
Received August 8, 2017, accepted September 4, 2017, date of publication September 8, 2017, date of current version October 12, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2750209

Incorporating the Range-Based Method
into GridSim for Modeling Task and
Resource Heterogeneity
KAILUN ENG, ABDULLAH MUHAMMED, MOHAMAD AFENDEE MOHAMED,
AND SAZLINAH HASAN
University Putra Malaysia, Serdang 43400, Malaysia

Corresponding author: Kailun Eng (marcus2204.upm@gmail.com)

This work was supported by the Malaysian Ministry of Higher Education under Grant FRGS/1/2014/ICT03/UPM/03/1.

ABSTRACT Over the years, many heuristic algorithms have been proposed for solving various Grid
scheduling problems. GridSim simulator has become a very popular simulation tool and has been widely
used by Grid researchers to test and evaluate the performance of their proposed scheduling algorithms.
As heterogeneity is one of the unique characteristics of Grid computing, which induces additional chal-
lenges in designing heuristic-based scheduling algorithms, the main concern when performing simulation
experiments for evaluating the performance of scheduling algorithms is how to model and simulate different
Grid scheduling scenarios or cases that capture the inherent nature of heterogeneity of Grid computing
environment. However, most simulation studies that based on GridSim have not considered the nature of
heterogeneity. In this paper, we propose a new simulation model that incorporates the range-based method
into GridSim for modeling and simulating heterogeneous tasks and resources in order to capture the inherent
heterogeneity of Grid environments that later can be used by other researchers to test their algorithms.

INDEX TERMS Simulation, heterogeneity modeling, grid computing, GridSim, scheduling algorithm.

I. INTRODUCTION
Grid computing is a computing environment that enables
heterogeneous resources, which are geographically dis-
persed, to collaborate to each other with the objective
of obtaining the capabilities to solve data-intensive or
computational-intensive problems [1]. One of the key chal-
lenges in Grid computing is designing an efficient resource
management system, which is able to efficiently perform the
scheduling process that involves the assignment of applica-
tion tasks to the resources. Scheduling tasks to resources in
Grid computing environment is a NP-Complete problem.

Over the years, many studies have been carried out in an
attempt to develop an efficient heuristic-based scheduling
algorithm for solving the Grid scheduling problem [2]–[13].
In order to examine and evaluate the performance of their
proposed scheduling algorithms, researchers need to carry out
repeatable, configurable, and controllable experiments, but
it is difficult to perform this in the real Grid system due to
the unique characteristics of Grid computing environments
such as autonomous, dynamic, and heterogeneous [1], [14].
Accordingly, most of the Grid researchers have chosen

experimental simulation for their studies as it is easier to
perform the evaluation of scheduling algorithms with the
help of simulation [15]. Therefore, the need of a simulation
that captures the real world Grid system properties such as
heterogeneity is necessary.

There are a number of simulators available for modeling
and simulating theGrid computing environment [16], and one
of themost popular simulators is theGridSim toolkit [17]. It is
a Java-based discrete-event simulator, which utilizes object-
oriented techniques to model and simulate all the entities that
involve in the scheduling event of a real Grid system, such as
Grid users, Grid Information Service (GIS), Grid scheduler,
and Grid resources. Most importantly, it allows tasks and
resources with different characteristics to be modeled and
simulated.

When simulating and modeling the Grid computing envi-
ronment, it is extremely important to accommodate hetero-
geneity as it is one of the unique characteristics of real
Grid system that has a significant impact on the perfor-
mance of scheduling algorithms. Thus, the main concern
when performing simulation experiments for evaluating the
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performance of scheduling algorithms is how to model and
simulate distinct Grid scheduling scenarios or cases that
capture the inherent nature of heterogeneity of real world
Grid computing environment. In this work, we design a
new simulation model, aiming to accommodate the nature
of heterogeneity of Grid computing environment when using
GridSim.

II. RELATED WORKS
As GridSim simulation is discrete-event driven and objected-
oriented, every entity that involves in the scheduling event
(Grid user, Grid resources, Grid scheduler, GIS, and user’s
tasks) has to be modeled with a number of essential attributes
or characteristics and behaviors that well reflect the same
kind of entities of the real Grid computing environment.
In GridSim simulation, the tasks that submitted by Grid users
to Grid scheduler for scheduling are modeled as Gridlet
objects, which have attributes such as identification number
(id), task length in MI (millions of instructions), size of input
file and output file in byte, whereas heterogeneous resources
are modeled as GridResource objects, which have attributes
such as computing power in terms of MIPS (millions of
instructions per second), internal allocation policies (time-
shared or space-shared), number of machines, and number of
processing elements per machine (PE). In brief, modeling and
simulating the tasks for Grid computing system in GridSim
require four basic attributes to be defined: id, length, input
file size, and output file size, whereas resources need five
fundamental attributes: name, computing power, number of
machine, number of PE, and internal allocation policy (time-
shared or space-shared).

Kalantari and Akbari [2] defined the length of gridlets
in GridSim randomly based on uniform distribution when
modeling and simulating the independent tasks for evaluating
their proposed scheduling algorithm. Similarly, Hao et al. [4]
simulated tasks in GridSim simulation by defining the length
of gridlets within a specific range of values. In addition, they
simulated 30 resources with same number ofmachine and PE,
in which every PE is between 1 and 5 MIPS or between 1 and
10 MIPS. Prado et al. [3] designed and simulated a grid sce-
nario based on GridSim toolkit to evaluate the performance
of the proposed fuzzy rule-based meta-scheduler. Their sim-
ulation modeled and simulated a number of independent
tasks following a Poisson distribution. Besides, resources are
simulated with different computational power between 12000
and 18500 MIPS, corresponding to resource heterogeneity.
However, task heterogeneity was not taken into account in
the study. Lee et al. [6] performed different experiments
with GridSim by defining different range of task length and
resource computing power. In the first experiment, the length
of every task is randomly generated between 200,000 and
400,000 MI, whereas the computing power of resource is
randomly generated between 500 and 5000 MIPS. In their
third experiment, the length of tasks is set to be randomly
generated between 300,000 and 500,000 MI, whereas the
computing power of each resource is randomly generated

between 500 and 5000 MIPS. Although the experiments
have considered different range of task length and resource’s
computing power, the heterogeneity is not specifically con-
sidered and covered in their simulation set up. In contrast to
Lee et al. [6], Aron and Chana [5] has specifically considered
heterogeneity in GridSim simulation for analyzing empir-
ically the performance of the proposed bacterial foraging
based hyper-heuristic resource scheduling algorithm. He has
simulated two different heterogeneous cases (low heteroge-
neous case and high heterogeneous case) for the performance
evaluation. However, instead of concerning the heterogeneity
by simulating tasks and resources with different range of
task length and computing power respectively, they have only
considered the heterogeneity of resource and simulated all the
resources to have different number of PEs within a certain
range of value. For example, the low heterogeneous case is
set up by simulating each resource to have a random number
of PEs between 1 and 5, whereas high heterogeneous case is
set up by simulating each resource to have a random number
of PEs between 7 and 30. Moreover, 5000 gridlets have been
simulated with a random number of length between 1000 and
6000 MI. Clearly, only the resource heterogeneity has been
taken into account in their simulated heterogeneous cases
for evaluating the performance of scheduling algorithms, and
the task heterogeneity, which is one of the essential and
indispensable characteristics to reflect and represent the true
nature of heterogeneity of Grid computing environment, was
not taken into consideration.

Overall, from the reviewed scientific literatures, it is
observed that the heterogeneity nature is not fully taken
into account in evaluating the performance of scheduling
algorithms when using GridSim. One question that needs
to be asked, however, is whether the simulation that based
on GridSim is able to well capture the heterogeneity nature
of Grid computing environment. It is important to examine
how any proposed scheduling algorithm responds to differ-
ent heterogeneities of tasks and resources in order to show
that it is applicable to real-world scheduling scenarios of
Grid computing. Conducting simulation experiments with
configurable heterogeneity properties is mandatory to avoid
bias. Hence, in this paper, we present a simulation model
that allows Grid researchers to be able to consider hetero-
geneity properties in their simulation studies when using
GridSim.

III. HETEROGENEITY MODELING
The concept of computational heterogeneity was first intro-
duced by Armstrong [18]. According to Armstrong, both
resources and tasks must be taken into consideration in
order to better characterize computational heterogeneity.
Correspondingly, four categories of heterogeneity regarding
different combinations of task heterogeneity and resource
heterogeneity were presented. These four categories can be
described as quadrants of heterogeneity and referred as lolo,
lohi, hilo, and hihi. For example, lohi refers to low task
heterogeneity and high resource heterogeneity.
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With the concept of heterogeneity quadrant [18], twometh-
ods, namely range-based and CVB (Coefficient of Varia-
tion Based), were then developed [19] for generating ETC
(expected time to compute) matrices. As the range-based and
CVB methods are deliberately developed for the generation
of ETC matrices with heterogeneity properties, the defini-
tion of task and resource heterogeneity are described in the
context of the variation along a row and column of an ETC
matrix respectively [19]. Task heterogeneity is described as
the degree to which the execution times of each task vary for
a given resource, whereas resource heterogeneity is described
as the degree to which the execution times of a given task
across all the resources.

In the simulation model of Braun et al. [20], the
range-based and CVB methods have been adopted and
modified with different values of the parameters of het-
erogeneity for generating ETC matrices in order to exam-
ine the relative performance of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous
distributed computing systems. Thenceforth, Ali et al.’s and
Braun et al.’s simulation models have become popular and
been widely used for evaluating heuristic-based scheduling
algorithms in heterogeneous computing environments such
as Grid computing and Cloud computing [7]–[13], [21]–[23].
In spite of that, this concept of heterogeneity quadrant
and the methods (range-based and CVB) have never been
applied in GridSim simulation as GridSim concerns about
modeling and generating Grid computing entities such as
tasks and resources, and does not concern about generating
ETC matrices. Therefore, in this study, we try to reveal
the possibility of incorporating the range-based method
into GridSim in order to accommodate the concept of
heterogeneity quadrant.

IV. ACCOMMODATING THE CONCEPT OF
HETEROGENEITY QUADRANT IN GridSim
The key idea of our simulation model is to accommodate
the concept of heterogeneity quadrant in GridSim by incor-
porating the range-based method into GridSim for modeling
and simulation of tasks and resources. In order to put het-
erogeneity in the context of GridSim simulation, we define
task heterogeneity as the variation of the length (millions of
instructions) of simulated gridlets, whereas resource hetero-
geneity is defined as the variation of the computing power
(millions of instructions per second) of simulated resources.
A Grid system is said to have ‘‘low’’ task heterogeneity if the
tasks that submitted from users to Grid scheduler have small
range of variation in length. Alternatively, a grid system,
which comprising tasks of varying length (huge range of
variation in length) is said to have ‘‘high’’ task heterogeneity.
Meanwhile, a Grid system is said to have ‘‘low’’ resource
heterogeneity if it consists mainly of resources of similar
computing power (small range of variation in computing
power), whereas a Grid system consists of diversely capable
(huge range of computing power) resource is said to have
‘‘high’’ resource heterogeneity.

In the range-based method that presented in [19], the task
heterogeneity and the resource heterogeneity, which denoted
as Rtask and Rmach, respectively, are used independently as
the upper boundary of a uniform distribution for generating
random numbers. The random number that sampled from the
uniform distribution in the interval [1,Rtask ) is denoted as
U (1,Rtask ), whereasU (1,Rmach) denotes the random number
that sampled from the uniform distribution in the interval
[1,Rmach). By multiplying U (1,Rtask ) and U (1,Rmach), the
elements of an ETC matrix can then be basically obtained.
More specifically, for each row of the ETC matrix, a ran-
dom number, U (1,Rtask ) is generated, and for each col-
umn in the row, a random number, U (1,Rtask ) is gener-
ated and multiplied with the corresponding U (1,Rtask ) in
order to obtain the value as the element of an ETC matrix.
On the other hand, Braun et al. [20] used φb to denote
task heterogeneity and φr for resource heterogeneity. Differ-
ent values of task heterogeneity and resource heterogeneity
were defined to reflect the environment for their research
project (MSHN).

In our simulation model, we modified the range-based
method by changing the way the task heterogeneity and
resource heterogeneity are used. Instead of using the range-
based method to generate ETC matrix, we used it in gen-
erating the length of gridlets and the computing power of
resources for GridSim simulation. Let Htask and Hres be the
parameters that represent task heterogeneity and resource
heterogeneity, respectively, in which higher the value of these
parameters, higher the heterogeneity. Consider Xtask as a
random number generated from a uniform distribution in the
interval [1,Htask ), the length of a gridlet (denoted as L) is
defined as

L = Xtask × Hres. (1)

Given t (the total number of tasks that need to be simulated),
Htask , and Hres, t tasks can be simulated by using (1) to
generate the length of each task. The procedure for simulating
t tasks using (1) in GridSim is shown in Fig. 1, where gridlets
denotes a vector that consists of t simulated tasks.

FIGURE 1. Modified Range-based method for simulating tasks in GridSim.

In terms of computing power of resources, it is defined by
using the resource heterogeneity, Hres, as the upper boundary
to generate a random number from a uniform distribution.
P denotes the computing power of a resource and Xres denotes
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the random number generated from a uniform distribution in
the interval [1,Hres), P is defined as

P =
Hres
Xres

. (2)

Given r (the total number of resources that need to be
simulated) and Hres, r resources can be simulated by using
(2) to generate the computing power of each resource. The
procedure for simulating r resources using (2) in GridSim
is shown in Fig. 2, where resources denotes a vector that
consists of r simulated resources.

FIGURE 2. Modified Range-based method for simulating resources
in GridSim.

V. ANALYSIS
To verify that the concept of heterogeneity quadrant is able
to be accommodated in GridSim with the proposed simula-
tion model, we generated ETC matrices indirectly from the
simulated Grid environment in GridSim. Then we analyzed
the properties of the generated ETC matrices. In GridSim, an
ETC matrix can be indirectly constructed based on a set of
simulated gridlets and resources. Given t (number of gridlets)
and r (number of resources), the dimension of the ETCmatrix
is t × r , and each element of the ETC matrix is obtained
from the ratio of the gridlet’s length and resource’s computing
power.
Proposition 1: When task heterogeneity (Htask ) and

resource heterogeneity (Hres) parameters are used to simulate
gridlets and resources in GridSim as in Fig. 1 and 2, the
possible range for any given element of the ETC matrix is
[1,HtaskHres).

Proof: Assume that t is the total number of gridlets, and
r is the total number of resources, where t > 0 and r > 0. Let
A(i, j) denotes the element of matrix A at row i and column j,
where i ∈ 0, . . . , t − 1, j ∈ 0, . . . , r − 1, the value of A(i, j)
is calculated by

A(i, j) =
Li+1
Pj+1

, (3)

where Li+1 represents the length of (i + 1)th gridlet, and
Pj+1 represents the computing power of (j + 1)th resource.
Note that A(i, j) is minimal if and only if Li+1 is the minimal
and Pj+1 is the maximal. Conversely, A(i, j) is maximal if
and only if Pj+1 is maximal and Pj+1 is minimal. Since
L ∈ [Hres,Htask × Hres) and P ∈ [1,Hres) (given by
(1) and (2)), so the lower bound of A(i, j) is (Hres÷Hres), and
the upper bound is ((Htask×Hres)÷1). Hence, we can say that
the possible range for any given element of the ETC matrix
that generated using the proposedmethod, is [1,Htask×Hres),

which is same as Braun et al.’s range, [1, φb×φr ). For exam-
ple, given that task heterogeneity, φb = 100 and resource
heterogeneity, φr = 10 for LoLo heterogeneity quadrant in
Braun et al.’s simulation model [13], the range of any given
element of a LoLo ETC matrix is said to be [1, 1000). Using
the proposed method, we will obtain a set of gridlets with
length, L, which is in the range of [10, 1000), and a set of
resources with computing power P, which is in the range
of [1, 10). Then the resulting range of any given element of
a LoLo ETC matrix is said to be [1, 1000), which is same as
Braun et al. [20].
Proposition 2: When task heterogeneity (Htask ) and

resource heterogeneity (Hres) parameters are used to simulate
gridlets and resources in GridSim as in Fig. 1 and 2, the
expected value of any given element of the ETC matrix is
1
4 (Htask + 1)(Hres + 1).

Proof: If X ∼ U (a, b), then the expected value of X ,

E(X ) is 1
2 (b + a). Since Xtask U ([1,Htask )) and L is the

product of a random number Xtask and Hres, the expected
value of L, E(L) is 1

2 (Htask + 1) × Hres. Analogously, since
Xres ∼ U ([1,Hres)) and P is the ratio of Hres to a
random number Xres, the expected value of P, E(P) is
Hres ÷ 1

2 (Hres + 1), which can be reduced to (2Hres)
((Hres+1))

. It is
noted that each element in the ETC matrix that generated in
GridSim is the ratio of L to P. Hence, the expected value of
the elements in the ETC matrix is the ratio of E(L) to E(P),

namely
1
2 (Htask+1)×Hres

2Hres
(Hres+1)

=
1
4 (Htask + 1)(Hres + 1).

Proposition 3: When task heterogeneity (Htask ) and
resource heterogeneity (Hres) parameters are used to simulate
gridlets and resources in GridSim as in Fig. 1 and 2, the
standard deviation of the elements of the ETC matrix is
1
12 [3(Htask − 1)2(Hres + 1)2 + 3(Hres − 1)2(Htask + 1)2 +
(Htask − 1)2(Hres − 1)2]1/2.

Proof: Note that each element of the ETC matrix is
the ratio of (Xtask × Hres) to Hres

Xres
, which can further be

simplified and expressed as (Xtask × Xres). From the formula
of standard deviation of the product of two random variables,
Var(XY ) = Var(X )E(Y )2 + Var(Y )E(X )2 + Var(X )Var(Y ),
we can therefore derive the standard deviation of the ele-
ments of the ETC matrix: 1

12 [3(Htask − 1)2(Hres + 1)2 +
3(Hres − 1)2(Htask + 1)2 + (Htask − 1)2(Hres − 1)2]1/2.
From the analysis of properties of the ETC matrices that

generated in both the proposed simulation model and in [20],
it is shown that the ETC matrices in both simulation models
have same statistical properties: range, expected value, and
standard deviation. It can thus be suggested that the simi-
lar concept of heterogeneity quadrant as in [20] is able to
be accommodated in GridSim by our proposed simulation
model. Surprisingly, it is noticed that the variation of the val-
ues (coefficient of variation) of each row and of each column
in the ETCmatrix that generated in GridSim is constant. This
is due to the fact that the computing power of any simulated
resource in GridSim is assumed constant for all tasks, which
means that the resource with highest computing power will
always being the fastest regardless of tasks, and the tasks
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which have same length will always have the same value
of expected execution time with respect to resources. For
instance, let us assume that 3 resources and 4 tasks are simu-
lated in GridSim, a 4 × 3 matrix can be indirectly generated
as given in Fig. 3, and by calculating the standard deviation
σ and mean µ, the statistic coefficient of variation (CV) can
be obtained by CV= σ

µ
. Fig. 3 demonstrates that all the rows

and columns in the ETC that indirectly generated in GridSim
have the same coefficient of variation.

FIGURE 3. A simple example of simulated environment in GridSim that
illustrates some statistical properties of the ETC matrix.

VI. EXPERIMENT
Simulation experiments were carried out to validate the effect
of incorporating the range-based method into GridSim simu-
lation for evaluating scheduling algorithms. Same values of
the task and resource heterogeneity parameters were used
as in [20] to simulate four different scheduling cases with
respect to heterogeneity for the experiments. 512 gridlets and
16 resources are simulated for each scheduling case. All the
simulation experiments were performed in the environment
of Window 10 Pro with 64-bit and run on a PC with Intel
Core i5-3470 CPU 3.20 GHz and 8 GB RAM. Two simple
constructive heuristic-based scheduling algorithms, namely
Min-Min and Max-Min, are selected for the experiments.
Both the algorithms were repeated run for 30 times to obtain
the average makespan results.

From the makespan results in Fig. 4, it is observed that
the Max-Min algorithm performs better than Min-Min in
all the cases. However, in the simulation study of twelve
heuristic-based scheduling algorithms by Braun et al. [20],
the makespan results obtained by Min-Min was bet-
ter than Max-Min heuristic for all the cases. According
to [20] and [7], Max-Min algorithm has better performance
than Min-Min when there are many shorter tasks than the
longer ones. Therefore, the contrast in the results can be
explained by the imbalance ratio between small tasks and
large tasks. Furthermore, since the simulated Grid environ-
ment with the proposed simulation model has same size
(512 tasks and 16 resources) and same statistical prop-
erties (range, expected value, and standard deviation) as
Braun et al. [20], it can thus be suggested that even with
the same degree of heterogeneities in a Grid environment,

FIGURE 4. The makespan results of Min-Min and Max-Min for
four different heterogeneity cases.

variation of CV (coefficient of variation) of rows and columns
of ETC matrix could possibly lead to bias in the results
of makespan for different heuristic-based scheduling algo-
rithms. Further work is required to verify the reason by inves-
tigating the impact of skewness of the length of the simulated
tasks.

VII. CONCLUSION
It is known that the main issues of simulation are that of
representativeness and generalization. It is crucial to con-
struct realistic simulation in order to increase the precision
in the simulation and able to obtain a reliable and trustwor-
thy result. Therefore, in this work, we present a simulation
model that incorporates the range-based method into Grid-
Sim for modeling and simulating heterogeneous task and
resource in order to capture different natures of heterogeneity
in real world Grid environments for repetitive evaluation
experiments. By using the proposed simulation model, we
show that the concept of heterogeneity quadrant is able to be
accommodated in GridSim. Overall, the proposed simulation
model allows Grid researchers to be able to simulate different
scheduling cases with respect to heterogeneity when using
GridSim. It is very helpful for Grid researchers to examine
the performance of any scheduling algorithms under various
Grid scheduling cases with respect to the natures of het-
erogeneity. Beside heterogeneity, this study reveals another
important consideration in simulation study that assesses
heuristic-based scheduling algorithms, which is the balance
of ratio between small tasks and large tasks. In addition,
the analysis of the ETC matrix also exposes a limitation of
GridSim, that is, it is only able to simulate Grid computing
environment with consistent heterogeneity due to the fact that
the computing power of any simulated resource in GridSim is
assumed constant for all tasks and also due to lack of features
of GridSim for simulating the inconsistency of computing
power of any particular resource. It is important to bear in
mind that this limitation of GridSim may cause a bias in the
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performance evaluation of scheduling algorithms. In future
work, we will work towards extending the GridSim to sim-
ulate resources that have flexible, dynamic, and inconsistent
computing power.
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