable differences for
visual quality of the sequence. The reported experiments
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concluded that proposed metric was not a good fit for low bit
rate videos. Xiao [78] extended the DVQ model to incorpo-
rate another human eye’s characteristic, i.e., spatio-temporal
patterns sensitivity to eyes is inversely proportional to spa-
tial and temporal frequencies. A wavelet transform based
method was devised in [79] that employs multi-level and 3D
wavelet transform to compute spatial and temporal degrada-
tions. A novel metric to model advanced contrast sensitivity
of the HVS based on the mechanisms of vision foveation?
and visual attention named Attention-driven Foveated Video
Quality metric (AFViQ) was proposed in [80]. In particular,
AFViQ simulates dynamic foveation by estimating video
fixation using eye movement leading to a wavelet-based dis-
tortion visibility quality measure. In order to provide empir-
ical efficacy of AFViQ, authors evaluated it with differ-
ent attention/saliency maps obtained from the graph-based
visual saliency (GBVS), video spatial-temporal saliency, and
a video attention models.

b.2: PIXEL DOMAIN

An objective video quality model exploiting the HVS feature
of sensitivity to edges and local changes in luminance was
developed in [81]. The model is known as Perceptual Video
Quality Metric (PVQM), which is also called the Swiss-
com/KPN metric. The perceptual quality is predicted by a
linear combination of three distortion indicators (i.e., edgi-
ness, temporal decorrelation, and color error). The edginess,
temporal decorrelation, and color error account for loss
or introduction of sharpness, perceived spatial distortion,
and temporal variability causing error, respectively. Another
video perpetual quality metric was proposed in [82] and [83]
that uses distortion-invisibility, blockiness, and content
fidelity factor. The method was modified in [84] to use a
Sobel filter to approximate the gradient of local luminance
to attain improved performance. Chandler and Hemami [85]
devised visual signal-to-noise ratio (VSNR) metric by detect-
ing perceptual distortions via visual masking and visual sum-
mation. Opticom introduced a video quality metric called
Perceptual Evaluation of Video Quality (PEVQ) [26] based
on PVQM model. Specifically, PEVQ utilizes gradient fil-
ter, and computes spatial distortion measures (i.e., edginess
in luminance, edginess in chrominance, temporal variability
indicators) and a temporal distortion measure (i.e., absolute
difference between current and previous frame).

¢: ENGINEERING METHODS

Methods in engineering approach are based on visual statis-
tical features (e.g., covariance of certain distortion patterns)
and visual features (e.g., blockiness), thus also called as
‘natural visual characteristics’ based methods. Published FR
video quality engineering approaches can be broadly sub-
grouped into three categories: video artefacts, natural visual
statistics, and video structural similarity.

2The HVS discerns different volume of detail/resolution across the area
of view, with highest resolution at the point of fixation. The point of fixation
is projected onto the center of the eye’s retina called fovea [18].
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c.1: VIDEO ARTEFACTS

Since FR pixel-based quality metrics are unsuited for videos
encoded at a low bitrate, the Low-bitrate Video Quality
Model (LVQM) [86] was developed. LVQM incorporates
three aspects, namely distortion-invisibility (based on lumi-
nance, spatial-textural and temporal masking), block fidelity
(since low bit compression introduces block boundaries
distortion) and content richness fidelity (based on luminance
occurrences). Lee and Sim [87] developed a metric to indicate
the visual degradation in digital mobile videos, which is
calculated as the weighted sum of three factors: block edgi-
ness, blockiness and blurriness. In [88] a video quality metric
called MOVIE (MOtion-based Video Integrity Evaluation)
index was formulated using Gabor filter banks to emulate the
middle temporal (MT) visual area of the visual cortex in the
human brain, since the MT visual area is known to be critical
for the perception of video quality. The MOVIE index evalu-
ates distortions both individually in space and time domains
as well as in the space-time domain to specify the motion
quality and trajectories. Likewise, perceiving motion based
on spatiotemporal energy is exploited in [89] for video quality
prediction.

¢.2: NATURAL VISUAL STATISTICS

Videos are natural scenes having different statistical infor-
mation than random signals. Nonetheless, video compression
artefacts precipitate unnaturalness in the samples. The sta-
tistical information differences between original and com-
pressed videos can be quantified by combining Natural
Scene Statistics [90] and distortion models. Towards this
aim, the well-known model called Video Visual Information
Fidelity (V-VIF) [91] was designed. The VVIF basically com-
bines visual statistics with HVS modelling using Gaussian
Scale Mixtures and mutual information.

¢.3: VIDEO STRUCTURAL SIMILARITY

The methods in this genre aim to estimate the similarity
(fidelity) between original and distorted videos by top-down
techniques to model functionality of the overall HSV. The
Video Structural Similarity (VSSIM) index [92], [93] exploits
the fact that HSV is distinctly developed to capture the struc-
ture of the video and thereby utilizes structural distortions
as a source to estimate perceptual distortions. In particular,
SSIM (Structural Similarity Index Metric) computes the ‘dif-
ference of structure’ between the original and the distorted
videos via analysis of luminance, contrast and structure at
the local region, frame, and sequence levels. Several versions
of SSIM, such as Multi-scale SSIM [94], Spatial weighted
SSIM [95], Speed Weighted SSIM [96], Visual fixation
weighted SSIM [97], quality weighted SSIM [97], have been
also proposed in the literature to incorporate sampling den-
sity, viewer’s distance, fidelity of spatial information, motion
speed, etc. in the process. Tao [98] employed matrix singular
value decomposition (M-SVD) to compute the underlying
video structure and consequent quality measure.
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2) REDUCED-REFERENCE (RR) METRICS

RR video quality methods extract the most characteristic
features from the reference video, and perceived quality is
then estimated by comparing those features in video under
test. RR video metrics can be coarsely classified as packet
loss visibility, psychophysical and natural scene statistics
based techniques.

a: PACKET LOSS VISIBILITY BASED METHODS

In [99] and [100], tree-structured data analysis based on Clas-
sification And Regression Tree (CART), and Generalized
Linear Model (GLM), respectively, is conducted to classify
whether packet loss is visible or invisible. In [102] and [101],
multiple packet loss and H.264 considering the frames in
which packet loss occurs, the magnitude and angle of the
motion were studied, while in [103] and [100], the visi-
bility of packet loss via SSIM, and Patient Rule Induction
Method (PRIM) and Group-of-Picture (GoP) are adopted for
packet loss classification. Aabed and AlRegib [104] exploited
optical flow to evaluate the quality degradations in video
streaming service due to coding and network errors.

b: RR PSYCHOPHYSICAL METHODS

The approaches in this group are developed on modelling
HVS. For instance, [105] utilized several HSV related fea-
tures, such as blurriness and blockiness that are distinguished
by harmonic amplitude analysis and local harmonic strength
values for quality estimation. Similarly, [106] modeled RR
quality estimation using contrast sensitivity function of HVS
by contourlet transform. The method in [107] combined
color perception, psychophysical subband decomposition and
masking effect with structural similarity to attain RR metric.
Lu et al. [108] developed a saliency-weighted RR metric
to simulate the quality perception called perceptual quality
significance map (PQSM) to be used in estimating the visual
distortion. The PQSM is an array and its elements represent
relative perceptual-quality significance levels for the corre-
sponding regions for images/video. Particularly, the method
in [108] utilizes visual attention, eye fixation/movement, and
the path of vision/retina. Since, the selectivity characteristic
of HVS (Human Visual System) pays more attention to cer-
tain area/regions of visual signal due to certain combination
of salient features in video, cues from domain knowledge,
and association of other media (e.g., audio). Karacali and
Krishnakumar [109] devised a real time RR metric known
as Simplified Perceptual Quality Region (SPQR) for video
conferencing application that detect face and its discrepan-
cies among frames. A RR quality metric for stereo videos
was proposed in [110] and [111], respectively, using view
together with disparity zero-watermarks based on gradient
vectors, and temporal characteristics of video and binocular
perception in HVS.

¢: NATURAL SCENE STATISTICS

These algorithms assume that real-world videos are made
of natural scenes, thus their statistical features would be
deranged by any kind of distortion, which can be utilized
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to quantify the perceived quality. The standard natural scene
statistics (NSS) based RR model called wavelet-domain nat-
ural image statistic metric (WNISM) was proposed in [112].
The divisive normalization transform (DNT) was used to
overcome the limitations of wavelet transformation in [113].
While, in [114] Tetrolet transform was employed to com-
pute statistical dependencies and quality. Ma et al. [115]
argued and empirically showed that generalized Gaussian
density (GGD) can depict the coefficient distribution in reor-
ganized DCT (RDCT) domain for better RR video qual-
ity prediction. The Kullback-Leibler divergence, weighted
entropy difference in DCT bands and discrete wavelet trans-
form (DWT) of locally weighted gradient magnitudes were
successfully used to estimate the high level perceived quality
in [116]-[118], respectively.

3) NO-REFERENCE (NR) METRICS

NR metrics can meet the requirement real-time quality and
QoE assessments. But, NR methods are difficult to design
since no reference/original video is available during test.
Many efforts recently have been placed on development of
NR methods. Existing NR techniques can be roughly divided
into three groups: pixel, bitstream and hybrid methods.

a: PIXEL-BASED METHODS

Pixel-based NR (P-NR) methods analyze certain artifacts
related to a particular type of degradation in video quality.
They can be further divided into two subgroups: artefact
measure- and features measures-based.

a.1: ARTEFACT MEASURE-BASED METHODS

Artefact measure-based metrics quantify common visual arte-
facts (e.g., blur, noise) and impairments for perceived video
quality. Artefact measure-based can further be classified into

two clusters: single artefact and multiple artefacts based
P-NR methods.

a.1.1: SINGLE ARTEFACT BASED METHODS

As the name suggests the methods in this category are devel-
oped by considering a given model of a single degradation
factor, such as blurring, blocking, ringing, noise and frame
freeze [119]. The work in [120] quantifies quality in terms
of global blur relying on histograms of discrete cosine trans-
form (DCT) coefficients present in MPEG and JPEG encoded
data. However, it performs well only for out-of-focus blur
but not for uniform background or over-illuminated samples.
Contrary to edge blur detection methods, the framework
in [121] is to evaluate blur at macroblock boundaries and
averaging the block level measure to yield overall quality.
In addition, the framework also uses content-sensitive mask-
ing. This method is widely used for videos encoded following
the H.264/AVC standard. The technique proposed in [122]
claimed to be working for any type of blurriness without
being sensitive to the source of blur. A gradient image and
a Markov model is used to attain the quality prediction.
Chen et al. [123] claim that their proposed method can be
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used for any video format. The method is a frequency domain
pixel-based bi-directional (horizontal and vertical) measure.
Liu et al. [124] developed an HVS-based blocking method
to gauge quality via a grid detector that discovers blocking
locations. The method is computationally inexpensive and
the use of visual masking makes it easy to locate blockiness
visible only to human perception. Moreover, [125] integrated
HVS masking with human visibility index to estimate ringing
nuisance and perceived quality to attain performance level
comparable to FR methods. Since noise is usually introduced
during video acquisition, processing, recording or transmis-
sion, the work in [126] uses high-pass directional operators to
compute an estimate of average noise variance to be exploited
for quality assessment. Moreover, to measure jerkiness (both
frame jitter and frame freeze) as a measure to quality assess-
ment of videos with varying resolution from QCIF to HD,
a technique using mean square difference (MSD) of frames is
devised in [127]. Pastrana-Vidal and Gicquel [128] proposed
a generalized model for different fluidity break situations,
such as regular, irregular, isolated, sporadic, and several
discontinuity durations including various distributions and
densities.

a.1.2: MULTIPLE ARTEFACTS BASED METHODS

Single artefact based techniques may not lead to satisfactory
quality perceived assessment in presence of other artefacts.
Thus, estimations of different artifacts are fused to yield a
single quality score. For instance, Oelbaum et al. [129] for-
mulated a rule-based video quality assessment technique that
integrates the information from blockiness, blurriness, spatial
activity, temporal predictability, edge continuity, motion con-
tinuity, and color continuity using multivariate data analysis
method. Romaniak ez al. [130] created a composite method to
correlate well with subjective quality assessment via blocking
and flickering measure of H.264/AVC encoded videos. The
metric proposed in [131] employs a multiple regression for
weighted integration of three artifacts (i.e., blurring, blocki-
ness, and jitter/jerkiness) both in the luminance and chromi-
nance planes for perceived quality estimation of standard-
definition television (SDTV) sequences. A modular method
to account for frame freeze/jerkiness and clearness/sharpness
in MPEG-4 encoded videos has been studied in [132], which
combines artifacts both from spatial and temporal domain to
achieve a final perceived quality score. Culibrk et al. [202]
explored the effect of bottom-up motion saliency features
for the problem of MPEG-2 coded VQA and proposed a
no-reference video quality estimator by analyzing video cod-
ing artifacts separately for salient motion and other regions of
the frames.

a.2: FEATURES MEASURE-BASED METHODS

The methods in this group decompose a video signal into
various features to represent specific aspects of visual infor-
mation and their relation to the corresponding perceptual
quality. Based on their particular functions, methods in this
class are partitioned into two sets: natural scene statistics and
HVS pixel-based features.
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a.2.1: NATURAL SCENE STATISTICS BASED METHODS

The natural scene statistics (NSS) for corresponding quality
values was studied in [133] to engineer a NR quality scheme
that utilizes curvelet, wavelet, and cosine transform to ana-
lyze distortions, such as noise, blur, and artifacts introduced
by compression. Likewise, in [134], a model based on tempo-
ral statistics of videos (i.e., natural motion statistics obtained
from independent component analysis) was presented. The
idea of 2D- and 3D-based statistical features based quality
estimator has been investigated in [135] for stereoscopic
visual information.

a.2.2: HVS PIXEL-BASED METHODS

These methods estimate perceived quality relying on certain
HSYV statistics derived from pixels of a video. An NR HVS
based quality estimation for color video has been derived
in [136], where different channels of the HVS have been
processed with 3D multispectral wavelet decomposition con-
sidering pixel’s contrast and luminance values. A perceptual
mask weighted flow tensor between successive frames is
employed to yield a final quality score. A general-purpose
framework that is based on 3D shearlet transform and con-
volutional neural network (CNN) was proposed in [137].
Ries et al. in turn, showed that content of a video can help
much in perceived quality assessment [138]. Their devel-
oped method predicts the video quality by classification of
feature vector made of statistics on pixel motion (e.g., uni-
formity of the pixel movement) together with bitrate and
frame rate information. Similarly, Khan ez al. [139] exploited
content of the video for quality estimation by combining
encoding and transmission level parameters. The technique
concluded, using an adaptive network-based fuzzy inference
system (ANFIS) and a regression model for score compu-
tation, that transmission parameters (e.g., packet error rate)
have more impact on the perceived quality than the compres-
sion parameters (e.g., frame rate). In turn, the mean square
error distortion (i.e., pattern of lost macroblocks) caused by
network impairments for a H.264/AVC encoded video was
studied in [140] for perceived quality evaluation.

b: BITSTREAM-BASED METHODS

These methods adopt usage of bitstream data for quality
estimation. As such, they do not need to process the full
video data, since information from the bitstream (e.g., coding
modes, motion vectors) are readily available. Nonethe-
less, bitstream-based methods are natively coding standard
specific as different encoders have independent formats.
According to the level of information used for processing,
bitstream-based methods can further be divided into three
categories: parametric planning model, parametric packet-
layer model, and bitstream layer model.

b.1: PARAMETRIC PLANNING MODEL
The parametric planning techniques use codec type, packet
loss rate, and bitrate for a crude quality evaluation.

VOLUME 5, 2017



Z. Akhtar, T. H. Falk: Audio-Visual Multimedia Quality Assessment: Comprehensive Survey

IEEE Access

The well-know example of this category is Opinion model for
video-telephony applications described in ITU-T (G.1070).
A quality prediction model for H.264/AVC videos in IPTV is
presented in [141], which translates the encoding, packet and
client information into overall perceived quality. The MSE
of patterns of packet loss may also give some insight of the
perceived quality, which is the base of the work in [142],
where a model to establish the relationship between MSE
and average motion vector length resulted in reliable quality
estimates.

b.2: PARAMETRIC PACKET-LAYER MODEL

The visual quality estimation work in [143] does not require
decoding the video at any level and uses the relationship
between error concealment, motion in the video, importance
of the frame regions and size of frames to compute the
quality score. The work in [144] uses a nonlinear relationship
between an objective quality metric and two quality-related
parameters (i.e., value of the interval between intra-frames
and packet loss rate). Different effects of packet loss over
visible degradation was probed in [145] for H.264/AVC and
HD videos. It was found that more than 75% human users
perceived an artifact when packet loss was visible.

b.3: BITSTREAM LAYER MODEL

Bitstream layer models can do any type of analysis of the
bitstream except usage of pixel data, thus are comparatively
more complex, but offer better performance. Yang et al. [146]
argued that their framework can be used for real time quality
estimation, where the quality score is achieved by pooling
QoS parameters, such as, packet loss rate, spatial and tempo-
ral complexities from the bitstream information. The inves-
tigation in [147] concluded that fusion of DCT coefficients
data, a packet loss model identical to the one presented in
ITU-T.G.1070, and a frame type- and error pattern-dependent
model yields best visual quality prediction. Nonetheless,
it was shown in [148] that the Cauchy distribution is more
suitable for quality estimation than DCT coefficients.

¢: HYBRID METHODS

Techniques that combine the coded bitstream and decoded
media statistics are termed no-reference hybrid quality esti-
mation methods. Hybrid methods can be divided into two
categories: pixel and bitstream-based features or artifacts, and
statistics of transform coefficients.

c.1: PIXEL AND BITSTREAM-BASED FEATURES

Yamada et al. [149] proposed a hybrid bitstream (i.e., packet
lengths) and pixel domain (i.e., motion intensity and lumi-
nance discontinuity) quality estimator. Another hybrid non-
reference quality framework, which fuses information from
the packet layer (packet loss rate, packet size), bitstream
layer (frame error, frame duration), and media layer (blurring,
blocking), has been presented in [150] for videos transmitted
over long term evolution (LTE) networks. Likewise, in [3]
and [151] the Application Performance Metrics (APM) that
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characterizes the impact of rebuffering events user-viewing
activities on the QoE for HTTP video streaming service
and Universal Mobile Telecommunication System (UMTS)
quality metric that characterizes video transmission including
video content over wireless networks have been studied.

c.2: STATISTICS OF TRANSFORM COEFFICIENTS

The perceived quality can be assessed as a fusion of
transform coefficients, bitstream features and pixel domain,
e.g., [152], [153] in which PSNR was obtained for MPEG-2
coded videos via DCT coefficients as a Laplacian distribu-
tion. Nonetheless, its accuracy for quality evaluation for B
type frames is low. Therefore, authors later integrated picture
energy with DCT coefficients to attain improved accuracy
even for SDTV and HDTV sequences.

C. STATE-OF-THE-ART IN AUDIOVISUAL

QUALITY ASSESSMENT

There exists ample studies on quality assessment of indi-
vidual modalities, including the psychophysical processes
involved in their quality perception. However, audiovisual
quality assessment, which is a multi-modal information pro-
cess, is a relatively under explored field. Though various
details of neurophysiological processing of audiovisual data
remain unknown, empirical studies have demonstrated that
the auditory and the visual domain have mutual influence
on the perceived overall audiovisual quality [13]. One set of
studies, e.g., [154], [155], indicated that the video channel
is more important in perceived audiovisual quality. Other,
however, e.g., [2], have suggested that the audio channel is
more vital than video one, specially in teleconference sce-
nario where humans pay more attention to audio information.
Similarly, the experiments in [156] found that more bits
allocated to audio may lead to attaining a higher perceived
audiovisual quality at very low bitrates applications, e.g.,
VoD on mobile devices. All in all, audio or video channel’s
importance depends on application and/or context.

Since audiovisual quality perception involves interactions
between two sensory modalities, one modality can modify
the perceptual experience formed by the other. For instance,
speech intelligibility can be improved by attaching a visual
channel that shows the lip movements. Preliminary empir-
ical analysis conducted by Rimmel er al. [157] observed
the mutual compensation between modalities, i.e., increased
quality of one modality remarkably improved the perceived
quality of another one in video telephony. Detailed studies
about the effects of various types of interaction between
audio and video modalities on perceptual quality can be
seen, e.g. in [2], [5], and [6]. Majority of previous works
indicate that video quality has more influence on perceptual
audio quality than vice versa [154]. However, contrary results
have been reported in the literature, e.g., the study in [2]
showed audio quality to be more vital than video quality in
‘talking head’ scenarios. While, homogenous work in [158]
noticed no influence of audio on video quality but only very
weak influence of video on audio quality. Mki et al. [194]
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investigated correlations of the audio quality, video quality
and interaction of these with audiovisual quality. The study
found that video quality has higher correlation with audiovi-
sual quality than audio quality. Moreover, it was reported that
interaction of audio and video quality has higher correlation
with audiovisual quality than either of the individual ones.
Overall, it is a widely accepted fact that audiovisual quality,
besides individual audio and video qualities, is influenced
by other factors as well, such as different context (passive
viewing and listening or interactive setting), content, attention
of the user and task [6].

Another key factor that contributes to perceived audio-
visual quality and intelligibility is synchronization between
audio and video stimuli [30]. It is known that audiovisual
quality is inversely proportional to asynchrony [13]. Improper
synchronization can distract and annoy the viewer, which
may reduce the clarity of the intended message and qual-
ity [159]. As per the ITU-R BT.1359, the threshold of accept-
ability for audio leading video is about 90 ms and in reverse
situation about 185 ms, on average. There exists several
audio and video synchronization methods, as also discussed
in Section III-B.

Though there is a significant relationship between the per-
ceived audiovisual quality and the audio-visual contents [5],
limited research has been conducted on the topic. The major-
ity of the existing methods excogitate the audio and video
contents latently due to semantics/content being very sub-
jective (e.g., news may be interesting for adults but children
may think cartoon is important) thus it is very challeng-
ing to devise universal semantics importance model. Some
researchers believe that the overall audiovisual quality can
be attained by a weighted linear combination of perceptual
quality and semantic quality; the former is the satisfaction of
a user perceiving the multimedia signals and the latter is the
perceived amount of information conveyed by the signals [6].
While, some suggests that the objective audiovisual percep-
tual quality model that takes into account also the content
of the multimedia may be modelled at two different levels:
cognitive and affective levels. The cognitive level can be
used to model how a subject perceives the content and the
affective level can be used to define the affective characteris-
tics of the content [5]. Few recently proposed quality assess-
ment frameworks that take the content type into account
are [160], [161]. Specifically, Song et al. [161] attempted
to identify the relationship between the audiovisual quality,
content and QoE. The audiovisual content was materialized
in terms of user interest that was defined as a physically
expressed state of concentration which can be visually recog-
nized when a user is involved in the audiovisual content/story
by his/her eyes. Moller and Raake [13], [199] investigated
the influence of audio-visual Focus of Attention, namely
saliency, in the perceived quality of standard definition mul-
timedia audio-visual content. The study found that higher
spatial resolutions on the sound-emitting regions in image
sequences leads to the same quality when compared to the
case where all moving objects receive high priorities for the
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spatial resolution and even to the cases without blurring,
unless the blur effect is too strong.

The perceptual and cognitive basis of audiovisual quality
assessment, i.e., at which stage of the perceptual process-
ing chain the modalities are actually fused, is yet not fully
determined. However, the majority of the researcher have
adopted the late fusion theory, in which auditory and visual
channels are processed internally to yield respective quality
values that are integrated at a late stage to form a single overall
perceived quality [2]. Audiovisual quality is therefore usually
described as a fusion of two dimensions (i.e., audio and video
qualities), as shown in Fig. 4. The most common fusion model
used and adopted in several studies [2], [5], [6] is the one
reported in (Eq. 1). However, it is worth mentioning that there
are no commonly agreed values or derivations for the four
fusion parameters (ap—az) in (Eq. 1); values reported in the
literature range from ag = —3.34-4.26, a; = —0.19-0.85,
ar = 0-0.89, to a3z = —0.01-0.26. Few studies on human
cognitive understanding suggest that audio and video channel
might be integrated in an early phase of human perception
formation [162]. Based on this, several researchers [2], [154]
proposed audiovisual quality models as a multiplication of
audio and video quality with equal importance, as shown
in (Eq. 6):

QOav = ap+a1Q0a0y. (6)

Similarly, Martineza et al. [163] proposed three audiovi-
sual perceived quality metrics. The first model is simple linear
model as given by (Eq. 7):

QOav = ap +a104 + a2Qy. @)

The second metric is based on the weighted Minkowski
model as:

Oav = (a104" + aszP)%, (8)

where the exponent P is obtained from the fit for Minkowski
model. The third metric is a power model as given by (Eq. 9):

Oav = (a1 + 20471 0v"?) )

As some studies [154], [155] suggested that visual modal-
ity can be more dominant than audio in perceived audiovisual
quality formation, specially for videos with high motion data,
thus authors in [2] presented the following model:

Qav = ap + a1Qv + a2040v (10)

Although models in equations 1-10 attained fairly accurate
predicted audiovisual quality in some studies when audio
and video quality spans are the same, it does not reflect the
differences in the influence of audio only and video only
stimuli on the overall quality. Moreover, they also can not
fully capture some other influential factors, e.g., goal of
assessment, testing environment, and impact of impairments,
synchronicity. Thus, Saidi ef al. [164] proposed a audio-video
synchronization based quality prediction model as follows:

Oav = ao + a104 + a20v + a3040y + asDsyncn,  (11)
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where the desynchronization term is set to Dyypep = 5 —
MOSgyncn. In the experiments, authors obtained MOS;yuch
from a specific 5 point impairment scale: 1-very annoying,
2-annoying, 3-slightly annoying, 4-perceptible but not annoy-
ing, and 5- imperceptible due to desynchronization. Another
synchronization based multimedia perceived quality model is
presented by Heyashi et al. [165] as:

Omm = ao + a10av + a20p + a3Q0av Op, (12)

where Oy, Qav and, Qp are predicted multimedia quality,
audiovisual quality and quality degradation calculated based
on audiovisual delay, respectively.

Most multimedia quality models in the literature are pro-
posed for short-duration sequences with a single content/
scene. Thus, when used with long-duration sequences, they
are usually applied at short temporal segments and later aver-
aged for overall quality with equal weights for each segment.
Simple averaging, may not be appropriate for long sequences
with multiple contents and scenes of varying complexity,
which should be assigned larger weights. Towards this, You
et al. [6] presented a weighted temporal averaging method for
long-term sequences as:

Qav=>_ WiSi(ao + a1.iQa + a2,Qv + a3:0aQv), (13)

1

where i, W; and S; denote different segments whose duration
might be different from each other because of different mul-
timedia contents, the weight of this segment that is affected
by some external factors and quality level (as different quality
levels make different contributions to the overall quality), and
the semantic/affective importance of a segment obtained from
a content analysis model, respectively. It is worth noticing
that the fusion parameters ag, aj, az, az might be different
for different segments. The search for an optimal temporal
quality pooling method, however, is still an open issue.

The ITU-T has proposed some standardized audiovisual
quality prediction models, e.g., ITU-T P.1201, ITU-T G.1070
and ITU-T G.1071. The ITU-T P.1201 model was proposed
to compute the audiovisual quality of streaming services.
It is suitable both for lower resolution (e.g., mobile TV)
and higher resolution applications (e.g., IPTV). The model is
non-intrusive and utilizes packet-header information to pro-
vide individual predictions of audio, video, and audiovisual
quality via the five-point MOS scale. The ITU-T G.1070
model was recommended for video telephony. The overall
multimedia quality is estimated by network, application and
terminal equipment parameters. It is more useful for quality
of experience and quality of service planners. The model
can be applied to compute independent speech quality (using
speech codec type, packet loss rate, bit rate and talker echo
loudness rating), video quality (using video format, display
size and codec type, packet loss rate, bit rate, key frame inter-
val and frame rate), and multimedia quality (using individual
speech and video quality, audiovisual asynchrony and end-
to-end delay). While, ITU-T G.1071 model was proposed for
network planning of audio and video streaming services, it is
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applicable for lower- as well as higher-resolution services.
It is worth noticing that this model is limited to QoS/QoE
planning, and cannot be used for quality benchmarking and
monitoring. The network-planning assumptions (e.g., video
resolution, audio, and video codec types and profiles, audio
and video bitrates, packet-loss rate and distribution) are
employed to attain the separate predictions of audio, video
and audiovisual quality. More details of standardization activ-
ities regarding audiovisual quality assessment and the related
standards can be seen in [4], [5], and [13]. Though, these
standardized methods reach high prediction accuracy, they
intrinsically have limited applications. Thus, researchers are
trying to improve these models as well as proposing new
techniques.

Few recent studies, e.g. [5], [13], [166], have attempted
to estimate the audiovisual perceived quality with machine
learning algorithms, such as neural networks and random
forest ensemble. Machine learning based approaches do not
require intermediate predictions for audio and video qual-
ity, and still successfully capture the complex relationships
between influence factors, thereby achieving high accuracy
and generalization capability. Recently, a novel trend to
assess user perception of audiovisual quality using electroen-
cephalography (EEG) and other physiological measurement
devices have emerged [4]. The empirical results depict high
correlation between perceived multimedia and physiological
data [13].

VI. DATABASES FOR AUDIO-VISUAL

QUALITY ASSESSMENT

Databases of audio, video or audiovisual signals annotated
with subjective ratings constitute essential ground truth for
training, testing, and benchmarking methods for perceptual-
based quality assessment. Over the years, several data sets
have been released in the public domain. In this section,
we present an overview of a few representative databases of
uni- and multi-modal signals, including physiological, that
have been used in the literature, which are also summarized
in Table 6.

A. AUDIO

1) ITU93 [37]

It is based on seven audio stereo sequences (i.e., Asa Jinder,
bagpipe, bass clarinet, castanets, harpsichord, German male
speech and violin) that were processed by different tan-
dem code configurations of MPEG layer 2 at 192, 256
and 360 kbit/s/channel. There are total of 42 listening test
signals whose quality values were rated by 33 subjects.

2) MPEG95 [22]

It is based on six mono sequences (i.e., bag pipe, castanets,
glockenspiel, harpsichord, pitch pipe and English female
speech) processed by 22 encoding variations of six audio
codecs. There are 132 listening test signals available with
subjective quality ratings given by 63 subjects.
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TABLE 6. Publicly available audio, video and audiovisual quality assessment datasets.

[ Subjective ratings (e.g., MOS) |

Modality Dataset Description of characteristics and distortions [Audio | Video | Audiovisual | Year
ITU93 [41] 7 audio stereo types: Asa Jinder, bagpipe, bass clarinet, castanets, Yes No No 1993
harpsichord, German male speech and violin with MPEG1 Layer 2
tandem codec at 92, 256, 360 kbit/s
MPEG95 [26] 22 encoding variations of six audio codecs Yes No No 1995
REVERB 3 subsets of both clean and reverberant speech signals with No No No 2016
Audio challenge [189] 1-ch, 2-ch, and 8-ch recordings at a sampling frequency of 16 kHz
Live 4 genres (i.e., rock, pop, electronic, and country) of real and synthetically Yes No No 2013
Music [190] altered live music recordings; Kind of noises: amplitude compression and
amplification, butterworth filtering, white noise and crowd noise additions
Blizzard 50 children’s text book and audiobooks spoken by a British female speaker Yes No No 2016
Challenge [191] | with 44.1 kHz sampling rate, 2 channels, 16 bit encoding
Poly NYU Quantization error; video format and resolution: CIF (352x288) No Yes No 2008
VQ [192] QCIF (176x144), 30 frame-rates
LIVE VQ [193] | Compression and transmission error; video format and resolution: No Yes No 2010
YUV+264/M2V (768x432); 25/50 frame-rates
VQEG Compression and transmission error; 1920x1080 resolution; No Yes No 2010
Video HDTV [194] 59 frame-rates; 1x (0.7-4.2) PLR%
MMD [195] Compression error for mobile TV; low-high motion; 1x per Seq bitrates; No Yes No 2012
480p resolution; 25 frame-rates
CVD2014 [196] | Compression and video acquisition related distortions, e.g., flickering, jerky; No Yes No 2014
Videos captured from 73 cameras; different video format and resolution, e.g.,
QCIF (176x144), QVGA (352x240), HD (1280x720), FHD (1920x1080)
PLYM [197] Compression and transmission error; low motion; 1x per Seq bitrates; Yes Yes Yes 2010
144p resolution; 8, 15 frame-rates; 5x (0.01-0.20) PLR%
TUM [198] Compression error; low-high motion; 4x per Seq bitrates; 1080p resolution; No No Yes 2012
50 frame-rates
Audiovi VQEG [27] Compression and transmission error; low-high motion; 3x per Seq bitrates; No No Yes 2012
udiovisual .
480p resolution; 30 frame-rates
VTT [199] Compression and transmission error; low-high motion; 1x per Seq bitrates; Yes Yes Yes 2013
480p, 720p, 1080p resolution; 20-30 frame-rates; 5x (0.3-4.8) PLR%
INRS [171] Compression and transmission error; low motion; 4x per Seq bitrates; No No Yes 2016
720p resolution; 4x(10-25) frame-rates; 5x (0-5) PLR%

3) REVERB CHALLENGE [184]
It was used in 2014 REVERB challenge [184], and consists
of three subsets: a training, a development, and an evaluation
set. Both clean and reverberant speech signals recorded as
1-ch, 2-ch, and 8-ch recordings at a sampling frequency of
16 kHz are available publicly.

4) LIVE MUSIC DATASET [185]

The database is comprised of two subsets of live music
recordings of four music genres (i.e., rock, pop, electronic,
and country) for perceptual audio quality assessment, which
were annotated by 60 subjects with normal hearing. The
first subset contains 500 live music recordings with human
annotations obtained via a web-based interface; while the
second one contains 2,400 synthetically altered live music
recordings in 8 different quality conditions.

5) BLIZZARD CHALLENGE 2016 [186]

This dataset was used for text to speech synthesis Blizzard
Challenge 2016, and consists of speech and text data of pro-
fessional audiobooks. In particular, about 5 hours of British
English speech data (44.1 kHz sampling rate, 2 channels, 16
bit encoding) from a single female speaker is provided.

B. VIDEO

1) POLY NYU VQ [187]

This database contains three individual but related test using
videos with different frame rates and quantization parame-
ters. Specifically, distorted videos were generated by different
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temporal, spatial, and SNR resolutions. A total of 31 viewers
participated in the test, while 20 ratings for each processed
video sequence is available.

2) LIVEVQ [188]

The LIVE Video Quality database includes 15 video
sequences with recent and advanced codecs such as MPEG-2
and H.264 compressions, simulated transmission of H.264
packetized bitstreams through error-prone IP networks and
wireless networks. Each video was assessed by 38 human
subjects. The videos in this dataset span a much wider range
of quality, e.g., the low quality to those found in found in
online video streaming application, such as YouTube.

3) VQEG HDTV [189]

The dataset is composed of 6 subsets but only 5 subsets
are publicly available. The test conditions are MPEG-2 and
H.264 compression with two types of network impairments,
i.e., slicing error and freeze error caused by burst packet loss.

4) MADE FOR MOBILE DATASET (MMD) [190]

It consists of 19 pairs of extracted video sequences from
22 professionally produced clips with 18 observers for sub-
jective test. The aim of the database is to assess content
production rules as well as video quality between mobile
devices and TV.

5) CVD2014 [191]
The CVD (Camera Video Database) utilizes real cameras
instead of introducing distortions via post-processing that
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leads to a complex distortion space (e.g., sharpness, jerkiness)
in regard to the video acquisition process. The dataset is
comprised of 234 videos that are recorded using 78 different
cameras. The subjective ratings are also included.

C. AUDIOVISUAL

1) PLYM [192]

The PLYM dataset was created to study the audiovisual
quality predictions for video calls over wireless applications.
The subjective tests for 60 audio, 60 video and 60 audio-
visual sample with 16 observers are available. The videos
were encoded with the H.263 and G.711 law codecs using
6 motion, 2 video frame rates and 5 packet loss rates.

2) TUM [193]

This data is targeted for high definition videos audiovi-
sual quality assessment with 1080p50 format. The video
sequences were encoded with the H.264/AVC video codec
including different bitrates and encoding impairments,
e.g., blurring and flicker. The subjective scores were obtained
from 21 users.

3) VQEG [23]

There are 10 audiovisual subsets in this database produced
by six different international laboratories in a study to deter-
mine the most appropriate way to perform audiovisual qual-
ity testing. The audiovisual sequences were coded to attain
three coding qualities, i.e., high, medium, and low. Partic-
ularly, the H.264/AVC video codec and Advanced Audio
Coding (AAC) with 6 and 3 bitrate levels, respectively, were
used for encoding. While, the subjective scores were obtained
from 35 observers.

4) VIT [194]

It consists of 125 audiovisual sequences from streaming ser-
vices with subjective quality values provided by 125 users.
The H.264 video and AAC audio streams were adopted for the
test with varying impact of resolution, movement quantity,
packet loss rate, and mean loss burst size.

5) INRS [166]

It contains 160 unique configurations for audiovisual content
with different media compression and network distortion
parameters, e.g., video frame rate, packet loss rate, and quan-
tization and noise reduction parameters. The H.264 video
codec and AMR-WB audio codec were employed to encode
video and audio streams; while 30 subjects rated the overall
audiovisual quality.

D. PHYSIOLOGICAL

1) PHYSIOLOGICAL EVALUATION OF SYNTHESIZED

SPEECH QoE (PhySyQX) [196]

It is an EEG dataset using a Biosemi ActiveTwo sys-
tem. The quality ratings were obtained from 21 healthy
participants by presenting 44 synthesized speech stimuli
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(approximately 20 s long), generated from 7 commercially
available TTS systems along with 4 natural voices.

2) DATABASE FOR EMOTION ANALYSIS USING
PHYSIOLOGICAL SIGNALS (DEAP) [197]

Itis composed of EEG and peripheral physiological signals of
32 participants, when they watched 40 one-minute long music
videos with varying emotional content. The participants pro-
vided the quality rating for each video in terms of the levels
of arousal, valence, like/dislike, dominance, and familiarity.

VII. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS
Despite great progress in the audio, video and audiovisual
quality (QoE) assessment, a range of issues remains to be
addressed. In the following, some of the open issues and
research directions are described.

A. GENERALIZATION CAPABILITY

It is easy to see in the literature that a given multimedia
perceptual-based (objective) quality assessment model will
typically perform well for some content, context or degra-
dation types, but not so well for others on which either
the model was not tuned or proposed for, thereby leading
to low generalization capability. For instance, an audiovi-
sual quality assessment model developed for videoconferenc-
ing will most likely not perform well on video streaming
applications. While, multimedia is transmitted over broad
set of network infrastructure (e.g., jitter, packet loss, and
bandwidth), with varying characteristics (e.g., codec, spa-
tial and temporal information, bitrate), contents (e.g., sports,
news), contexts (e.g., office, street), different capture devices
(e.g., PC, smartphone) and setups (e.g., conversational, multi-
media streaming), development of generalized quality assess-
ment models will greatly advance the state-of-the-art in
quality assessment & QoE field.

B. ADVANCED MACHINE LEARNING (AML)

BASED ASSESSMENT

Traditional quality assessment methods are often based on
explicit modeling of the highly non-linear behavior of human
perception. As a result, many traditional models are prone
to overfitting or have questionable overall reliability. Con-
versely, AML based methods try to mimic quality perception
instead of designing an explicit model of the human auditory
or visual system. There exist few preliminary studies on use
of AML for unimodal (audio or video) quality assessment,
but audiovisual objective quality models based on AML, such
as dictionary learning and deep learning, have seldom been
explored. AML paradigms can be utilized for robust segmen-
tation, representation learning, feature extraction/selection,
classification and finding temporal correlations within and
between different modalities to attain higher interoperability
and generalization capability of the models. Future QoE/QoP
audiovisual models should explore AML paradigms.

C. MULTIMODAL QUALITY PERCEPTION
The audiovisual quality perception is a multimodal pro-
cess, which integrates visual and auditory sensory channels.
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There are two well-known theories for multimodal fusion:
early and late fusion. Most of the works in the literature have
adopted the early fusion theory. However, multimodal quality
perception yet suffers from advanced theoretical understand-
ing from a neurophysiological point of view. There is huge
demand for understanding many complexities (e.g., spatial
and temporal proximity and resolution between modalities
and stimuli) involving audiovisual quality perception in both
subjective and objective domain. Given the neuroimaging
advances seen to date, more neurophysiological QoE studies
should be conducted to shed light on this matter.

D. IMMERSIVE QoE ASSESSMENT

The inclusion of a third dimension brings more challenges in
quality assessment models. The depth impression by stereo-
scopic displays and multichannel audio signals are another
potential source of either quality improvement or distor-
tions. Some studies tried to apply existing 2D models for
3D unimodal and multimodal QoE, but such an approach
does not account for specific distortions, such as stereo-
scopic crosstalk. Thus, while some works have specifically
targeted 3D perceived multimedia quality assessment, this
is a research topic still in its infancy stage. The 3D QOoE is
multifaceted with distortion, display and discomfort issues,
and their impact and relation to overall 3D quality is poorly
understood. Existing methods only consider two factors, i.e.,
depth and display. There are no prediction models for 3D
naturalness and why some users feel dizzy or nauseous. The
latter case can be better understood by devising methods for
‘simulator of sickness’ in 3D QoE, which may later be useful
in designing 3D QoE assessment metrics.

E. LARGE-SCALE ANNOTATED MULTIMODAL DATASET

Progress in multimedia QoE deeply depends on the existence
of comprehensive large-scale databases that contain different
coding, transmission, and decoding inaccuracies, and vari-
ous potential content and contexts. Though several disparate
databases are available, they are very limited in size and
broadness. Large-scale public multimedia databases (includ-
ing corresponding subjective ratings, and if possible recorded
physiological signals) will help to compare various QoE mod-
els, discover inter and intra relationship between different
factors and phenomena, and to make strong conclusions in
terms of statistical significance. Crowdsourcing techniques
may help obtaining annotated large-scale databases [13].

F. CONVERSATIONAL QUALITY ASSESSMENT

Conversational quality assessment, where multiple subjects
talk using unimodal (only speech) or multimodal channels
over a test connection, is important for telecommunication
devices, networks, and algorithms. Conversational QoE can
probe various dimensions including handsets/devices com-
bination, side tone, echo, level and delay impairment, and
the effect of relationship between interacting subjects, which
are usually not assessable via listening-only or talking-
and-listening tests. Conversational QoE tests are generally
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considered more expensive, thus are relatively rare in the
literature. There are few human-human interaction QoE
assessment methods, but the researchers have mainly ignored
human-machine and sizeable-group conversational QoE [6].

G. NO-REFERENCE/NONINTRUSIVE QoE METRICS
Usually, full- or reduced-reference based quality assessment
methods attain higher accuracy, but they are not usable in
all applications owing to their need of reference signal.
No-reference/nonintrusive QoE metrics are gaining momen-
tum [5]. Particularly, nonintrusive audio (speech) quality met-
rics with high predictive power are highly coveted [24].

H. PSYCHOPHYSIOLOGY-BASED QoE ASSESSMENT

The quintessential psychophysical techniques quantitatively
evaluate the relationship between physical stimuli and the
conscious perceptions, while psychophysiology looks into
the physiological bases of perceptual and cognitive processes.
Namely, psychophysiology evaluates implicit responses to
physical stimuli rather than explicit ones, which may avoid
potentially misleading subjective ratings. Recent studies have
shown that use of psychophysiological measures in quality
assessment algorithms (e.g., a method based on analysis
of neuronal activity) can lead to better QoE assessment.
There is a need for designing better non-learning or learning-
based fusion schemes to combine psychophysiological and
psychophysical assessment [175]. Because individually they
have limited capability; their integration can improve overall
insight into QoE. The lack of standards for physiological
methodologies for QoE is hampering the progress. More-
over, the lack of public databases containing ground truths
has further stymied research on this topic. Current trend of
physiological measurements being integrated into personal
computing devices also provide an opportunity to devise
techniques for continuous QoE monitoring in a minimally
invasive way.

I. MULTIMEDIA NETWORKS MANAGEMENT VIA QoE

The management of multimedia services over access net-
works is another challenging issue of QoE due to the
larger heterogeneity of the devices, user’s requirements and
communication channels. Current multimedia access net-
works management depends mainly on time-consuming and
costly manual and reactive process, especially when anoma-
lies occur. To overcome this limitation, autonomic manage-
ment framework can be developed to maximize user’s QoE.
In other words, perceptual quality measures can be used
to systematically steer, in real-time, management algorithm
parameters (e.g., video rate adaptation, admission control,
and traffic flow adaptation) for optimized QoP/E [3].

VIil. CONCLUSION

A recent spurt in multimedia services over wired and wireless
networks has also triggered perceptual quality assessment
research. In particular, there is a huge demand for methods
that are capable of estimating and quantifying the coding,
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transmission and decoding (reception) quality, services, expe-
rience and satisfaction as perceived by the end-user. Though
the perceptual multimedia quality assessment proved to be a
difficult task, a plentiful of research and development efforts
have been devoted to it and its applications, thereby leading
to significant progress in the field. This article provided a
survey of existing multimedia quality assessment methods
with a focus on perceptual-based audio, video and audiovi-
sual quality measurement techniques. The paper also pre-
sented a classification of audio and video quality metrics
based on their underlying methodologies. Moreover, influen-
tial factors, quality of services, quality of experience, quality
of perception, quality assessment using physiological sig-
nals, and representative public audio, video, audiovisual and
physiological databases have been discussed. Still, there are
various issues remaining to be addressed to attain increased
understanding of the many complexities of human percep-
tion for both individual and multimodal qualities. Thus, the
paper discussed some of the open issues and challenges
in the filed. We are still a long way from any depend-
able multimodal quality/experience/perception assessment
method, which will require interdisciplinary research efforts
of different domains, such as human vision, physiology, and
psychophysiology, etc.
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