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ABSTRACT We consider the problem of delivering region of interest (ROI)-coded mobile video streams
using limited radio resources. Under the conditions of limited bandwidth and time-varying channel status,
the goal is to optimize the transmission latency, while ensuring the quality of the ROI parts. Multi-homing
support enables the terminals to establish multiple connections for transmission performance improvement.
In this paper, we propose a novel framework for ROI-based video transmission in heterogeneous wireless
networks with multi-homed terminals. The framework contains the modules of ROI detector and frame
splitter, where macroblocks are categorized based on ROI detection and encapsulated into transforming
units. It also includes a channel monitor that keeps track of the status of each communication path and
sends feedback signals to the streaming controller for packet-scheduling control; a deep learning method is
proposed for channel status prediction. To address the delivery problem, we propose a scheduling approach
based on the formulated network model and the rate-distortion model. The scheduling method makes a
tradeoff between the transmission delay and the distortion. It also guarantees that packets with ROI content
are delivered on paths with sufficient bandwidths and low loss rates. Through comparisons with other
scheduling methods, we find that the proposed scheme outperforms the other scheduling methods in terms
of improving the quality (peak signal-to-noise ratio), balancing the end-to-end delay, and maintaining the
playback fluency.

INDEX TERMS Heterogeneous wireless networks, multi-homed communication, region of interest (ROI)-
based video coding, deep learning, video transmission.

I. INTRODUCTION
In the recent years, the booming popularity of terminals
such as smart phones has enabled mobile users to access
their networks and watch videos at any place. The prolif-
erating wireless infrastructure offers a variety of broadband
access options, e.g., IEEE 802.11 wireless local area net-
works (WLANs), IEEE 802.15 wireless personal area net-
works (WPANs), WiMAX [1], LTE [2], etc. With the rapid
breakthrough of these wireless technologies, mobile videos
will most probably generate most of the mobile traffic growth
by 2021, as predicted by Cisco [3]. The current single wire-
less network cannot provide satisfactory quality for video
streaming services, owing to their small coverage and lim-
ited bandwidth. It is reported in [4] that sometimes WLANs
fail to sustain the users’ mobility, as they lack robustness.
Some cellular networks (e.g., UMTS) can provide robust
connections; however, they cannot guarantee the quality of
service (QoS) because of bandwidth constraints [5]. Although

LTE and WiMAX can offer higher data rates and broader
coverage, they are not widely deployed yet [6]. Based on
the discussions above, there is a tendency for mobile clients
to equip themselves with multiple interfaces for accessing
different networks simultaneously, which enables them to
have the capability of multi-homing access. To deliver high-
quality video services, studies on video-streaming trans-
missions in heterogeneous wireless infrastructures with
multi-homed clients have become vital and popular.

Despite some innovations in network infrastructures,
which enhance the performance, internet-media streaming
applications still suffer from limited bandwidths and packet
losses. Although the idea of multipath video streaming has
been proposed as a solution to overcome network limita-
tions, it still needs improvements for balancing the load over
disjoint paths between the server and the client, and the
trade-off between distortion and delay ought to be consid-
ered as well. For reducing the transmission bits and saving
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bandwidth, we propose a region of interest (ROI)-based
transmission mode for video streaming, in which the pix-
els (blocks) in each frame are categorized into ROI and
non-ROI groups [7]. Usually, blocks belonging to the non-
ROI group are treated as background blocks, and they are
assigned a higher quantization parameter (QP) in order to
reduce the bit output [8], [9]. The technology of ROI-based
video coding can be used for low-bitrate video transmissions,
and it guarantees an acceptable video quality under a limited
target bitrate [10]. Typical codecs such as HEVC [11] and
VP9 [12] induce ROI-mode coding for low-bitrate compres-
sion. In addition, some hardware architectures [13]–[15] for
foreground detection andmotion estimation provide capabili-
ties of real-time processing for ROI-based coding. Therefore,
studies on ROI-based video transmission in heterogeneous
wireless networks focus on bandwidth saving and quality
improvements.
A. RELATED WORK
Some of the related works focused on multi-homed
video transmission in heterogeneous wireless networks.
Song and Zhuang [16] proposed a framework to analytically
evaluate the video streaming performance with flow splitting
and multipath transmission, in which a probability generation
function (PGF) and z-transformmethod was applied to derive
the packet delay. Wu et al. [17] proposed a novel schedul-
ing framework, named ASCOT, which featured frame-level
data protection and allocation over multiple paths. They
also controlled the frame protection level using forward
error correction (FEC) coding to achieve the target quality.
Han et al. [4] designed an end-to-end virtual path construction
system based on Luby transform (LT) code and JM soft-
ware [18], the goal of which was to provide a high-quality
live-video streaming service over heterogeneous wireless net-
works. The earliest delivery path first (EDPF) algorithm [19]
estimates the packets’ arrival times based on the bandwidth
and propagation delay, to find the earliest path to deliver
the packet. The load balancing algorithm (LBA) [20] sorts
the streaming packets according to their priority weights,
to ensure that the packets with higher priority weights are
delivered successfully. This algorithm also takes the correla-
tions among packets into account, and it automatically drops
a packet if one of its ancestors were not scheduled. This
strategy ensures that the algorithm does not waste network
resources. In [21], an analytical framework for optimal rate
allocation based on the observed available bit rate (ABR) and
round-trip time (RTT) was designed. The authors declared
that their allocation policy outperformed those of the heuristic
schemes, in terms of the quality. Many multipath stream-
ing methods for wireless networks focused on the trade-off
between throughput and delay [22]–[25]. In addition, many
papers formulated video streaming as a Markov decision pro-
cess (MDP), and they introduced reward functions to consider
the QoS requirements [26]–[28].

Some of the other related works focused on the
research on ROI-based coding, which targeted two major
issues: studies of rate control and detection methods.

Earlier works [7], [29] presented ROI-based rate-control
schemes for the H.263 standard, and the authors developed
a block-based ROI segmentation method to implement the
region-based codec. In [8], a quality adjustable rate-control
method for ROI-based coding was proposed, and the possible
visual quality range of ROI was defined according to the
range of the ROI QP, which was predicted by the rate-control
algorithm. An improved ROI-based rate-control algorithm for
H.264/AVC was proposed in [30], which exploited the fea-
tures of the human visual system (HVS), with video content
taken into account. Lee et al. [31], [32] studied the texture
and non-texture rate models and proposed a novel frame-level
rate-control scheme for HEVC. In our previous work [33],
we presented a new rate-control scheme for ROI-mode coding
based on the discrete cosine transform (DCT) coefficient
model and neural networks. As for the ROI detection meth-
ods, many papers discussed solutions for the foreground and
background separation in video frames, in which low-rank
decompositions with principle component analysis (PCA)
method [34]–[37], Gaussian mixture model (GMM)-based
method [38], [39], or other color/textured model-based meth-
ods [40], [41] were included. The development of ROI detec-
tion methods provided fast, robust, and real-time benefits for
ROI-based coding.

B. OVERVIEW AND CONTRIBUTIONS
In this paper, we address the problem of ROI-based video
transmission in heterogeneous wireless networks with limited
bandwidths and tight delay constraints, by designing a novel
transmission framework. When a frame is available from
the source, its blocks are categorized into ROI and non-
ROI groups by the ROI detector. A frame-split strategy is
adopted to split the entire frame into slices. Then, the slices
are encapsulated into themaximum transmission unit (MTU ).
The FEC module is used in the framework to mitigate the
channel losses at the expense of bringing the redundant bits.
In low-delay video coding, it is not recommended to use
bidirectional prediction, so as to keep the casual encoding
order, according to [26]. Hence, the video bitstream consists
of only I and P frames in each group of pictures (GoP).
We formulate a rate-distortion (RD) model for ROI-based
video coding, which approximately estimates the generated
bits in a frame.Moreover, a model for heterogeneous wireless
networks, which considers the end-to-end delay, channel loss
rate, and channel status is established. Meanwhile, a deep
learning approach for forecasting the channel status accord-
ing to its previous values is proposed. Then, the channel loss
rate for each path can be computed based on the channel
status. To deliver the stream packets with low end-to-end
delay and distortion, we propose a balanced delay/distortion
scheduling approach for ROI-based coding. It assures that the
MTUs containing ROI content are delivered over paths with
good channel conditions and sufficient bandwidths. Each
communication path is assigned a performance score, which
takes the bandwidth, channel loss rate, and fixed delay into
account. From the experimental results, we can conclude that
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FIGURE 1. Overview of the proposed ROI-based video transmission network.

the proposed scheduling method can to keep the delay and
distortion within acceptable bounds, and that the ROI part
of each frame can be displayed clearly even if the network
environment is poor.

The remainder of this paper is organized as follows.
Section. II depicts the proposed ROI-based framework for
video transmission and the scheduling approach. We also
discuss the formulated RD model and network model in this
section. In Section. III, we provide the performance evalu-
ation and the experimental results. The concluding remarks
and plans for future work are given in Section. IV.

II. SYSTEM MODEL
A. SYSTEM OVERVIEW
Fig. 1 displays the proposed system framework for ROI-based
video transmission, which includes the system components
at both the server and the receiver. The server side is in
charge of the video streaming allocation from the encoder’s
output, based on ROI frame splitting. The split packets are
sent to the FEC encoder for forward error correction coding
(i.e., the systematic Reed–Solomon code). Next, the packet
transmitter delivers the packets throughmultiple communica-
tion paths, based on the scheduling strategy. The client side is
responsible for the video stream decoding and reassembling.
When packets arrive at the receiver buffer, the decoder dead-
line checker checks whether the packet is past the decoding
deadline, and it will discard the packet if it is overdue. Then,
the information bytes of the packets are error corrected by the

FEC decoder. In order to restore the original video stream,
the video frame reassembler readjusts the split frame data
into the original frame based on each packet header’s absolute
offsets. These frames are re-sequenced in the correct order for
the decoding process, and the frames discarded by the dead-
line checker are concealed by copying the last received ones,
before decoding. Finally, the decoded frames are displayed in
the video player.

The two proposed modules are marked with dashed green
rectangles in Fig. 1. The ROI module consists of the detector
and the frame splitter, which are placed before the FEC coder.
ROI blocks are detected using some detection methods by the
detector, and the frame splitter cuts each frame into slices.
Next, the slices are classified into two groups: ROI and non-
ROI slices. Following [6], each slice is assigned an extra
header that includes its size, the origin frame’s size, and its
absolute offsets. Then, the FEC-coded slices are delivered
through different paths by the transmitter. The feedback mod-
ule is responsible for channel-status monitoring and video-
stream controlling. The channel-status monitor acquires the
path status information and sends it to the channel-status
learner, in which the properties of each path can be learned
using deep-learning approaches. Then, the predictor forecasts
the future channel-status information and hands it to the
video-stream controller together with the quality information
from the quality evaluator. The video-stream controller fig-
ures out control strategies for ROI frame splitting and packet
transmission.
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B. VIDEO RATE/DISTORTION MODEL
We consider a single HD video stream encoded using the
H.264/AVC standard for end-to-end transmission. Accord-
ing to our previous work [33], we assume that the
DCT coefficients are approximately uncorrelated and that
they are Laplacian distributed with variance σ 2. Note that
σ 2 is also the variance of the difference frame pixels, since
DCT is an orthogonal transformation. Let us assume that
the DCT coefficients are quantized with a uniform scalar
step size qs, and that the frame rate (in bits/pixel) R(qs) ≈
H (qs), where H (qs) is the empirical entropy function of the
qs-quantized coefficients. In [42], H (qs) has the following
expression:

H (qs) =


1
2
log2(2e

2 σ
2

q2s
),

σ 2

q2s
>

1
2e

e
ln 2

σ 2

q2s
,

σ 2

q2s
≤

1
2e
.

(1)

Observe that σ 2

q2s
is larger than 1/(2e) for small values of

qs (high-rate case) and smaller for large values of qs (low-
rate case). For video transmission in heterogeneous wireless
networks, we focus on the more interesting low-rate case
for low-delay transmission, which indicates that the peak
signal-to-noise ratio (PSNR) is below 40 dB. Specifically,
let SV be the set of macroblocks whose standard devia-
tion σ is in the interval (V − ς,V + ς ], where ς is a
small value that can be set as 0.5 and V is an integer. For
ROI-based video encoding, SV = SRV

⋃
SNRV , where SRV is

the set of ROI macroblocks whose σ ∈ (V − ς,V + ς ]
and SNRV is the set of non-ROI macroblocks. Using (1),
the average encoding rate RV for DCT coefficients in SV is
given as:

RV =
1

ANV
(
NR
V∑

n=1

BRV ,n +
NNR
V∑

n=1

BNRV ,n), (2)

where NV is the number of macroblocks in SV , and NR
V and

NNR
V denote the number of ROI and non-ROI macroblocks,

respectively, in SV . Obviously, NV = NR
V + N

NR
V . BV ,n is the

number of DCT bits produced by the nth macroblock (both
ROI and non-ROI), and A is the number of pixels in a mac-
roblock (i.e., A = 162). Next, the expected number of bits
produced by the ith macroblock is given by:

Bi = A(
eσ 2

i

ln 2 · q2sVi
+ C) ≈ A(

eV 2
i

ln 2 · q2sVi
+ C), (3)

where σi is the empirical standard deviation whose value
belongs to (Vi − ς,Vi + ς ], and qsVi is the quantization step
size used for that macroblock. C is a constant defined as the
overhead rate, which models the average rate to encode the
motion vectors and the coder’s syntax and header. There-
fore, the total estimated bits produced by a frame can be

written as:

B =
∑
V

NVRV =
1
A

∑
V

(
NR
V∑

n=1

AeV 2

ln 2q2sVn

+

NNR
V∑

n=1

AeV 2

ln 2(qsVn +1q)2
)+ C

∑
V

NV , (4)

where 1q is the quantization step offset between ROI and
non-ROI blocks.

Now, we consider the distortion model for ROI-based
video transmission. Assume each GoP consists of G frames
and that each of them is identified by a frame number g
(1 ≤ g ≤ G). According to [21], the total distortion of
frame g can be expressed as:

dg = eg + yg, (5)

in which eg denotes the truncation distortion and yg is the
drifting distortion. Note that eg = Dg + 5g · δg, in which
Dg denotes the full-quality distortion of frame g, 5g is the
effective loss rate, and δg represents the extra distortion intro-
duced by dropping packets. Dg is considered as the case
where all the packets belonging to this frame are received,
and its formula is given by:

Dg =
1
ν

∑
V

(
NR
V∑

n=1

q2sVn +
NNR
V∑

n=1

(qsVn +1q)2), (6)

where ν is a factor set as 12, from [43]. Note that q2s/ν gives an
approximate themean square error (MSE) estimation for each
macroblock. The drifting distortion is caused by the imperfect
reconstruction of previous frames used for inter prediction.
We use the IPPP · · · GoP structure in this paper; thus, only
the previous frames within a GoP will cause drifting distor-
tion for the latter frames. Based on the models in [42], yg can
be written as:

yg =


αg, if g = 1

αg +
∑

1≤n≤g

βg,k · en, if 1 < g ≤ G, (7)

where αg and βg are nonnegative estimated parameters.
In [44], the authors used a multinomial regression method
to estimate them with polynomials. To verify the proposed
ROI-based RD model, we provide the results in Fig. 2. These
results are obtained by encoding 6 s of the Flower (CIF)
sequence at 15 frames/s using the H.264 encoder with a
fixed QP. Observe that the proposed RD model effectively
formulates the relationship between the RD and the qs, σ .
Besides, for higher QP, the increased quantization noise
makes the histogram peaks move to the right, as shown
in Fig. 2(b).

C. WIRELESS ACCESS NETWORK MODEL
Consider a heterogeneous wireless network with P commu-
nication paths between two transmission ends. We model
the burst losses on each path using the Gilbert model [45].
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FIGURE 2. (a) Verification of the proposed ROI-based rate model for the encoding rate as a function of standard deviation σ . (b) Normalized
histograms of σ for different QP (QP = 1/2qs). (c) Actual distortion of each macroblock versus the predicted values of Dg based on the
distortion model. Sequences: Flower (g = 10).

This model assumes the path state χp(t) at time t to be one
of two values: G (Good) or B (Bad). The packet can be
successfully delivered if χp(t) = G and dropped if χp(t) = B.
Let us assume that Bg are the output bits for the frame g
and MTU is the maximum transmission unit. The number
of packets belonging to frame g is dBg/MTUe. We define
cp as the status tuple for path p with the size dBg,p/MTUe
(i.e., cp = (G,B, · · · ,G)), in whichBg,p denotes the allocated
bits on path p. Then, the transmission loss rate on path p for
frame g can be written as:

πg,p =
1

dBg,p/MTUe

d
Bg,p
MTU e∑
i=1

δ(cip = B), (8)

where δ(•) is an indicator function whose value is 1 if • is
true, and 0 otherwise. In capacity-limited networks, the loss
probability of packets over path p out of the deadline T can
be obtained from the exponential distribution [42]:

π§
g,p = P(Dg,p > T )

=
Bg,p∑G
g=1 Bg,p

exp(−
µp · T∑G

g=1 Bg,p + µp · fp
), (9)

in which Dg,p is the end-to-end delay for frame g, µp is the
available bandwidth, and fp is the fixed delay over path p.
Note that the fixed delay includes the latency of delivery,
processing, and propagation. Therefore,5g can be expressed
as follows:

5g =
∑
p

5g,p =
∑
p

[πg,p + (1− πg,p)π§
g,p]. (10)

Next, we consider the delay for each path. According to [6],
the video encoding data is generated in bursts, and each path
carries a substream of the video streaming flow. We employ
the envelop process for each path as follows:

Âp(t) = λp · t + Bg,p, (11)

where λp denotes the long-term average video streaming
rate and Âp(t) is the size of the cumulative substreaming
flow in [0, t) over path p. Obviously,

∑P
p=1 λp = λ and

∑P
p=1 Bg,p = B. Similar to [20], we model each path

as a work-conserving queueing system. Assuming that
λ > µp, the ROI frame splitter separates the stream-
ing flow into subflows that satisfy λp < µp. Then,
the end-to-end delay Dg,p for frame g over path p is the sum
of the queueing delay and the fixed delay, as follows:

Dg,p =
Bg,p

µp − λp
+ fp, (12)

To estimate the path status of each transmission inter-
val, we propose a recurrent neural network (RNN)
model. Previous works introduced continuous-time Markov
chains [17], [45] to model χp(t) in wireless networks. How-
ever, such models worked only in approximate manners,
since both the stationary probabilities of paths and the state
transition probabilities vary with time. In addition, the occur-
rence of consecutive burst losses decreases the evaluation
accuracy of the Markov model. The RNN model, on the
other hand, can overcome these shortcomings. As shown
in Fig. 3, the output of the network is the current channel
statusχp(t) and the input is the historical channel status vector
χp = [χp(t−Kτ ), χp(t−(K−1)τ ), · · · , χp(t−τ )], in which
K is the window size and τ is the unit transmission slot.
Further, we denote χp(t) as a binary value where G = 1
and B = 0. To save the computing costs for forward and
backward propagation, only one hidden layer is used in our
work. Forward propagation begins with a specification of the
initial hidden state h(0). Then, for each time step, the RNN is
updated by the following rules:

h(t) = tanh(b+Wh(t−τ ) + Ux(t))
o(t) = c+ Vh(t)

ŷ(t) = softmax(o(t))
(13)

where the parameters are the bias vectors b and c along with
the weight matrices U , V , and W , respectively, for input–
hidden, hidden–output, and hidden–hidden connections. Note
that x(t) is updated by shifting the sliding window;for exam-
ple, x(t+τ ) = [χp(t − (K − 1)τ ), · · · , χp(t)], in which the
oldest value is removed. Given a fixed time step Ts, the loss
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FIGURE 3. Proposed recurrent neural network (RNN) framework for path
status prediction.

function L can be defined as:

L =
Ts∑
k=1

L(k) = −
Ts∑
k=1

log pmodel(y(t+kτ )|{x(t), · · · , x(t+kτ )}),

(14)

in which pmodel is given by a softmax function as:

pmodel(y(t+kτ ) = i|{x(t), · · · , x(t+kτ )})

=
eV ih(t+kτ )+ci∑
j e
V jh(t+kτ )+cj

=
eV i tanh(b+Wh(t+(k−1)τ )+Ux(t+kτ ))+ci∑
j e
V j tanh(b+Wh(t+(k−1)τ )+Ux(t+kτ ))+cj

,

(15)

and V i denotes the ith row of V . For backward propagation,
we start the recursion from t + Tsτ down to t . The gradient
∇o(t+kτ )L on the outputs at time step t + kτ (1 ≤ k ≤ Ts), for
all components i, is as follows:

(∇o(t+kτ )L)i =
∂L

∂L(t+kτ )
∂L(t+kτ )

∂o(t+kτ )i

= ŷi
(t+kτ )

− yi(t+kτ ).

(16)

For ∇h(t+kτ )L, when k = Ts, h(t+Tsτ ) has only o(t+Tsτ ) as a
descendant. Hence, its gradient is given by:

∇h(t+Tsτ )L = (∇o(t+Tsτ )L)
∂o(t+Tsτ )

∂h(t+Tsτ )
= (∇o(t+Tsτ )L)V . (17)

Then, from t + (Ts − 1)τ to t , h(t+kτ ) has descendants
depending on o(t+kτ ) and h(t+(k+1)τ ). Thus, its gradient is
given by:

∇h(t+kτ )L = ∇h(t+(k+1)τ )L
∂h(t+(k+1)τ )

∂h(t+kτ )
+∇o(t+kτ )L

∂o(t+kτ )

∂h(t+kτ )
.

(18)

Once∇hL and∇oL are computed, we can obtain the gradients
for each parameter, such as∇cL,∇bL,∇VL,∇WL, and∇UL.
Details are given in [46]. The RNN model is embedded into
the channel-status learner, and the probe packets are pre-sent
through each path to learn the available bandwidth µp and
the channel status χp(t). Then, the previous statuses of each
path are sent to the RNN as the training samples. During the
packet transmission process, the channel monitor evaluates

the prediction error of the channel status and retrains the
RNN using the historical statuses, if necessary. Meanwhile,
the channel-status predictor is able to compute πg,p based
on the predicted data. To obtain a brief overview of the
learning performance, we compare the learning efficiencies
of the RNN and the common artificial neural network (ANN).
As shown in Fig. 4, the proposed RNN model can learn the
samples of channel status effectively as the training iteration
grows, while ANN fails to reduce the error. It means that the
correlation information between the previous and the current
statuses is captured by the RNN. Furthermore, Fig. 4(b)
displays the prediction results of different models during a
period. One can see that the RNN model achieves a higher
forecast precision than other models. More details are given
in Sec. III-D

FIGURE 4. (a) Learning efficiency performance for RNN and artificial
neural network (ANN). (b) Channel status prediction performance for
different models. (From top to bottom: The ground truth statuses,
RNN’s prediction, Markov model’s prediction, ANN’s prediction)

D. PROBLEM STATEMENT AND SOLUTION
The goal of the video stream controller is to achieve a trade-
off between delay and distortion. Given the weight factor γ
and the deadline delay constraint T , we state the optimization
problem as follows:

Minimize : γ dg + (1− γ ) max
p∈P
{Dg,p}

s.t. :



dg = Equation (5),
Dg,p = Equation (12),∑G

g=1 Bg,p
µp · G

+ fp ≤ T ,∑P

p=1
λp = λ,

∑P

p=1
Bg,p = B,

λ > µp, λp < µp, p ∈ P.

(19)

For each frame in a GoP, the above optimization problem
minimizes the combination function of the delay and dis-
tortion. Note that γ is set a constraint positive value close
to 0, to keep dg and maxp∈P{Dg,p} in the same order of
magnitude. Previous solutions to this problem consisted of
the greedy algorithm and the water-filling method [6], and
it was stated that the problem had no optimal solution with
polynomial time-complexity (NP-Hard). The water-filling
method was able to dynamically allocate the ‘‘good quality
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data over networks to reduce the distortion, with o(N ) time-
complexity; however, it only minimized the end-to-end delay,
without balancing the transmission distortion. Moreover, the
ROI-based encoding/transmission mode was not taken
into consideration. We propose an improved water-filling
algorithm based on the ROI mode, which compromises
between delay and distortion, namely, the D&D water-
filling algorithm. First, we assign each path with a delay–
distortion (D&D) weight ωp:

ωp =

1− 1
2 [

(µp−λp)fp∑
p(µp−λp)fp

+
πg,p
πg

]∑
p{1−

1
2 [

(µp−λp)fp∑
p(µp−λp)fp

+
πg,p
πg

]}

=

1− 1
2 [

(µp−λp)fp∑
p(µp−λp)fp

+
πg,p
πg

]

P+ 1
P −

∑
p(µp−λp)fp

2P
∑

p(µp−λp)fp

. (20)

Note thatωp is computed based on themean of the normalized
preloadedwater (µp−λp)fp and the path loss probability5g,p.
The path with lower preloaded water size and loss probability
is given a higher weight, and the task of the optimization
problem is to fill Bg units of the frame g into P paths (buckets)
while keeping the highest level (delay) as low as possible,
together with packet loss optimization. Let us assume that the
optimal water level after the paths being filled is D∗l . When
D∗l > maxp∈P{fp}, Bg can be expressed as follows:

Bg =
∑
p∈P

(µp − λp)(D∗l − fp). (21)

By introducing the weight factor ωp, the balanced optimal
water level is given as:

D∗l =
Bg + P

∑
p ωp(µp − λp)fp

P
∑

p ωp(µp − λp)
. (22)

Then, the optimal value for Bg,p is given by:

Bg,p = (µp − λp)[
Bg + P

∑
p ωp(µp − λp)fp

P
∑

p ωp(µp − λp)
− fp]. (23)

On the other hand, when D∗l < maxp∈P{fp}, it means
that Bg <

∑
p(µp − λp)(maxn∈P(fn) − fp). In this case,

maxp∈P{Dg,p} = maxp∈P(fp). Then, we only consider the
distortion optimization in which the ROI slices of packets are
allocated to the paths with lower loss probabilities. There-
fore, we have the proposed D&D water-filling algorithm
for ROI slice packet assignment and transmission over P
paths, as depicted in Alg. 1. As for theMTU ’s encapsulation,
each MTU contains the transformed DCT coefficients of the
macroblocks together with the additional header syntax, and
severalMTUs form the slices. As stated earlier, the slices are
assigned with additional headers that contain their absolute
offsets. TheMTUs have similar sizes; however, they are allo-
cated to the paths under a priority strategy:MTUs that contain
ROI macroblocks with lower standard deviations for DCT
coefficients are allocated to the paths that have higher ωp.

Algorithm 1 D&DWater-Filling Algorithm
1: Given the long-term streaming rate λ, initiate the sub-

streaming rate for each path λp =
µp·λ∑
p µp

.
2: Compute ωp by (20) and sort the paths based on ωp in

descending order.
3: if D∗l < T then
4: if D∗l > maxp∈P{fp} Compute D∗l using (22). else,

D∗l = maxp∈P{fp}.
5: else
6: D∗l = T .
7: end if
8: Compute Bg using (4), and assign each path with Bg,p

size of data by (23).
9: for each path sorted by ωp in descending order do

10: if d Bg,pMTU e ROI MTUs are available, fill path p with
d
Bg,p
MTU e ROI MTUs for transmission.

11: else if d Bg,pMTU e non-ROIMTUs are available, fill path p
with d Bg,pMTU e non-ROI MTUs for transmission.

12: else fill path p with the remaining ROI or non-ROI
MTUs for transmission.

13: end for

For example, consider the path with the highestωp; whenBg,p
is acquired, we have:

1
A

V1∑
V=0

NR
V∑

n=1

AeV 2

ln 2q2sVn
+ C

V1∑
V=0

NR
V ' Bg,p. (24)

Then, the ROI slice for path p is composed of
∑V1

V=0 N
R
V ROI

macroblocks, and these macroblocks are encapsulated into
d
Bg,p
MTU e MTUs. For the next path, we change V = V1 and
V1 = V2, and form the next ROI slice with

∑V2
V=V1

NR
V ROI

macroblocks, and so on. Note that the enclosure of non-ROI
slices follows the same rules as that of ROI slices. A brief
illustration of the proposed algorithm is displayed in Fig. 5.

III. EXPERIMENTS
A. EXPERIMENT SETUP
We use the OMNeT++5.1 (INET) [47] and the JM 18.6 [18]
as the network emulator and video codec, respectively. The
INET framework can be considered the standard protocol
model library of OMNeT++. INET contains models for the
Internet stack (TCP, UDP, IPv4, IPv6, OSPF, BGP, etc.) and
wired and wireless link layer protocols (Ethernet, PPP, IEEE
802.11, etc.), which are useful for emulating heterogeneous
wireless networks. JM 18.6 is the reference software for
H.264/AVC, in which we choose JM owing to the source code
integration, as both OMNeT++ and JM are developed using
C++. Fig. 6 shows the designed network architecture used in
our experiment. In this network topology, the server has one
wired network interface and the client hasWLANand cellular
interfaces. An end-to-end connection path is established by
binding a pair of IP addresses from the server to the client.
For example, p1 has the ports {PS,PD1}, and four paths
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FIGURE 5. Proposed solution structure for the D&D water-filling
algorithm.

FIGURE 6. The designed network architecture for experiments.

are included in our experiment. Referring to the previous
works [6], [17], we use the parameter configurations of wire-
less networks shown in Table. 1. For the wired networks con-
nected to the server, we implement the static routing strategy
for each pair of interfaces. In addition, each link between
two routers is set with a fixed delay of 5 ms and a uniformly
distributed channel loss rate of 2% − 5%. In order to distin-
guish the path bandwidth, we set limited bandwidths for the
paths p1 · · · p4, as {600, 1000, 800, 200} kbps, respectively,
as in [20]. When the transient state begins, the network mon-
itor sends some probe packets with exponentially distributed
intervals to the server and the client. Based on the probe ack
packets, the monitor evaluates the actual packets loss rate for
each path using the proposed RNN model. It also checks the
video packets arrival intervals for each path and computes
the actual bandwidth. For the configuration of video sources,
each stream is encoded at 25 fps, and a GoP consists of
6 frames. The key frame interval is set to 5 and the delay
deadline for each frame (T ) is 200 ms [19], [20]. In addition,
an error concealment strategy is considered in our work. If a
frame cannot be decoded owing to transmission or overdue
losses, it will be concealed with the frame-coping strategy.

For comparison analysis, we compare the proposedmethod
with three typical packet-scheduling approaches over hetero-
geneous wireless networks. They are described as follows:
• Earliest delivery path first (EDPF) [19]. This method
ensures that when a new video packet arrives, it is
scheduled in the path with the shortest transmission
delay.

TABLE 1. Parameter configurations of wireless network.

• Round robin [48]. This method randomly schedules the
newly arriving packets among the paths based on a
probability. We set the probability of each path in direct
proportion to its bandwidth.

• Load balancing algorithm (LBA) [20]. This method
focuses on the interdependencies between packets.
It also considers the network resources, based on a
policy that, if one of the ancestor packets could not be
scheduled, the algorithm automatically drops the current
packet. No enhancement layer packets are used in our
experiment; the packets weight ωi in [20] is only set for
the base layer.

B. QUALITY EVALUATIONS
We adopt the PSNR [49] as the standard metric for the
received video quality. Since the video stream is generated
by the ROI-based codec, the weighted mean measurement for
PSNR is used in our experiment:

PSNR = κ10 lg
2552

MSER
+ (1− κ)10 lg

2552

MSENR
, (25)

where MSER and MSENR denote the mean squared errors of
the ROI and non-ROI pixel sets, respectively. κ is the weight
factor, which is set as 0.6 for emphasizing the ROI group.
Fig. 7 shows the instantaneous PSNR values and the cumula-
tive distribution functions (CDFs) of Habour and City. Their
target bitrates are set to 400 kbps and 600 kbps respectively,
and the quantization step 1q between the ROI and non-ROI
blocks is set to 10. From Fig. 7(a) and 7(b), we see that
the proposed scheduling method achieves a better average
PSNR performance than other methods. LBA shows higher
PSNR values on I frames, but it reduces the PSNR values on
P frames, for optimizing the network resources by consider-
ing the packet weights and their interdependencies. Accord-
ing to Fig. 7(c) and 7(d), we see that the PSNR values of
our method are mainly distributed from 30 to 40, which indi-
cates that our method achieves an acceptable received video
quality. In order to verify each method’s performance under
limited bandwidths with poor channel statuses, we revise the
bandwidth for each path as {300, 500, 400, 100} kbps, and
increase the loss rates of the cellular and WLAN networks
to 8%. The received frames, based on different methods, are
subjectively displayed in Fig. 7. Compared to the raw frames,
the received frames of our method have good visual qualities
with less distortion. Even though some block areas belonging
to the non-ROI group may show some distortion, the block
areas in the ROI group are displayed clearly. Without loss of
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FIGURE 7. (a), (b): Comparisons of instantaneous PSNR values of video
frames indexed from 1 to 150. (c), (d): CDFs of PSNR per frame
comparisons for different methods. (a) Habour (1-150).
(b) City (1-150). (c) Habour (1-150). (d) City (1-150).

FIGURE 8. Comparisons of subjective received video qualities under
limited bandwidths with poor channel statuses. (a) Raw frame (top to
bottom: Ice, Football, Flower, Canoe). (b) D&D Water-filling. (c) LBA.
(d) EDPF. (e) Round robin.

generality, we provide the average PSNR results for different
video streaming rates and video sequences, the details of
which are shown in Fig. 9. For low-bitrate transmissions,
the PSNR value shows an increasing trend when the bitrates
increase, while it shows an opposite trend under the condition
of high bitrates. For high bitrates, the increase of bitrates
increases the dropping rate, and thus, reduces the received
quality. In summary, the proposed method performs well in
terms of the received video quality.

C. DELAY ANALYSES
Fig. 12 plots the average end-to-end delays in the GoP units of
different sequences. For each GoP unit, the delay is computed
as the average value of all frames in it. Fig. 10(a), 10(b)
plot the delay values for low-bitrate sequences and

FIGURE 9. (a), (b): Average PSNR results for different streaming rates.
(c), (d): Average PSNR results for different sequences. (a) Low bitrates
sequences. (b) High bitrates sequences. (c) Low bitrates sequences.
(d) High bitrates sequences.

FIGURE 10. Comparison of the average end-to-end delays of GoPs
indexed from 1 to 30. (a) City (600kbps). (b) Football (600kbps).
(c) Johnny (1.8Mbps). (d) PartyScene (2.0Mbps).

Fig. 10(c), 10(d) plot the delay values for high-bitrate
sequences. It can be observed that when the streaming bitrate
is low, the delay values do not exceed 100 ms for the four
scheduling methods. However, when the streaming bitrate is
high, some methods exceed the delay deadline T . We can see
that EDPF achieves the lowest end-to-end delay, followed
by our method, as EDPF always guarantees that a newly
arrived packet is scheduled over the path with the shortest
transmission delay. Obviously, our method considers both the
transmission delay and the distortion by making a trade-off
between them. Hence, the received video quality is improved
at the expense of extra end-to-end delay. To have a close-
up view of the delay performance results, we plot the CDFs
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FIGURE 11. CDF of end-to-end transmission delay for different streaming rates. (a) 600kbps. (b) 1.5Mbps. (c) 2.0Mbps.

of the end-to-end frame delays for different video streaming
rates, for comparison. Without loss of generality, all the
selected low-bitrate and high-bitrate sequences are tested to
collect the delay data, and each sequence is tested several
times to acquire the average data. As given in Fig. 11,
the proposed D&D water-filling algorithm guarantees that
more than 50 percent of video frames are delivered in 30 ms
for low-bitrate streams and in 100ms for high-bitrate streams.
As the bitrates increase, the CDF curves expand from left to
right, which indicates that the frame delay increases owing to
the limited transmission bandwidth.

D. PATH STATUS PERFORMANCE ANALYSES
We provide explicit analyses of the communication path
statuses by inspecting the outputs of the network monitor.
As stated earlier, the network monitor collects the packet’s
statistical information from the sender and the receiver. It also
sends some probe packets periodically to acquire the real-
time bandwidth of each path. Since the packets are encapsu-
lated by theMTU units, during eachMTU transmission time
slot, any bit-error or packet loss circumstance is regarded as a
bad channel status (χp(t) = B). Note that some error bits can
be corrected using the FEC decoder. However, we still treat
the channel status as bad since some bits aremis-demodulated
because of the channel distortion. As depicted in Sec. II-C,
we test the performance of the path status estimation by com-
paring the proposed RNNmodel with the Markov model [45]
and the ANN model. In the Markov model, the transition
probability from state i to state j in time Kτ : P[χp(t+Kτ ) =
j|χp(t) = i] is computed using the statistical expectation of
the stationary probabilities πG and πB, in which they stand
for the stationary probabilities of the Good and Bad states.
In addition, πG and πB are updated from the historical data,
and K denotes the window size for the transmission slots.
In the ANN model, we use a neural network with two hidden
layers. The Radbas function is used as the inner function
linked between the input and hidden layers for nonlinear
prediction, and the output layer contains a pure linear function
followed by the sigmoid function. Fig. 12(a) and 12(b) plot
a path’s real-time status and the estimation results for dif-
ferent channel SNR values of 13 and 10 dB, respectively.

FIGURE 12. (a), (b): Path statuses monitoring results and their
evaluations based on different approaches. (From top to bottom: The
ground truth statuses, RNN’s prediction, Markov model’s prediction,
ANN’s prediction) (c), (d): Performance analyses of the proposed RNN
model based on different parameters. (a) Avg channel SNR = 13 dB.
(b) Avg channel SNR = 10 dB. (c) Training Error Rate vs Epochs.
(d) Test Error Rate vs Window Size.

One can see that the proposed RNN model achieves a higher
estimation precision than other models; especially, when the
condition of poor path status occurs, the RNN model is able
to accurately forecast the bad statuses based on the previous
data. To see how the system parameters influence the learning
performance, we change the learning rate to 0.001, 0.01,
and 0.1. The relationship curves between the training error
rates and the training epochs under different learning rates
are provided in Fig. 12(c). We see that when the learning
rate is quite small (0.001), the RNN model fails to minimize
the loss function under the limited training epochs owing to
a small gradient descend step. However, when the learning
rate becomes large (0.1), the RNN model fails to learn the
data features, as it always skips the optimal point on a large
descend step. Moreover, we validate the test error rate of the
neural network by increasing the window size K . As shown
in Fig. 12(d), the test error rate shows a decreasing trend as
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the window size increases. When the size is larger than 100,
the error rate becomes stable. Since the window size is suffi-
cient for acquiring enough correlated information among the
observed data, the model reaches the bottleneck of the error
rate. However, increasing the window size would increase the
computational complexity and memory consumption owing
to the feature of exponential computing complexity in most
deep learning systems.

IV. CONCLUSION
In this paper, we presented a novel framework for the
ROI-based video transmission in heterogeneous wireless net-
works with multihomed terminals. The framework was able
to guarantee acceptable qualities for the ROI components
in a frame, especially, under limited bandwidths. Based on
the mathematical discussions on the video R-D model and
the wireless network model , we proposed a novel schedul-
ing approach in which both the delay and distortion fac-
tors were taken into consideration. The scheduling approach
ensured that the MTUs belonging to the ROI group were
delivered over paths with low delays and distortions, first.
Further, the water-filling idea adopted in our scheduling
approach maximized the network’s resource utilization rate
and minimized the total end-to-end delay. We also proposed a
deep-learning approach for channel-status estimation, which
improved the estimation precision. This enhanced the perfor-
mance of the proposed scheduling approach as well. In future
works, we will consider employing rate-control methods in
the codec, which suit the current network conditions. Besides,
more work will be considered on the FEC coder , in which the
trade-off between error bits and redundant bits is a meaning-
ful issue.
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