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ABSTRACT Using FPGA-based acceleration of high-performance computing (HPC) applications to reduce
energy and power consumption is becoming an interesting option, thanks to the availability of high-level
synthesis (HLS) tools that enable fast design cycles. However, obtaining good performance for memory-
intensive algorithms, which often exchange large data arrays with external DRAM, still requires time-
consuming optimization and good knowledge of hardware design. This article proposes a new design
methodology, based on dedicated application- and data array-specific caches. These caches provide most
of the benefits that can be achieved by coding optimized DMA-like transfer strategies by hand into the HPC
application code, but require only limited manual tuning (basically the selection of architecture and size), are
neutral to target HLS tool and technology (FPGA or ASIC), and do not require changes to application code.
We show experimental results obtained on five common memory-intensive algorithms from very diverse
domains, namely machine learning, data sorting, and computer vision. We test the cost and performance
of our caches against both out-of-the-box code originally optimized for a GPU, and manually optimized
implementations specifically targeted for FPGAs via HLS. The implementation using our caches achieved
an 8X speedup and 2X energy reduction on average with respect to out-of-the-box models using only simple
directive-based optimizations (e.g., pipelining). They also achieved comparable performance with much less
design effort when compared with the versions that were manually optimized to achieve efficient memory
transfers specifically for an FPGA.

INDEX TERMS Cache, high-level synthesis, acceleration, FPGA, optimization.

I. INTRODUCTION
High-Performance Computing and data-intensive applica-
tions, such as Machine Learning, Artificial Intelligence, and
big data processing, are becoming more and more com-
mon both in large data centers and on embedded platforms.
Thus, while the processing speed of, e.g., Neural Network
training or database sorting, remains a primary concern,
energy consumption is quickly gaining importance. In data
centers, lower energy allows significant operational cost
savings, while in embedded systems, such as Automated
Driver Assistance Systems, lower energy implies lower cool-
ing and manufacturing costs. These trends are witnessed
by announcements recently made by companies such as

Microsoft and Baidu, which use FPGAs for their search and
machine learning tasks, or Amazon, which offers FPGAs on
one of its AWS instance types. They are also underscored by a
string of recent acquisitions performed by Intel, in particular
of the second largest FPGA company, namely Altera.

This means that homogeneous hardware architectures, e.g.,
multi-core general purpose Xeon processors, no longer meet
the heaviest computation requirements especially from the
point of view of energy efficiency [1]. Thus, heterogeneous
systems that cluster together different types of processors
and hardware, such as CPU-GPU or CPU-FPGA, are able
to achieve the best performance/cost/energy trade-offs for
computationally-intensive parallel algorithms [2].
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FPGAs typically consume about an order of magnitude
less power than GPUs or CPUs and provide a comparable
raw computing performance, i.e., FPGAs consume an order
of magnitude less energy per operation. Their adoption as
data center accelerators is enabled by the recent availability
of very user-friendly and extremely powerful synthesis tools,
such as Stratus from Cadence, Catapult from Mentor and
Vivado HLS (formerly Autopilot) from Xilinx, which signifi-
cantly contribute to fulfill the FPGA promise of software-like
flexibility and design ease with quasi-hardware performance
and efficiency. These tools enable the designers to use high-
level languages as the input to the FPGA design flow, such
as C, C++ or OpenCL, which greatly eases the design and
especially verification, and dramatically reduces the design
cycle, even for FPGAs, with respect to traditional HDL-based
flows.

While traditionally HLS had been regarded as a faster
way to achieve worse designs than with the RTL-based flow,
currently this view is changing among designers, due to
several factors. First of all, the design tools are getting better
and they ensure high quality results, generating automatically
RTL with better or similar quality to manual design. Second,
the designers are gaining experience with these tools and
are thus able to steer them towards the best architectural
implementations. Third, faster design cycles and significantly
reduced verification times and costs imply that a much larger
design space can be explored with respect to manual RTL
design, which dramatically increase the chances to find the
‘‘best architecture’’ (or a broad Pareto set).

However, it is also clear that good code for a CPU or even
a GPU may not be the best for an FPGA or ASIC implemen-
tation, as we will show in the result section of this article. The
reason is that while HLS tools fully automate the execution
of some micro-architectural decisions, e.g., whether a loop is
pipelined or not, or whether a large C array is partitioned into
several smaller on-chip memories, the choice among these
options must still be made by a human designer. Moreover,
tasks such as efficiently moving data from large off-chip
DRAMs into on-chip memories must still be implemented by
hand, by writing C or OpenCL code.

Modern FPGAs, such as the Stratix from Altera and the
Virtex, UltraScale families from Xilinx, offer to the designer
millions of Configurable Logic Blocks (CLBs) and Flip-
Flops, megabytes of on-chip the Block RAM (BRAMs), hun-
dreds of multiply-and-accumulate units (DSPs), and many
other dedicated hardware blocks, including ARMCortex pro-
cessors [3]. Moreover, very recent design flows from both
Altera/Intel and Xilinx promise software-like development
for applications that are entirely written in a high-level lan-
guage, like C, C++ or OpenCL, and are then compiled
and synthesized for heterogeneous CPU-FPGA platforms. In
particular, parallel languages that were originally developed
to program GPUs, can now be used to program heteroge-
neous platforms such as PCs with FPGA boards, or Zynq
platforms which include a multi-core CPU and a large
FPGA [4].

However, the expected performance is typically not
achieved by simply recompiling, via High-Level Synthe-
sis for an FPGA target, an algorithm that was originally
written for execution on a CPU or GPU. This is because
the CPU or GPU architectures are fixed, hence most com-
piler decisions are local and relatively simple, such as intra-
basic block scheduling or peephole optimizations. However,
in an FPGA the architecture is adapted to the application,
rather than the application to the architecture. While this
can achieve much better optimization levels, it also implies
that many more high-level decisions must be made during
synthesis. HLS tools are able to automatically implement
these decisions, but even their latest generations need to be
directed to do so by a human or by a (very time-consuming)
Design Space Exploration tool.

While the optimizations performed by a CPU or GPU
compiler are considered excellent when they speed up exe-
cution by a factor of 2, the following HLS techniques can
dramatically optimize the execution time of algorithms on
FPGAs even by orders of magnitude. Most of them apply
to loops, which are a major source of concurrency in high-
level code and some languages, such as OpenCL, explicitly
state that some loops can be arbitrarily parallelized, because
iterations do not depend on each other:

1) Loop pipelining starts new iterations of a source code
loop before the previous ones are completed. It is one
of the best options for loop optimization in HLS, since
it usually boosts the performance at a very low cost
[5, p. 61]. The number of clock cycles between suc-
cessive loop iteration starts (inverse of the through-
put) is also called the ‘‘Initiation Interval’’ of the
pipeline (in the best case, it can be one clock cycle).
It is fully decoupled from the time it takes to com-
plete one iteration, the pipeline ‘‘latency’’. Usually,
memory or data dependencies between successive iter-
ations (‘‘loop-carried dependencies’’) are the bottle-
necks that increase the initiation interval. Several other
synthesis techniques, e.g., array partitioning or loop
interchange [6], can be applied to ameliorate this
problem.

2) Loop unrolling creates multiple copies of the loop
body to be executed fully in parallel. In some cases it
can achieve even more performance than by means of
pipelining, but typically at a huge resource (i.e., area)
cost. A loop can be fully or partially unrolled and in
both cases the maximum performance can be achieved
only by means of array partitioning and may require
arithmetic evaluation restructuring (e.g., adder tree bal-
ancing) [5, p. 51]. In OpenCL (similar to CUDA),
the loop over work groups can be unrolled arbitrarily by
definition. Thus, like on a GPU, the performance on an
FPGA can be increased by instantiating multiple work
groups until the computing or routing resources, or its
memory bandwidth are saturated [4], [7]

3) Exploiting on-chip memory. Most modern FPGAs inte-
grate thousands of independent BRAMs on chip for a
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total of many MBs of storage. Accesses to these mem-
ories are both much faster in terms of latency and much
more parallelizable than those to off-chipmemories [8].
Many algorithms, especially the memory-intensive
ones that are addressed in this article, achieve the
best acceleration only by moving frequently-accessed
data that reside in off-chip memories into on-chip
BRAMs (or another kind of FPGA memory called
LUTRAMs). As mentioned above, on-chip memories
that are not carefully optimized by using partitioning
directives can often become bottlenecks, because of
the limited number of access ports that they offer.
While on a GPU the maximum number of concurrent
accesses to independent addresses (and the meaning of
‘‘independent’’) is fixed by the GPU architect, on an
FPGA it must be carefully chosen by the designer,
because more parallelism often implies a higher cost.
Memory partitioning or memory reshaping according
to user directives or to automated analysis of access
patterns of a given algorithm can dramatically increase
thememory bandwidth and achieve amuch higher level
of concurrency.

4) Optimizing global memory interfaces. Other methods
to improve performance include instantiating multiple
DRAM access ports or increasing their bit width.
On a GPU, the global memory interface subsystem
receives memory read or write requests from the
threads or work items that are executing on its compute
units, and coalesces these requests whenever possible,
in order to match both the available memory word
size and bus burst transfer capabilities. For example,
16 accesses to adjacent properly aligned 32-bit integer
array elements can be grouped automatically at runtime
into a single 512-bit memory read, or to a burst of
4 128-bit memory reads, depending on the DRAM
interface width.
On an FPGA, these groupings must be performed man-
ually and at compile time, which requires a lot of
design and tool usage expertise. Our caches simplify
and automate all that.

A. MOTIVATION
As argued above, while HLS automates some low-level
labor-intensive transformations from high-level code to RTL,
many decisions must still be made by humans, and exten-
sive code rewriting is sometimes needed in order to get
the best performance with acceptable cost on an FPGA [7].
While automating design decisions is the domain of Design
Space Exploration techniques [9], this work focuses on totally
avoiding, or, more precisely, hiding from the programmer, all
the code rewritings that optimize the access to large arrays of
data. Our approach totally eliminates the significant verifica-
tion cost of these changes, because caches are guaranteed to
always deliver the right data. In the context of algorithms like
those targeted by this research (which have regular access pat-
terns), they can even ‘‘guarantee’’ good performance, where

the guarantee is as good as the test cases which are used to
select the cache parameters and to verify the performance
post-synthesis.

The requirements that wewant to satisfy in the scope of this
research on accelerating memory-intensive algorithms are:

1) Enabling significant performance acceleration with
respect to code that was not written specifically for
FPGA, and sometimes not even very much optimized
for a GPU.

2) Improving execution energy consumption by target-
ing an FPGA platform, by reducing off-chip memory
accesses, and by reducing the execution time.

3) Supporting optimized use of external DRAM inter-
faces (e.g. DDR3 or DDR4) via advanced on-chip
busses (e.g. AXI).

4) Enabling the use of HLS tools.
5) Keeping the standard HLS-based verification flow.
6) Requiring almost no changes to the original algorithms.
7) Not hampering the standard set of optimizations,

architectural choices, etc. that are offered by the
HLS tools.

B. CONTRIBUTION
Caches have been used for a long time in the domain of
general-purpose CPUs. However, in that case a single cache
is used for all the data that the processor accesses in the
main memory (at most separate caches are used for code and
data). This means that access conflicts between different vari-
ables (or sections of arrays) in the source code may limit the
cache performance, unless sophisticated multi-way or even
fully-associative architectures are used. Even in that case,
the ‘‘hot cache’’ phenomenon [10] hampers several common
algorithms.

In this work, we specialize caches for HLS in several
directions:
• we advocate the use of a separate cache for each source
array that is mapped to DRAM, to minimize the conflicts
and to enable the efficient use of direct-mapped caches;

• we design our caches to appear as inlined array access
methods, via the standard C++ [] operator, in order to
require minimal source code changes;

• we support different kinds of caches, e.g., for read-
only or write-only arrays, in order to best optimize their
architecture;

• we automatically adapt each global memory array
mapped via one of our caches to use wide memory
interfaces and/or bus bursts in order to optimize transfer
bandwidth with external DRAM.

• we enable verification of cache performance and cor-
rectness using the standard C++-based verification
flow supported by modern HLS tools, in which a C++
testbench is used to verify the functionality of both the
C++ code to be synthesized and the resulting RTL code;

• we enable the loop optimizations which can be made
by the HLS tools only for the arrays mapped to on-chip
BRAM, and not to off-chip DRAM.
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Note that while in this work we use mostly FPGAs as our
target, and hence we mention often FPGA-specific tools such
as Vivado HLS, our caches are fully generic and can be
applied also to ASIC designs which access DRAM data. We
tested our designs with ASIC-oriented HLS tools, such as
Mentor Catapult. Of course, in the ASIC case the cost and
performance optimization requirements may be much more
stringent. Yet, our caches can be used to quickly explore the
memory access design space to find a good starting point for
further manual implementation, converting the cache into a
similarly architected ‘‘scratchpad’’.

Moreover, design automation support for static or
simulation-based address sequence analysis to identify the
best cache architecture for a given application is left to future
work.

II. RELATED WORK
Modern CPUs generally include up to three levels of cache
in order to reduce both data access time and energy.
As the level increases, both latency and cache size (hence
access power and energy) increase. These caches imple-
ment different access, replacement and coherency strategies
to achieve the best average performance for all kinds of
algorithms. Research on improving general-purpose caches
is abundant. To cite just a few, Jouppi in [11] introduced
an improvement to direct-mapped caches using a small
fully-associative cache, the so-called victim cache or miss
cache. In [12], Qureshi et al. presented a V-way (variable
way) cache to reduce the miss conflicts existing in tradi-
tional C-way (constant way) set-associative caches. The set-
balancing cache [13] and the adaptive hybrid cache [10]
were introduced for similar reasons, targeting unbalanced
accesses to main memory. For multi-processor systems,
Matthew et al. [14] designed configurable L1 caches for the
MicroBlaze soft processor implemented on Xilinx FPGAs
and achieved up to 41% speedup by using a 32KiB
4-way cache with LRU replacement. In the same setting,
Kalokerinos et al. [15] presented an integrated network inter-
face and cache controller, significantly improving hardware
utilization.

Latency of memory-intensive applications is particularly
significant in FPGAs due to off-chip memory bandwidth
limitations. Many researchers addressed this area by exploit-
ing the highly configurable on-chip memory architecture.
For example, Cheng et al. [16] developed a trace analysis
method to detect relations among all memory accesses. Per-
formance was greatly improved by caching independent data
in separate local memories. Adler et al. [17] used BRAMs
as statically-managed scratchpads rather than dynamically-
managed caches, and described a management system for
different levels of local storage. Choi et al. [18] implemented
a multi-ported cache based on the so-called live-value table,
aimed at a system architecture where both the host proces-
sor and multiple accelerators are on the same chip. In their
approach, both the processor and the accelerators access the
same off-chip memory via a single custom multi-port cache,

which of course may become a performance bottleneck.
Putnam et al. [19] provided a cache-based solution to simul-
taneously increase performance and reduce power consump-
tion, since external DRAM accesses require much higher
power than on-chip SRAM. In this design methodology, the
CHiMPS HLS tool first compiles the high-level code (written
in C) to an intermediate representation and then the caches
are optimized according to the memory access patterns. Simi-
larly,Winterstein et al. [20] also used the LLVM intermediate
language to maximize the utilization of BRAMs to accelerate
a specific algorithm (tree reflection).

Our approach is inspired by some of these works, in par-
ticular to reduce access conflicts by using a separate cache,
possibly with a different architecture, for each source code
array mapped to external DRAM.

III. METHODOLOGY
A. MOTIVATION
The key idea of our approach, as mentioned above, is to
exploit the characteristics of many high-performance algo-
rithms, especially those written using the OpenCL language,
in which large data arrays are mapped in DRAM, and these
arrays are either only read or only written by an accelerated
function mapped to hardware. This allows us to implement
separate caches, one for each such array, without worry-
ing about coherency. This is essentially the use pattern of
OpenCL kernels that we use as the application modeling
language, and it is common to several other applications.

By using a separate cache for each such array, we can
use a different cache organization and architecture (line size,
cache size, associativity) optimized specifically for the access
patterns of each array.
For example, consider a very simple algorithm, namely

matrix multiplication. Although simple, it has significant
practical usefulness, since it is at the root of computer vision
and machine learning algorithms. In past research, it has
been accelerated both for GPUs [21] and FPGAs [22]. This
requires the designer to simultaneously solve two different
problems:

1) creation of a pair of nested loops, going over a portion
(‘‘block’’) of each source matrix, and generating a
block of the destination matrix;

2) transfer of the data from global DRAM to local on-
chip SRAM buffers and correct use of those buffers to
implement one block of multiplication.

While the first part is relatively easy and it can be even auto-
mated under control of high-level synthesis directives, the
second part is much more difficult and can require a signifi-
cant coding effort. Our caches can automatically implement
both by exploiting the locality that is exposed by the designer
while solving the first part.

If the source matrix blocks are rectangular (e.g., M rows
of N elements, or M columns of N elements, where
N is often much larger than M ), then different organiza-
tions are required for the two caches. One cache needs
to store M lines of N elements each, while the other
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cache needs to store N lines of M elements each, for best
performance.

Our approach, based on C++ template classes for the
array types, allows us to keep the original source code largely
unchanged and to ensure that the cache is accessed every time
an element of the original array is read or written in the code.
The template arguments define:

1) the data type of an element of the original array;
2) the number of dimensions and the size along each

dimension;
3) the cache size, line size, associativity, and so on.

The minimal changes to the source code that are required by
our approach can be evaluated by comparing the code shown
in Appendix B.

A direct-mapped cache can be used for each matrix and
eachmatrix has its own port to the externalmemory to achieve
a good performance. Since both matrices A and B are read-
only, and matrix C is write-only, special read-only and write-
only caches can be used in order to avoid false loop-carried
dependencies and to reduce the pipeline initiation interval.
For caches with relatively small sizes (e.g., 8 or 32 words),
the innermost loop can also be unrolled to further increase
the performance, since the cache can be implemented as reg-
isters. Since matrix C is not the bottleneck of this algorithm,
the cache for C could also be removed in order to save
resources.

In this case, as will be discussed in Section V, the cache-
based approach reached a performance that was within 10%
of the theoretical best, namely the case in which all the
matrices to be multiplied fit in the on-chip BRAM.

FIGURE 1. Host and accelerator system architecture.

B. HARDWARE ARCHITECTURE
Fig. 1 illustrates the hardware architecture that is considered
in this research and that is supported by the Xilinx tools that
we use to demonstrate it. For the sake of illustration, we use a
concrete instance of a general architecture template, where
the off-chip bus is PCIe, the on-chip bus is AXI, and the
DRAM interface is DDR3. However, our approach is fully
general and is not limited to this specific architecture. In this
figure, the accelerators (called ‘‘kernel IPs’’ following the
OpenCL terminology) are connected to the host processor
by an off-chip PCIe bus and the on-chip AXI bus. The host
processor downloads (via the ‘‘infrastructure IP’’) onto the

TABLE 1. Target FPGA and board.

FIGURE 2. Design flow in SDAccel.

FPGA the bitstream to configure the accelerator, and stores
the data to be processed in the external memory, which is
connected to the FPGA fabric via a DDR3 interface and the
AXI bus. The FPGA board that we use for illustration in
this article is the Xilinx ADM-PCIE-7V3, with a Virtex 7 on
board. It is described in TABLE 1.

C. DESIGN FLOW
As mentioned above, we use an HLS flow to implement both
the accelerated algorithm and its dedicated caches. In this
research, we used Xilinx SDAccelTM v2016.2, which in turn
uses VIVADO_HLSTM for HLS and VIVADOTM for logic
synthesis, power estimation, etc.

As shown in Fig. 2, the SDAccel design flow starts with
software (SW) emulation, which verifies the functional cor-
rectness of the algorithm using a properly designed test-
bench. Both the algorithm and testbench can be modeled
in C, C++ or OpenCL. Then, VIVADO_HLSTM synthesizes
and estimates the cost and performance for the kernel IPs.
The resulting report contains information about statically
analyzed latency and throughput, resource utilization and so
on. The designer can use this information to further direct
HLS towards the desired solution (e.g., the designer can
use the pipelining iteration interval, which provides a good
estimate of the final throughput). During the following hard-
ware (HW) emulation phase (usually called RTL simulation),
SDAccelTM calls VIVADOTM to connect the synthesized
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FIGURE 3. Inline cache.

kernel IPs with other infrastructure blocks shown in Fig. 1
and launches a co-simulation between the RTL and the high-
level testbench (typically written using C/C++ or OpenCL
host code). This simulation is much slower than the SW
emulation, but it also generates a much more accurate report
of the system performance, which in particular includes the
effects of off-chip DRAM accesses.

In the literature surveyed above, the caches are usually
designed as concurrent HW modules, which execute in par-
allel with the kernel IPs [18]. While this strategy offers some
advantages, such as a better decoupling between the external
memory and the IPs, it also has a significant disadvantage:
it requires one to change the accelerated kernel code to access
the caches via dedicated interfaces rather than directly access
the source code arrays. This is incompatible with the strategy
of providing a software-like design environment for FPGA
hardware, and motivated us to create the inline caches that
we introduce in this article.

As shown in Fig. 3, our caches are directly ‘‘inlined’’ in the
algorithms to be accelerated. In this way, the ‘‘golden’’ code
that has been functionally verified by SW emulation does not
need to be changed for high-performance implementation.
Only the top-level module interface (which is typically much
smaller and simpler than its often intricate algorithmic code)
requires some small changes, as illustrated below. In the
resulting RTL, the caches are directly synthesized as part of
the kernel IP.

Since the HLS tools that we currently use for synthesis
do not support classes or templates in OpenCL kernel code,
all our examples below are based on the C++ language.
However, this is only to ease prototyping our flow. The same
mechanism could be implemented also in OpenCL by slightly
modifying the OpenCL HLS front-end.

As mentioned above, the design has to be modified only
slightly in order to insert the inline caches in the interface of
the original kernel. Further changes to the flowwill be needed
to analyze the array access patterns and to optimize the cache
architectures. Automation of these new steps is left to future
work. In this paper we perform this task by hand.

As shown in Fig. 4, some analysis of the external memory
access traces is necessary to find the best cache parameters
to maximize the reuse with an acceptable area cost (we will
describe this in more detail below). Note that this access

FIGURE 4. Design flow with caches.

analysis is needed only for arrays mapped to exter-
nal (‘‘global’’ in OpenCL terminology) memory, and not for
the local arrays or scalars. This only requires the designers to
make a few modification to the top-level function interface
to replace the original data types of the global array variables
with a template cache data type.

Fast SW emulation can be used to both trace the array
addresses and to check the achieved hit ratio, which is auto-
matically captured and printed by our cache models. Then
can be performed the synthesis, followed by HW emula-
tion or actual FPGA prototyping to obtain more detailed
external memory performance information, which can poten-
tially lead to further optimizations.

D. INLINE CACHES
In this work, we propose and describe several kinds of
inline caches, e.g., direct-mapped and set associative, selected
based on the memory-trace pattern of the applications to
be optimized. Remember that in our work a separate cache
is implemented for each array mapped to global memory.
This means that performance is largely independent of the
global memory addresses at which each array is allocated,
and that there are no conflicts between different arrays. Since
accelerated kernels typically make fairly regular accesses to
each array, this means that real-time performance of our dedi-
cated caches is muchmore predictable than that of traditional
shared caches, and can be comparable to that of manually
managed scratchpads.

1) DIRECT-MAPPED CACHE
As its name indicates, each element of each array in the
external memory has a corresponding fixed position in the
cache, according to a fixed bit field of the address. The line
bits in the middle of the address determine to which line in
the cache it is mapped, while the word bits define the position
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within the cache line. The tag bits are used to check whether
a given address is contained in the corresponding line of the
cache (‘‘cache hit’’) or not (‘‘cache miss’’). In the latter case,
the cache fetches the correct data from external memory and
updates the corresponding cache line and tag.

Each cache line is read with a single AXI bus access,
possibly using a burst (depending on the line and data bus
bit widths), and stored into the cache. The write policy for the
caches that we implemented is write-back, i.e., only the cache
is updated initially, while the external memory is updated
only when the cache needs to be flushed, either due to a write
miss or due to the completion of the accelerator execution.
As mentioned above, in this paper we assume an execution
model similar to that of OpenCL, in which global arrays
cannot be read and written at the same time by the same
HW-accelerated function (kernel). This avoids all kinds of
coherency issues for our caches, and typically enables them
to be read-only or write-only. As usual, we keep valid and
dirty bits for each cache line, to indicate if it contains valid
data from memory or data that needs to be written back to
memory.

In this research, the direct-mapped cache was designed in
C++ by using a template class as shown in Appendix A. The
template arguments, as mentioned above, define the type of
one element of the cache and of the corresponding off-chip
memory global array, the line size and the word size. The con-
structor initializes the base address of the corresponding off-
chip memory array (typically the value of a pointer argument
of the OpenCL kernel or C++ top-level function) and other
variables, like the valid and dirty bits. In HLS, the constructor
is typically executed as part of the reset sequence of the HW
block. A C++ namespace is used to choose among a read-
only, write-only or read-write cache.

In the algorithmic code to be implemented via HLS,
the external memory is usually accessed by using the
operator[] or the operator* on a pointer passed from
the interface. Hence, we overloaded the operator[] for
the cache type, for uses on both the left hand side (write) and
the right hand side (read) of an assignment.1 This allows us
to change only the interface of the function to be synthesized,
not its code, thus dramatically reducing the design time and
the likelihood of coding errors. For instance, we show the
modification from the original code of the matrix multipli-
cation algorithm in Appendix B.

The interface to external memory can be defined simply
by instantiating the cache type, with the appropriate template
parameters, instead of every source array that is mapped to
off-chip DRAM. The constructor and destructor that we cre-
ated for the cache types take care of all the bookkeeping, from
initializing the cache as empty (resetting all valid and dirty
bits), to flushing an output cache and printing the statistics
in a simulation context, when the accelerator completes its
operation.

1We managed to overload differently the read and write accesses to call a
different cache access function, by exploiting an inner class as an agent [23].

Note that since the cache access functions (for reading and
writing) are inlined into the high level kernel code, the syn-
thesized kernel takes care of both executing the computation
using the cached data, and reading/writing data from/to the
main memory in case of misses. As we mentioned above,
this somewhat reduces the achievable performance, but it
dramatically simplifies the design flow and is consistent with
OpenCL philosophy, where the work items themselves take
care of moving the data from global to local memory. As we
will show in Section V, the performance is excellent anyway
and similar to manually optimized memory transfers between
the global and local memory. In future work we are planning
to experiment with the use of separate processes to handle the
caches.

In order to achieve the best performance, the data width
of the AXI interfaces that are used to transfer a line to and
from external DRAM should have the same size as a cache
line, so that a read or write can be completed in one clock
cycle (plus globalmemory latency in case of reads, of course).
If the line length is larger than the global memory read size,
then burst accesses will automatically be used by our design.
This is one of the key advantages that the designer gets for
free by using our caches.

Algorithm 1 Read Data From Direct-Mapped Cache
Require: 32-bit addr and Cache with a pointer ptr_mem to

external memory
Ensure: data = Cache[addr]
1: tag, line,word ← addr
2: request ← request + 1
3: if tag = Cache.tags[line] and Cache.valid[line] then
4: hit ← hit + 1
5: else
6: if Cache.dirty[line] then
7: location← Cache.tags[line], line
8: ptr_mem[location]← Cache.array[line]
9: Cache.dirty[line]← false
10: end if
11: loc← addr >> LINE_BITS
12: Cache.array[line]← ptr_mem[loc]
13: end if
14: Cache.tags[line]← tag
15: Cache.valid[line]← true
16: return data← Cache.array[line].slice(word)

Algorithm 1 and Algorithm 2 demonstrate how a cache
reads or writes an address of global memory. The pair of
variables request and hit are used as performance counters
to enable cache parameter tuning also when an FPGA is
used as a rapid prototyping platform, and can be accessed
via FPGA-provided debugging mechanisms (e.g., via JTAG).
The valid and dirty arrays have Boolean elements. The tags
array contain unsigned integers of the appropriate length.
The array array is used to store all the lines of data in the
cache.
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Algorithm 2 Write Data to Direct-Mapped Cache
Require: 32-bit addr and data and Cache with a pointer

ptr_mem to external memory
Ensure: Cache[addr] = data
1: tag, line,word ← addr
2: request ← request + 1
3: if tag = Cache.tags[line] and Cache.valid[line] then
4: hit ← hit + 1
5: else
6: if Cache.dirty[line] then
7: location← Cache.tags[line], line
8: ptr_mem[location]← Cache.array[line]
9: end if
10: loc← addr >> LINE_BITS
11: Cache.array[line]← ptr_mem[loc]
12: end if
13: Cache.tags[line]← tag
14: Cache.valid[line]← true
15: Cache.dirty[line]← true
16: Cache.array[line].slice(word)← data

The two algorithms share a similar structure.
Lines 1-4 handle cache hits. The address is split into three
pieces, namely tag, line and word , then the value (or values,
for the set-associative case) stored in tags is compared with
the tag part of the address. If it is a hit, the following operation
is the read from (or write to) array, on line 16. In both cases,
the actual location of the data within the line depends on the
value of word . If it is not a hit, then a new read from the
external memory is necessary (after writing back the dirty
line in case of a write or read/write cache).

In many algorithms, and in particular in the most massively
parallel cases written in languages such as OpenCl, the uses
of each array argument of a kernel are either read-only or
write-only. Hence, we designed a special cache for these read-
only and write-only memory accesses in order to speed up
the synthesis, reduce the cost, and improve the performance.
For instance, a read-only cache does not need to check if a
line is dirty. Algorithm 1 and Algorithm 2 show the get()
and set() functions for this case. The C++ code is listed in
Appendix A.

2) SET-ASSOCIATIVE CACHE
In some algorithms (e.g., sorting, FFT), data read by succes-
sive external memory accesses are not located at contiguous
addresses. In the worst case, accesses with the same stride as
the line size would cause the lowest performance, since all
accesses could become misses. For these applications, using
a set-associative cache is the easiest solution that does not
require code changes.

Fig. 5 shows an example of a 2-way set-associative cache.
The data fetched from main memory can be stored in any
cache set. The replace policy that we are using in our example
code is Least Recent Used (LRU), but other algorithms can

FIGURE 5. Diagram of a two-way set-associative cache.

be implemented as well. In Fig. 5, the LRU field records
the last time when a cache line has been read or written.
In this research, we use as time stamp (i.e., LRU value) the
request counter, which was also used for statistical purposes
in Algorithm 1 and Algorithm 2.

Designers should carefully choose the number of ways
of a set-associative cache when optimizing the performance,
because a large number of ways causes higher resource uti-
lization. The adaptation of traditional cache simulators to our
methodology, basically by having a separate cache for each
kernel argument, is left to future work.

Just like in the case of direct mapped caches, also for set-
associative caches we have three variants: read-only, write-
only and read-write.

In this work we did not consider fully associative caches
due to the high cost of the Content Addressable Memory.

3) CACHE-DEPENDENT HLS OPTIMIZATIONS
Using the inline caches described in this work, program-
mers usually achieve better performance compared to original
algorithms. Algorithm- and cache-dependent optimizations
may be needed, though, in order to achieve the best perfor-
mance. As discussed above, the designed caches are com-
patible with HLS optimization methods. Application-specific
post-optimizations include, e.g., pipelining or unrolling a
loop, and providing memory directives. For instance, a mem-
ory dependency is assumed to exist, if there is an array that is
both read and written. Often, HLS may not be able to detect
automatically if this memory dependency is true or not, and
directives are required to optimize memory accesses by using
knowledge coming from the programmer.

Another very useful optimization can be used when the
designer knows that some array accesses in the code will
be always hits (e.g., the access to array element i + 1 after
accessing element i, if i is even and the line size is at least 2).
When the address analysis performed by the HLS synthesis
tool is not powerful enough to detect this situation due to
complex address computations, this can be done manually by
using two dedicated member functions provided by our cache
class. Themethods retrieve() andmodify() can be used instead
of the convenient operator ‘‘[]’’ to directly read or write
respectively an element of the array by assuming that it is
already in cache. These functions can dramatically improve
the throughput by reducing the initiation interval of pipelined
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inner loops, like a convolution operation, which accesses the
same array multiple times in the innermost loops.

It is also possible, in some cases, to further optimize the
accesses by using, e.g., two separate read-only and write-only
caches for an array that is both read andwritten, and for which
the programmer knows that the read and written portions by
a given kernel call never overlap.

As shown in Fig. 4, a SW or HW emulation must fol-
low every optimization that changes the source code, e.g.,
by using retrieve() and modify(), in order to guarantee its
correctness.

IV. TEST CASES
In this work we demonstrate the usefulness of our proposed
inline caches by using somememory-intensive highly parallel
algorithms from various fields, for which we already had
optimized manual implementations from past research.

To each algorithm, we applied also some specific optimiza-
tions that are limited to the use of synthesis directives, hence
which should be correct by construction.

We classify them into three groups. The first class includes
only basic optimizations (e.g., pipelining) of the innermost
loop and multiple memory ports. In this case, all the input
and output data to and from a kernel are stored externally.

Second, the best known optimizations of each algorithm
from the literature were implemented. In this case, in order to
illustrate the best theoretical performance, all data was also
stored in on-chip BRAMs. Although this is not realistic for
large data sizes, it provides an upper bound to the achievable
performance.

Third, our proposed flow is used to include our inline
caches in each design, and to perform some further code
optimizations, as detailed below. In this case, all the input
and output data are stored in the external memory, as well
as inside the caches.

Each class may contain various options for each applica-
tion. Since loop unrolling for the loops with read or write
to a port is not beneficial for the first class of optimizations,
we ignored this optimization in our experiments in order to
provide a fair comparison. But it can be used and would result
in further advantages of our approach.

We recorded for each implementation the execution time
(considering the clock frequency after synthesis, placement
and routing), the power consumption and resource utilization,
in order to compare the effects of the acceleration provided
by the inline cache.

A. K-NEAREST NEIGHBORS (KNN)
The algorithm is used to classify data in machine learning and
statistics applications. As its name indicates, the algorithm
aims to find the first k nearest neighbors to a given ‘‘test’’
point among a set of ‘‘training’’ points. In past work, where
we manually optimized the algorithm [24], we separated the
algorithm in two parts: one computes the distances between
the test point to all training points, and the other searches
for the k smallest among those distances. Both parts are

memory intensive. Due to the fact that the first part contains
only one loop which reads all the data, it can be very easily
optimized simply by accessing the data in bursts (e.g., using
our proposed caches in the most straightforward manner).
Hence, in this workwe focused only on the second part, which
is shown in Algorithm 3.

Algorithm 3 K-Nearest Neighbors (KNN) Algorithm
Require: dist the array of distances and number of records

num and k
Ensure: d[0] = dist[v0] ≤ d[1] = dist[v1] · · · ≤ d[k −

1] = dist[vk−1] ≤ dist[i] ∀i /∈ {v0, v1, . . . vk−1}
1: dlast← 0
2: for i = 1 to k do
3: dmin←∞

4: for s = 0 to num− 1 do
5: dis← dist[s]
6: if dis < dmin and dis > dlast then
7: dmin← dis
8: end if
9: end for
10: d[i]← dmin
11: dlast← dmin
12: end for

Algorithm 3 contains two loops, with one memory access
and a few operations in each iteration. The first implementa-
tion pipelines the innermost loop. The second implementation
also assumes that all distances are already stored in on-chip
memories, and thus provides the best achievable speedup.
The third implementation uses our read-only and write-only
direct-mapped inline caches, with various configurations,
to accelerate the algorithm. Due to algorithm simplicity,
we did not use post-optimizations.

B. BITONIC SORTING
Sorting algorithms are among the most essential and fun-
damental algorithms in computer science. Various sorting
schemes have been implemented in software or hardware for
a large variety of applications. Bitonic sorting offers an excel-
lent level of parallelism and it can be modified, as discussed
in [25], into several phases, each of which using read-only and
write-only arrays. Hence, it has also been accelerated both on
FPGAs [7] and on GPUs [25].

Algorithm 4 contains three nested loops. Each iteration in
the outermost loop sorts blocks of size 2b into the bitonic
sequences (i.e., sequences that are first increasing, then
decreasing, then possibly increasing once more). The middle
loop is over stride sizes s and is used to merge two adjacent
bitonic sequences into a large sequence. The innermost loop
has a constant number of iterations, and swaps the values of
two data items at a distance of 2s if they are not in the correct
order. This algorithm, like KNN, is very memory intensive.

Also in this case, the first implementation pipelines the
innermost loop. Since that loop performs two read operations
and two write operations to the same array in each iteration,
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Algorithm 4 Bitonic Sorting Algorithm
Require: a the array to be sorted and array size N = 2n and

sorting direction dir
Ensure: ai ≥ aj∀i ≥ j for dir = true or ai ≤ aj∀i ≥ j for

dir = false
1: for b = 1 to n do
2: for s = i− 1 to 0 do
3: for i = 0 to N/2− 1 do
4: dir0← (i/2b−1)&1
5: dir0← dir0 or dir
6: step← 2s

7: pos← 2× i− (i&(s− 1))
8: a[pos], a[pos + step] ← order(a[pos], a[pos +

step], dir0) {swap two values if they are not in
correct order}

9: end for
10: end for
11: end for

a loop-carried dependency causes a large initiation interval,
i.e., a slow pipeline throughput.

The second implementation, which is discussed, for exam-
ple, in [25], divides the algorithm into two parts. The first
one splits the global array into multiple arrays, each with
the size equal to the on-chip memory size, and then it uses
Algorithm 4 to sort these small arrays into bitonic sequences.
The second part merges these bitonic sequences into the fully
sorted array.

The third implementation assumes that the array to be
sorted can fit in local memory, and then uses Algorithm 4
to sort it. Of course this is unrealistic for large arrays, but it
has been included to show the best achievable performance.

Our cache-based implementations, due to the read and
write stride accesses to external memory shown in Algo-
rithm 4, require 2-way set-associative caches to achieve the
best performance. Note that if the stride size is relatively
small (smaller than the cache line size), one can easily
prove2 that the two values are stored in the same cache line
after one fetching. Even if the stride size is large, the two
values will be mapped to different cache lines in the same
set. This guarantees the two write operations to hit.

The two read and two write operations in the innermost
loop would still create a loop-carried dependency, as dis-
cussed above, and require a large pipeline initiation interval.
However, one can easily note that the twowrite operations can
never be misses because they access the same array addresses
as the read operations. Thus, in this case we can use the
modify() method to significantly reduce the initiation interval
and dramatically improve the performance.

In order to further remove the dependency created when
the two accesses conflict with each other, we can consider
one more optimization. We exploit the fact that the iterations

2Considering that the sequence starts from position 0 and that both the
stride size and cache line size are the powers of 2.

in the innermost loop are independent, hence the loop can
be unrolled. Memory traces showed that once the 2-way
set associative cache fetched the new data into the cache
line, a number of following iterations would never miss. The
number depends on the cache line size, but if this number
of iterations is grouped together via partial loop unrolling,
then only one initial access would need to go through the miss
check, while the following unrolled iterations can just use the
retrieve() and modify() methods to improve performance.

C. SMITH-WATERMAN ALGORITHM
Was originally proposed to align two sequences with partial
matches [26], as is performed by the UNIX diff command.
A similar algorithm, called Needleman-Wunsch, implements
a global searching technique [27]. Due to their efficiency,
both algorithms have been widely used in the field of bioin-
formatics, e.g., to compare gene sequences [28]. Hence, many
research works have focused on their acceleration, e.g., on
FPGAs [27] and on GPUs [29].

The Smith-Waterman algorithm contains two parts. The
first part constructs a score matrix and is the most expensive.
The second part, called traceback, traverses the matrix to
align the two sequences. In this research, we considered only
the first part, shown in Algorithm 5, and we can see that the
score matrix is accessed multiple times in one iteration.

Algorithm 5 Score Matrix Construction Part of the
Smith-Waterman Algorithm
Require: two sequences seq0 and seq1 with length N and

N > 0
Ensure: a score matrix M = {mij}(N+1)× (N+1) and a direc-

tion matrix D = {dij}(N+1)× (N+1)
1: gap←−1
2: mij← 0,∀i, j
3: for i = 1 to N do
4: {Loop along the rows.}
5: for j = 1 to N do
6: {Loop along the columns.}
7: if seq0[i] 6= seq1[j] then
8: match← 2
9: else
10: match←−1
11: end if
12: val0← m[i− 1][j− 1]+ match {Up left entry.}
13: val1← m[i− 1][j]+ gap {Up entry.}
14: val2← m[i][j− 1]+ gap {Left entry.}
15: m[i][j]← max(val0, val1, val2)
16: d[i][j] ← 0, 1, 2 {Correspond index of maximum

value.}
17: end for
18: end for

The first implementation of this algorithm again pipelines
the loop, and uses four separate external memory ports to
access the four arrays.
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The second implementation is based on the example code
that is distributed with SDAccelTM from Xilinx Inc. Its first
optimizationwas to use burst reads and burst writes to transfer
both input sequences and both matrices (score and direc-
tion) between the external memory and the on-chip memory.
As can be seen in Algorithm 5, the computed score in each
iteration is the left value for the next iteration, which implies
a loop-carried dependency. Similarly, the up value for each
iteration is the up left value for the next iteration. Hence,
the second optimization is to replace memory accesses to the
left entry and up left entry by two local variables in order
to eliminate some loop-carried dependencies involving slow
memory accesses. These optimizations achieved a very good
acceleration of the original algorithm.

In the third implementation uses again our inline caches,
e.g., direct-mapped ones and read-only direct-mapped ones.
The read-only direct-mapped caches were used for the two
input sequences. The score matrix is both read and written,
hence this optimization could not be applied, and a read/write
cache had to be used.We noted that the synthesis tool detected
many false loop-carried dependencies. Hence, in a post-cache
manual optimization, we used directives to instruct it to
ignore those dependencies in order to reduce the initiation
interval.

Note that several such dependencies were also automati-
cally eliminated by using both a read-only and a write-only
direct-mapped cache to access non-overlapping sections of
the score matrix. In addition, special cache methods that
access the cache more efficiently if successive addresses are
guaranteed to be contiguous could also be used in this case.

D. LUCAS-KANADE ALGORITHM
Was first introduced in [30] and has been widely adopted
in the computer vision domain, especially for optical flow
estimation. In the optical flow application, two images taken
close in time are analyzed to find small (thanks to time
proximity) pixel displacements due to movements of various
objects. J.Y. Bouguet [31] also used it to solve the feature
tracking problem. This algorithm is used to compute partial
derivatives of images as shown in (1) and (2):

Ix(x, y) =
∂Im(x, y)
∂x

=
Im(x + 1, y)− Im(x − 1, y)

2
, (1)

Iy(x, y) =
∂Im(x, y)
∂y

=
Im(x, y+ 1)− Im(x, y− 1)

2
. (2)

Algorithm 6 illustrates a simplified version of the Lucas-
Kanade algorithm. The operations omitted have almost no
impact on performance. The implementation that we use in
this article is mainly based on (3), (4) and (5),

G .
= 6

px+wx
x=px−wx6

py+wy
y=py−wy

[
I2x IxIy
IxIy I2y

]
, (3)

b .
= 6

px+wx
x=px−wx6

py+wy
y=py−wy

[
δIIx
δIIy

]
, (4)

vopt = G−1b, (5)

Algorithm 6 Lucas-Kanade Algorithm
Require: two frames of images image0 and image1 and

other coefficients
Ensure: vopt
1: for j = 0 to HEIGHT − 1 do
2: for i = 0 to WIDTH − 1 do
3: G2×2← 0
4: b2×1← 0
5: for wj = −wy to wy do
6: for wi = −wx to wx do
7: center ← Pos(i+ wi, j+ wj)
8: left ← Pos(i+ wi − 1, j+ wj)
9: right ← Pos(i+ wi + 1, j+ wj)

10: up← Pos(i+ wi, j+ wj − 1)
11: down← Pos(i+ wi, j+ wj + 1)
12: im0

val← image0[center]
13: im1

val← image1[center]
14: δI ← d(im0

val, im
1
val)

15: im0
left← image0[left]

16: im0
right← image0[right]

17: Ix ← (im0
right − im

0
left)/2

18: im0
up← image0[up]

19: im0
down← image0[down]

20: Iy← (im0
down − im

0
up)/2

21: G← G+ g2×2(Ix , Iy)
22: b← b+ f2×1(δI , Ix , Iy)
23: end for
24: end for
25: G← inverse(G)
26: vopt[j][i]← G× b
27: end for
28: end for

which compute the optimum optical flow vector [31]. The
function Pos() is used to ensure that a pixel is located in the
image frame.

The algorithm contains four loops. The first two are over all
the pixels of the images and the last two are over the compu-
tation window. The bottlenecks are located in the innermost
loop and are due to the five accesses to external memory.

As usual, the ‘‘External memory’’ implementation simply
pipelines the innermost loop and uses separate memory ports
for different input and output arrays.

In the Algorithm 6, the five pixels of image0 accessed
by the innermost loop include the center pixel (defined by
i, j,wi,wj) and four other pixels around the center pixel.
When focusing only on the innermost loop, the center pixel
and the right pixel can easily be reused in the following
iteration. In this case, the number of accesses to external
memory reduces to three instead of five.

If the next outer loop is also considered, then one or two
lines can be reused by exploiting a structure known as a ‘‘line
buffer’’, which contains two rows of the current image. Loop
unrolling could also be used in this case to further improve
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FIGURE 6. Miss ratios for different numbers of lines, data sizes and line sizes for matrix A of matrix multiplication (log scale).

speed. If the next outer loop is also considered, a large buffer
can be exploited to store even more lines of the image in the
on-chip memory.

For simplicity, we adopted two combined optimizations in
the ‘‘On-chipmemory’’ (unrealistically fast) implementation.
The first one was to copy all the pixel data to the on-chip
BRAMs in order to maximize reuse. The second one was
to use two variables to store the center and right pixels as
described above, in order to reduce the initiation interval of
the innermost loop.

In this case, our cache implementation was based on
read-only caches, which were very helpful to accelerate the
algorithm.

Further acceleration could also be obtained by manual
post-optimizations to improve the innermost loop initiation
interval, below the initial value of 5 selected by the synthesis
tool. It required moving a prefetching operation before the
innermost loop, and then using the direct retrieve() method to
access the data inside the loop. Then, the initiation interval
could be reduced to 1. In this case, a large enough cache
behaves pretty much like a line buffer.

V. RESULTS
In this section we discuss the performance and cost of
our caches using the test cases described in the previ-
ous section. Throughout the section, performance was esti-
mated using the so-called ‘‘hardware emulation’’ capabil-
ity of SDAccelTM v2016.2, which in fact is RTL simu-
lation. The DDDR3 DRAM interface is also simulated at
the cycle-accurate level. In addition, both device power
and resource utilization are estimated after logic synthesis,
placement and routing by VivadoTM v2016.3. The codes
of the various types of caches and the implementations of
these applications are available in the repository at this link,
https://github.com/HLSpolito/Cache_Application.

A. MATRIX MULTIPLICATION
As mentioned above, we report three classes of implementa-
tions for each algorithm, namely one with all data in external
memory (lower bound on performance), one with all data
initially transferred to on-chip memory (upper bound), and

TABLE 2. Performance and resource utilization for various
implementations of matrix multiplication (16× 16 matrices).

one with the best architecture that we found for our caches.
We used two direct-mapped read-only caches for input matri-
ces A and B, and a direct-mapped write-only cache for output
matrix C .
Note that due to a limitation of the HLS tool that we used

(namely Vivado_HLSTM) we had to slightly modify the code
of the ‘‘On-chip mem.’’ and ‘‘With caches’’ implementations,
in order to make the loop nest perfect – we incorporated
the output matrix assignment into the last iteration of the
innermost loop. This manual code change almost doubles the
overall performance. Note that the change is required regard-
less of our caches, andwe applied it to all the implementations
for a fair comparison.

TABLE 2 compares performance, power consumption and
resource utilization of all implementations using 16 × 16
matrices. The caches for matrices A and C contained one 16-
word line each (i.e., one row of the matrix). The cache for
matrix B contained 16 16-word lines, which was also the size
of matrix B.

Note how the cache-based implementation with loop flat-
tening achieves essentially the same performance as the
‘‘ideal’’ implementation, where all data fits in the on-
chip memory. Of course, the caches have a significant
resource cost, which becomes particularly noticeable for
computationally-simple algorithms like matrix multiplica-
tion. Moreover, the energy consumption of the best cache
implementation is only 30% of that of the external memory
implementation. This is without considering the energy con-
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FIGURE 7. Miss ratios for different numbers of lines, data sizes and line sizes for matrix B of matrix multiplication (log scale).

sumed by the external memory itself, which would make the
cache-based implementations even more efficient, due to the
low miss ratio.

More complete results, for a broad range of matrix and
numbers of lines, are reported in Fig. 6 and Fig. 7. As shown
in Fig. 6, the hit ratio of the caches applied to matrix A is
highly dependent on the line size and is not affected by the
number of lines in the cache until the cache can hold all the
data in the matrix, when the miss ratio can be reduced to
0.02%.

The caches applied to matrix B have a different behavior,
as discussed above. The miss ratio can be small only when
the cache size is the same the matrix size as shown in Fig. 7,
thus making caches useful for matrix B only in order to
automatically perform burst accesses to global memory.

B. K-NEAREST NEIGHBORS
We tested the KNN algorithm using a set of data containing
2048 locations of a series of hurricanes [7], each represented
as a pair of floating point numbers for latitude and longitude.
The host code of this OpenCL design computes all the dis-
tances from a given reference point to all the points in the
data set, then sends the distances to an OpenCL kernel that
finds the k smallest distances, where k = 5.
For each value of k , we tested four kernel implementa-

tions belonging to the usual three classes. The ‘‘Ext. mem.’’
one kept all computed distances in external memory. The
‘‘On-chip mem.’’ one copied all data to the on-chip memories
at the beginning of the program, to maximize reuse. As usual,
this is realistic only for small matrices. The ‘‘With caches’’
one used a read-only direct-mapped cache to store the input
array dist (see Algorithm 3), with two cache configurations.
The first configuration used a very small cache, with one line
of 256 bytes. The second configuration used a larger cache,
with 32 lines of 256 bytes (the size of the entire dist array).

For KNN with k = 5, the performance and resource
utilization are listed in TABLE 3. We can see that there
is no performance advantage from our caches in this case,
because each distance is used exactly once by the kernel
in the inner most loop, and because the HLS tool managed

TABLE 3. Performance and resource utilization for various
implementations of KNN with k = 5.

to understand the very simple access pattern and created a
burst access to the external memory the same way as our
cache does it. Note that this design is a worst-case example
for our cache methodology, since input data reuse is trivial
except for caches that are at least as large as the datasets.
However, it demonstrates that the performance overhead of
our caches (8KB) is minimal (about 9%).

The execution time of the external memory implementa-
tion is about 8% faster than both the on-chip memory and
the best cache implementation. Note that an overly small
cache (128B) has a significant performance penalty (about
50%) in this case. This shows that cache type and size must
be carefully selected for each target application. The miss
ratio for various data sizes and cache configurations, obtained
via functional simulation in C++, are reported in Fig. 8.
As shown, the number of lines in the cache has no effect on
the miss ratio till the cache can hold the entire dataset. The
miss ratio is inversely proportional to the line size.

C. BITONIC SORTING ALGORITHM
Like KNN, also this algorithm is memory-dominated and
with limited data reuse. Nevertheless, without requiring
almost any source code change our caches improved the
performance, mostly by accessing the memory in bursts.

We performed RTL simulation of six total implementa-
tions, each sorting arrays with 128, 1024 and 4096 words
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FIGURE 8. Miss ratios for different numbers of lines, data sizes and line sizes for KNN (log scale).

FIGURE 9. Miss ratios for different numbers of lines, data sizes and line sizes for bitonic sorting (log scale).

TABLE 4. Performance for various implementations of bitonic sorting applied to arrays with different sizes N , and using a cache line size of 64 bytes.
Lmax, in bytes, is the maximum on-chip memory used (when limited).

filled with random integers. The three implementations
without caches were discussed in Section IV-B. For the
‘‘Limited on-chip mem.’’ implementation, which uses the
limited on-chip memories to sort sub-arrays, we considered
the maximum on-chip RAM sizes to be Lmax = 128 bytes
and 256 bytes. Note that we have to use these small sizes,
because the RTL simulation is very slow. As usual, we also
report results on miss ratios for larger arrays and caches
in Figure 9. The last three ‘‘With caches’’ implemen-
tations were accelerated using various cache types and

configurations. The first cache implementation was 2-way
set-associative, with 128 total bytes and a line of 64 bytes.
The second cache implementation used the same configu-
ration but with a post-cache manual optimization, namely
we replaced some write accesses with calls to the member
function that assumes that the data to be written are already
in cache and does not cause a flush. The third cache imple-
mentation added a manual prefetch loop before the array
access code in the original implementation, thus avoiding the
external memory loop latency in the main pipelined loop.
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TABLE 5. Performance and resource utilization of various optimizations on bitonic sorting applied to arrays with size N = 210.

Two configurations of the 2-way set-associative caches were
implemented in order to test the effects of cache sizes on
performance. One implemented a 128-byte 2-way set asso-
ciative cache with a line size of 64 bytes, and the other one
implemented a cache with a size of 256 bytes and a line size
of 128 bytes.

TABLE 4 shows the performance of the implementa-
tions discussed above, sorting arrays with different lengths.
As expected, the implementation with all data stored in
external memory is the slowest. Transferring all data to very
large on-chip memories has the best performance, about
20× faster. The other local memory implementation, with
a limited maximum size (Lmax = 128 and 256 bytes) is
much less effective and achieves a speedup of about 2×.
The speedup achieved by a 2-way set-associative cache
without any post optimization is about 1.5×. With the first
optimization scheme, the speedup can reach 2.5×. Finally,
prefetching achieves 8× speedup and saves about 40% energy
consumption.

Power, resource utilization and data transfer statistics for
the array with size N = 210 are shown in TABLE 5.
The ‘‘Ext. mem.’’ implementation keeps all data in external

memory. It consumes the least power due to its simple archi-
tecture. It performed 85k data transfers, each reading or writ-
ing only 4 bytes, since in this case the HLS tool was not able
to automatically infer burst accesses.

The ‘‘On-chip mem.’’ implementation is much faster and
achieves most of its performance gains by making only
128 data transfers of 64 bytes each, in burst mode.

The caches are also able to similarly reduce the total num-
ber of transfers and increase the burst size of each access.
As mentioned above, the bitonic sorting kernels from which
we started had no data reuse, so the caches help only by
coalescing accesses in bursts. The implementation with the
2-way set-associative cache only required 7k memory trans-
fers, each containing 128 bytes. The bottleneck for this imple-
mentation is the initiation interval of the innermost loop,
which is 2.5× larger than in the ‘‘Ext. mem.’’ implementa-
tion and 12.5× larger than in the ‘‘On-chip mem.’’ and the

TABLE 6. Effect of cache sizes on the performance of bitonic sorting.

best ‘‘With caches’’ implementations. There are two main
reasons for this long initiation interval. First, there are two
read operations and two write operations in each iteration.
Even though the write operations never miss, the synthesis
tool is not able to ignore the false dependencies between
the writeback of a dirty line and the read which updates the
line, in case of a read miss. Hence, the first optimization
decreases the initiation interval by around 2×, while keeping
the number of transfers essentially identical, thus improving
performance by about 2×.

The second optimization used twice the total cache size,
halved the number of transfers and managed to achieve an
initiation interval of 3 by prefetching the data, and hence
preventing the false memory access dependencies in the main
loop.

TABLE 6 shows the execution time and device power
required by the implementations with different line sizes for
the two arrays respectively. Doubling the number of lines
improves performance by about 1.5×, but also increases
device power by the same factor. I.e., it improves performance
and increases resource cost, but keeps total energy consump-
tion essentially the same. As Fig. 9 shown, the miss ratio is
dramatically reduced with a 2-way associative cache instead
of a direct-mapped one. More than 2 ways or more than 1 set
have no effect on the miss ratio.
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TABLE 7. Performance and resource utilization of various optimizations applied to the Smith-Waterman algorithm with N = 84.

D. SMITH-WATERMAN ALGORITHM
The source code for the Smith-Waterman algorithm was
based on the example code that is distributed with Xilinx
SDAccelTM. The host code generates two genome sequences
with a length N = 84, then it sends them to the kernel and
retrieves the score matrix and the direction matrix. Using
these two matrices, the host code produces and verifies the
alignment of the two genomes. We tested a total of seven
implementations, belonging to the usual three classes. The
‘‘Ext. mem.’’ and ‘‘On-chip mem.’’ implementation, as usual,
kept all the arrays and matrices in external and on-chip mem-
ory respectively. The ‘‘With caches’’ one used two 128-byte
read-only direct-mapped caches for the two sequences and
a 1KiB read/write direct-mapped cache for the score matrix
and direction matrix. The cache for the score matrix is the
bottleneck of this algorithm, because it can be both read
and written. The memory access dependencies discussed in
the bitonic sorting case also affect the performance of this
algorithm, due to the read and write operations in one loop
iteration, with the resulting miss read after a dirty line write-
back. In this case, some dependencies are true and some are
false. As a first optimization, we used a directive to instruct
the synthesis tool to ignore a false loop-carried dependency
among memory accesses within the innermost loop.

As a second optimization, we replaced the writeback oper-
ation to the score matrix with a cache member function which
can be used when the designer knows (or a data access analy-
sis tool can infer) that the write operations access consecutive
addresses, in order to boost performance.

As discussed, a write-only cache for the write operation at
the current position of the score matrix and a read-only cache
for the two reads from the previous line of the score matrix
can reduce dramatically the initiation interval. Hence, the
third implementation used a read-only direct-mapped cache
and a write-only direct-mapped cache for the score matrix,
instead of the unified cache used in the previous optimization.
Of course, it can be used only for long sequences (i.e. when
the sequence size is larger than the cache size) with a large
score matrix, where the contents of the two caches can never
overlap.

The last one used again the member function that assumes
consecutive addresses when writing the 128-byte write-only
cache (as in the second optimization).

TABLE 7 presents the performance and resource utiliza-
tion of the seven implementations. As usual, keeping all the
data on-chip achieves the best performance.

The use of the direct-mapped caches significantly reduced
the external memory accesses. However, we see that the
performance did not improve much due to the false loop-
carried dependencies that were not ignored by the Vivado
HLS synthesis tool, and that added up to a large initiation
interval.

However, we eliminated these dependencies either using
synthesis tool directives, or by separating the read/write
array (and its cache) into one read-only and one write-only.
Ignoring the dependencies using a directive reduced the initi-
ation interval by 1.3× and improved the performance by the
same factor, while splitting the arrays and caches improved
the performance by 2×.

Finally, the last implementation reduced the initiation
interval to 3 (and increased the performance accordingly),
which is essentially the same as the ‘‘ideal’’ implementation,
which uses only on-chip memories. Caches have a higher
resource utilization, of course, but it is never as high as storing
all data on-chip. Note also that energy consumption of the
best cache implementation is only 1/3 the energy needed to
access all data in off-chip memory, again not considering the
energy required by the off-chip memory itself, which would
be much smaller in the cache case.

The miss ratios for larger sequences are reported in Fig. 10
and Fig. 11. As shown in Fig. 10, the performance of the
direct-mapped cache is acceptable only when the cache size is
twice the sequence size (i.e. it contains two rows of the score
matrix). Themiss ratios of the split read andwrite caches only
depend on the line size rather than on the number of lines, as
shown in Fig. 11.

E. LUCAS-KANADE ALGORITHM
While real-life algorithm applications compute the optical
flow on relatively large images (up to several megapixels),
in this section we report RTL simulation results for small
images, of 64 × 36 pixels, each pixel represented on 8 bits.
We also report miss ratios for more realistic image and cache
sizes, from functional simulation in C++.
As before, the ‘‘Ext. mem.’’ and the ‘‘On-chip mem.’’

implementations used only off-chip and on-chip memories.
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FIGURE 10. Miss ratios for different unified cache numbers of lines, data sizes and line sizes for the score matrix of Smith-Waterman (log scale).

FIGURE 11. Miss ratios for different split read and write cache numbers of lines, data sizes and line
sizes for the score matrix of Smith-Waterman (log scale).

TABLE 8. Performance and resource utilization for various implementations of the Lucas-Kanade algorithm.

We then developed several optimized ‘‘With caches’’
implementations. The first one used a 64-byte one-line write-
only direct-mapped cache for the output vector, a 64-byte
one-line read-only direct-mapped cache for the second
image (which is read once in each innermost loop iteration),
and a 256-byte four-line read-only direct-mapped cache for
the first image (which is read five times in each iteration).

The size of the read-only direct-mapped cache used for the
first image is sufficient to store three lines of the image.
Hence, it acts essentially as a line buffer, but without, as usual,
requiring any manual code change.

The second one doubled the line size of the two read-
only direct-mapped caches with respect to the first one, thus
doubling both the burst size and the cache size.
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FIGURE 12. Miss ratios for different numbers of lines, data sizes and line sizes for the input image of Lucas-Kanade (log scale).

TABLE 9. Summary of the performance of the five algorithms with and without caches.

The third one used a post optimization that assumes access
to consecutive addresses, as described in the previous section,
with the goal to reduce the initiation interval. Note that its
effectiveness, as before, is reduced by a limitation of the
Vivado HLS tool, which is unable to flatten a loop inside a
pipelined loop (as in the matrix multiplication case).

The performance and resource utilization of the four
implementations are listed in TABLE 8. The ‘‘Ext. mem.’’
implementation, which keeps all the images in the exter-
nal memory, has a very long execution time because it
accesses the external memory 1.6M times. However, this
algorithm (like most computer vision, machine learning
and artificial intelligence algorithms) exhibits very high
levels of data reuse. In particular, each pixel of the first
image is accessed many times by this algorithm. Hence, the
‘‘On-chip mem.’’ implementation that stores all data in the
on-chip memory maximizes data reuse and requires only
4.7k transfers from/to the external memory. In addition, the
on-chip memory can be accessed using two ports, so the
initiation interval is reduced from 5 to 3. In summary, this
implementation improves performance by about 8.5×.

Two factors improve significantly the performance of the
optimizations using our caches. First of all, as in the case
of bitonic sorting, the caches use bursts to increase the data
size of each transfer. Second, the caches exploit the very
significant amount of data reuse of this algorithm. As shown
in the table, even a very small cache (comparable in size
to a line buffer, which is a standard implementation for this
kind of algorithms) speeds up kernel execution by 3.6×while
consuming only 60% of the energy.

The miss ratio of the most frequently accessed array is
only 0.02% and it required only 50k data transfers of about
64 bytes each (the ideal lower bound is about 5k transfers).
The larger cache doubles the transfer size and halves the miss
ratio to 0.01%. The initiation interval is reduced to 1 clock
cycle for the last implementation.

The last optimization accelerates the algorithm by 4.8×
and reduces energy consumption by 2× compared to the
‘‘Ext. mem.’’ implementation. Although both cache sizes are
Pareto-optimal, the smaller cache probably offers the most
effective cost-performance trade-off. The miss ratios for var-
ious frame sizes, window sizes and cache configurations are
reported in Fig. 12. The lowest miss ratio can be 0.000015,
leading to excellent data reuse. Even for large frames and
large windows, relatively small caches can obtain a low miss
ratio (around 0.1%).

F. SUMMARY
For all five algorithms considered, each drawn from a very
different application domain, we summarize in TABLE 9 and
Fig. 13 the execution time and energy consumption for the
best implementations, with and without caching. Except for
KNN,which has no data reuse and has very simple addressing
patterns that allow Vivado HLS to infer external memory
burst accesses, the best implementations with caches improve
execution speed by up to 8× and reduce energy by about 2×.

Fig. 14 shows the performance of our caches with respect
to the ideal lower bound represented by the transfer of all
data to a hypothetical very large on-chip memory. Except
for KNN, for the reason that was already mentioned, our
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FIGURE 13. Summary of the performance improvements achieved by the caches (log scale).

FIGURE 14. Ratios of execution time of two kinds of optimizations. (log scale).

caches obtained very similar performance with a realistic
memory occupation. Manual optimization of off-chip and
on-chip memory, which typically requires extensive code
restructuring, can achieve comparable or better performance
using the same amount of local memory as our caches, but it
requires a large amount of manual optimization work.

VI. CONCLUSION
This article introduces a new methodology for optimizing the
memory-intensive algorithms by using inline caches that are
synthesized from a C++model onto an FPGA. These caches
are designed using a synthesizable style supported by most
high-level synthesis tools, not just the Vivado HLS tool that
was used to implement several design examples in this work.
These caches can be easily used by designers, since they
follow traditional cache design concepts and categories, e.g.,
direct-mapped or set-associative. We provide several variants

that can be adapted to different use contexts (e.g., read-
only, write-only, etc.). They also include design aids (e.g.,
memory access tracing capabilities, miss ratio reporting) that
can be used to ease cache size and architecture optimization.
Note that since the caches are modeled in C++, both their
functionality and any manual optimizations aimed at further
improving performance can be fully verified in C/C++, with-
out requiring synthesis or RTL simulation.

The new methodology was then applied to five algo-
rithms from very different application areas such as machine
learning, data sorting, genomics and computer vision. The
original algorithms with a few basic optimizations, such as
loop pipelining, were used as a performance, resource usage
and energy consumption reference. We also considered an
ideal ‘‘best case’’ implementation, in which all data could
fit on-chip. We then showed how using our caches, with
different parameters and some further optimizations, could
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significantly improve performance without requiring the
extensive code changes that are typically required to man-
ually optimize on-chip memory usage. In order to fairly
compare these implementations, all of them keep the same
computation architecture (loop pipelining, unrolling, etc.),
only changing the memory architecture.

From the performance comparison results, we can con-
clude that the use of our inline caches can accelerate most
memory-intensive algorithms, except for those which do not
exhibit a significant amount of data reuse, and for which
high-level synthesis tools cannot automatically infer mem-
ory access bursts. In summary, our cache implementations
improved performance by up to 8× energy by about 2×,
achieving comparable results to the best available manual
optimizations of the on-chip memory architecture, while
requiring a much shorter design time.

Currently a designer needs to manually choose the types
and the sizes of the caches and the specific member functions
used to access the cache, in order to achieve the best per-
formances for their applications. Our future work will focus
on automating both application profiling, in order to select
the best cache architecture for each DRAM array, and static
address analysis, in order to infer which accesses are always
‘‘hits".

APPENDIX A
CODE OF THE INLINE DIRECT-MAPPED CACHE
This appendix shows the most significant fragments of the
code of the template class of the inline direct-mapped cache.
The operator[] method is overloaded and an inner class
is used to differentiate between the methods to be called when
the operator is used in a left-hand-side or right-hand-side
context.

template<typename T,int SET_BITS,int LINE_BITS>
class Cache {
private:

static const int CACHE_SETS = 1 << SET_BITS;
static const int LINE_SIZE = 1 <<LINE_BITS;
static const int DATA_BITS = sizeof(T) * 8;
typedef ap_uint<DATA_BITS> LocalType;

class inner {
public:
inner(Cache *cache, const int addr):

cache(cache),addr(addr) {}
operator T() const{

return cache->get(addr);
}
void operator= (T data){

cache->set(addr, data);
}
private:
Cache *cache;
const int addr;

};

public:

typedef ap_uint<DATA_BITS*LINE_SIZE> DataType;
Cache(DataType * mem):ptr_mem(mem){...}
inner operator[](const int addr) {

return inner(this, addr);
}
~Cache(){/* writeback code*/ ...}

private:

int requests, hits;
DataType * const ptr_mem;
DataType array[CACHE_SETS];
ap_uint<32-SET_BITS-LINE_BITS>
tags[CACHE_SETS];
bool valid[CACHE_SETS], dirty[CACHE_SETS];

T get(const int addr) {
const ap_uint<32 - SET_BITS-LINE_BITS> tag

= addr >> (SET_BITS+LINE_BITS);
const ap_uint<SET_BITS> set_i

= (addr >> LINE_BITS);
const ap_uint<LINE_BITS> block = addr;
requests++;
bool match = tags[set_i] == tag;

DataType dt;
if(valid[set_i] && match) {

hits++;
dt = array[set_i];

} else {
dt = ptr_mem[addr >> LINE_BITS];
array[set_i] = dt;

}
tags[set_i] = tag;

valid[set_i] = true;
LocalType data = lm_data::GetData<DATA_BITS,
DATA_BITS * LINE_SIZE,
LINE_BITS>::get(dt, block);

return *(T*)&data;
}

void set(const int addr, const T& data) {
const ap_uint<32 - SET_BITS-LINE_BITS> tag =
addr >> (SET_BITS+LINE_BITS);

const ap_uint<SET_BITS> set_i =
(addr >> LINE_BITS);

const ap_uint<LINE_BITS> block = addr;

requests++;

bool match = tags[set_i] == tag;
if(valid[set_i] && match) {

hits++;
} else {

if(dirty[set_i]) {
ap_uint<32> paddr = tags[set_i];
ptr_mem[paddr<<SET_BITS | set_i] =
array[set_i];

}
array[set_i] = ptr_mem[addr >> LINE_BITS];

}
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LocalType ldata = *(LocalType*)&data;

array[set_i] = lm_data::SetData<DATA_BITS,
DATA_BITS * LINE_SIZE,
LINE_BITS>::
set(array[set_i], ldata, block);

tags[set_i] = tag;
valid[set_i] = true;
dirty[set_i] = true;

}
};

APPENDIX B
ORIGINAL AND MODIFIED CODE OF MATRIX
MULTIPLICATION
The basic matrix multiplication code contains three nested
loops over rows, columns and inner product iteration. The
innermost loop can be pipelined or unrolled as desired, by
setting tool-specific directives.

void mat_mult(int *a, int *b, int *c) {
for (int row=0;row<rank;row++){

for (int col=0;col<rank;col++){
int tmp=0;
for (int index=0;index<rank;index++) {

#pragma HLS pipeline
int aIndex = row*rank + index;
int bIndex = index*rank + col;
tmp += a[aIndex] * b[bIndex];

}
c[row*rank + col] = tmp;

}
}

}

typedef Cache<int, 0, a0> CacheTypeA;
typedef Cache<int, b0, b1> CacheTypeB;
typedef Cache<int, 0, c0> CacheTypeC;

void mat_mult(CacheTypeA::DataType *a_orig,
CacheTypeB::DataType *b_orig,
CacheTypeC::DataType *c_orig) {
CacheTypeA a(a_orig);
CacheTypeB b(b_orig);
CacheTypeC c(c_orig);

for (int row=0;row<rank;row++){
for (int col=0;col<rank;col++){

int tmp = 0;
for (int index=0;index<rank;index++) {

#pragma HLS PIPELINE
int aIndex = row*rank + index;
int bIndex = index*rank + col;
tmp += a[aIndex] * b[bIndex];

}
c[row*rank+col] = tmp;

}
}

}
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