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ABSTRACT This paper focuses on improving the standard form of the classical simulated annealing
algorithm (CSAA). A novel method of improving the performance of CSAA by the variable universe
adaptive fuzzy logic system (VUAFLS) is studied. We develop the VUAFLS to adjust the annealing
temperature, which is a very important parameter governing the performance of CSAA, and this algorithm
is named VUAFLS-CSAA. The main innovations of VUAFLS-CSAA lie in the application of VUAFLS
containing the fast coolingmechanism and reheatingmechanism relative to the characteristic of the sustained
temperature fall of CSAA. Compared with the conventional method for controlling annealing temperature,
VUAFLS-CSAA can control the annealing temperature more effectively, leading to the high efficiency
of CSAA. The performance of the proposed method is evaluated and compared with CSAA through two
examples. One is the image restoration problem, and the other is the traveling salesman problem (TSP).
The experimental result indicates that the new method proposed in this paper can improve the efficiency of
CSAA by tremendously shortening the iteration optimization process. And at the same time, the successful
application of the newmethod for tackling two different problems demonstrates the generality of this method.
In addition, techniques that can further improve the performance of CSAA are discussed.

INDEX TERMS Fuzzy logic system, variable universe, simulated annealing algorithm.

I. INTRODUCTION
Nowadays, optimization is an important technique in many
areas. Due to its performance in applications to the complex
optimization problem, metaheuristics has recently received a
great deal of attention. CSAA is one of themost popularmeta-
heuristics. CSAA was introduced to the combinatorial opti-
mization fields by Kirkpatrick et al. in 1983 [1]. It has been
successfully applied in many areas, such as path planning [2],
transportation and logistics [3], medical diagnostics [4],
design optimization of control systems [5], and facilities
location [6]. CSAA originated from statistical mechan-
ics and is based on a Monte Carlo model presented by
Metropolis et al. in 1953 [7] to simulate a collection of atoms
in equilibrium at a given temperature.

In essence, CSAA is a type of greedy algorithm. However,
CSAA extends the local search algorithm. And the main
advantage of CSAA is that stochastic factors are introduced
to ensure the possibility of reaching the global optimum.

The key concept of CSAA can be simply described as the
following. CSAA is a search procedure that uses local hill
climbing but in a modified manner. Given an initial solu-
tion, CSAA will continue searching for a better solution.
Meanwhile, by accepting worse solutions with a certain prob-
ability, the algorithm has the chance to climb out of the local
minima and find the global optimum. The criterion is based
on theMetropolis criterion. To be an effective, nonlinear com-
binational optimization algorithm, CSAA has been proven
strictly in theory [8], [9].

CSAA uses the Boltzmann probability distribution,
P(1C) ∝ exp(−1C/kbTc), where 1C and Tc show the
energy and temperature of the system, respectively, and kb
is the Boltzmann constant. For a single system with a certain
temperature, the Boltzmann distribution gives the probability
that the system is in the specific state [10]. In practice,
temperature like parameter Tc is used as the key control-
ling parameter like temperature in the annealing process.
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The optimization process begins with an initial configuration
Si with Ci for the objective function. The new candidate
configuration Si+1 is generated by perturbing Si then, the
new objective function Ci+1 can be obtained. The acceptance
criterion for the new configuration is defined as below [8].

P =

{
1, if Ci ≥ Ci+1
exp((Ci − Ci+1)/Tc), otherwise

(1)

Then, a number is randomly taken from the uniform prob-
ability distribution in the range [0, 1]. If P is larger than the
chosen number, the new configuration will be accepted to
replace the former one. The acceptance of the configuration
with the larger objective function value allows the algorithm
a chance to escape from sinking into the local minimum.

As fig.1 shows, there are five solutions, Si(i = A,B,
C,D,E), representing the solutions in connection with some
questions. And Ci(i = A,B,C,D,E) are the objective func-
tions corresponding to Si. It is obvious that the local minimum
objective function is CB brought by the solution SB, and
the global minimum objective function is CE corresponding
to SE . Assuming SA is the initial solution, SB should be the
better solution, but it is merely a local minimum solution.
According to the key concept of CSAA, when SB is searched,
there exists a certain probability that CSAA will reach worse
solutions, which is jumping out of the local minima, SC or SD
relatively to the solution SB. Therefore, as the search process
continues, it is eventually possible to achieve the global opti-
mum solution SE .

In many practical applications, the search results for
the optimal solutions of CSAA are occasionally far from
satisfactory. In recent decades, many studies have sought
to improve the performance of CSAA. Usually, hybrid
algorithms can overcome the disadvantages and combine
the advantages of individual algorithms. The idea of fus-
ing the CSAA with other intelligent algorithms is one of
the means by which CSAA has been improved. For each
optimization algorithm combined with the CSAA, its pop-
ularity is due to excellent characteristics such as easy
implementation and good optimization performance. Genetic
algorithm (GA) [11], [12], artificial neural network (ANN)
[13], [14], particle swarm optimization (PSO) [15], [16], and
so forth are themost popular algorithms of recent years. How-
ever, there are certain drawbacks to the algorithmsmixedwith
CSAA. For example, the complexity of the algorithm’s imple-
mentation is often large with respect to GA. And the choice
of many parameters, such as crossover and mutation rates,
which greatly affect the quality of the solutions, lacks distinct
theoretical instruction and mainly depends on the experience
of the algorithm designer [17]. With respect to PSO, due
to a few adjustable parameters, this algorithm is simple in
construction and can be easily applied to many issues. But the
existence of premature convergence is a disturbing problem
and, therefore, tends to be trapped in local optima [18], [19].
With respect to ANN, there are also several problems that
need to be studied further. For instance, when constructing

FIGURE 1. The sketch map of the core concept of CSAA.

an ANN, the number of hidden layers that should be chosen
also lacks distinct theoretical instruction. And, the training
errors of each step’s training will be fed back to the ANN for
the next step’s training. Accumulation and propagation of the
errors will greatly degrade the performance of the ANN [20].
Great effort has beenmade to improve the properties of ANN.
However, the needed computation is typically increased con-
siderably.Meanwhile, for the distinguishing characteristics of
these evolutionary algorithms, it is always difficult for users
to establish the relationship between evolutionary algorithms
and the specific questions. To some degree, none of these
evolutionary algorithmic techniques is easily understood by
the related technician, and this situation hinders convenience
in wide utilization.

In such situations, intelligent techniques such as fuzzy
logic system (FLS) can be useful. Fuzzy sets theory was
proposed by Zadeh [21]. FLS has been proven to be a compet-
itive intelligent system in many fields, such as stock market
prediction [22], path tracking [23], and detection and recog-
nition [24]. Many works have simulated human reasoning
in the face of uncertainty using approximate information
to generate proper decisions. FLS is used in these studies
to handle uncertainty and provide systems whose behavior
could be easily understood and analyzed by users.

To further enhance FLS performance, the idea of VUAFLS
was proposed by Li [25]–[28] in 1995. VUAFLS is regarded
as a promising FLS due to its out-standing performance.
And the excellent properties of VUAFLS has been proven
extensively in the application of quadruple inverted pendulum
control [29], chaotic systems [30], on-line identification [31],
controller optimization [32] and so on.

Because FLS can be easily used to express knowledge
and simulate human thinking, the experience of experts in
enhancing the performance of CSAA can be beneficial in the
use of FLS. Unfortunately, there are few FLS combinedmeth-
ods incorporating CSAA to improveCSAA. So, themain goal
of this paper is to introduce new thinking into FLS to improve
the performance of CSAA. In this paper, we have developed
an algorithm that can greatly improve the performance of the
CSAA by introducing single-input single-output (SISO) FLS
to modify the annealing temperature of CSAA. Furthermore,
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SISOVUAFLS is designed for annealing temperature tuning.
These new methods can be treated as the standard strategy
regardless of the specific application areas in the concrete
application of CSAA. The image restoration problem and the
TSP are used to evaluate the performance of the proposed
methods.

This paper is structured as follows: Section 2 provides
preliminaries, including CSAA, FLS andVUAFLS. Section 3
introduces the details for improving CSAA through FLS and
VUAFLS techniques. The experimental results are presented
in section 4. Finally, the conclusion is provided in section 5.

II. PRELIMINARIES
A. CSAA
The inspiration for CSAA comes from the annealing process
in metallurgy. The theoretical background is fully described
in Aarts and Korst [8].

The relationship between the annealing process in metal-
lurgy and the solving process in the optimization problem is
shown in TABLE 1.

TABLE 1. The correspondence between the annealing process in
metallurgy and the solving process in optimization problem.

The controlled cooling process during which the crystal
size of a material increases is often called ‘‘Annealing’’.
Transition probability is a standard feature that allows a
non-improving move to be made. At each iteration, the sys-
tem is perturbed, and the change in energy is calculated.
CSAA is a global optimization algorithm only because it
obeys the Metropolis acceptance criterion. The search starts
from an initial feasible solution. Each solution has a specific
cost value. During algorithm execution, the temperature is
decreased, and as a result, worse solutions are less likely to be
accepted. Fig.2 shows the basic steps of CSAA. In the figure,
P = e−1C/Tc , where 1C = Ci − Ci+1 and Pran is a random
number in the range [0, 1].

There are two loops contained inside CSAA, the inner
loop and outer loop. The inner loop is controlled by the
perturbation time during which new solutions are generated.
Meanwhile, the acceptance of new solutions in accordance
with the Metropolis criterion is also done in the inner loop.
And temperature renewal and the stop condition of CSAA
are considered in the outer loop. Therefore, the outer loop is
controlled by the iterations. The iterations are kept running
until a stop criterion is met.

In addtion, according to the CSAA, the random number
Pran plays a vital role during the annealing process. There-
fore, in order to ensure that CSAA is properly implemented,

FIGURE 2. Flow chart of CSAA.

the problem of whether the random number Pran is a REAL
random number should be considered.

B. FLS
FLS is a system that mimics the way a human brain thinks
and solves problems. It is also a paradigm with which human
subjectivity is introduced into objective science and a method
to model and use human knowledge and senses as they are.
The distinctive characteristic of FLS is to approximate human
decision making using natural language terms instead of
quantitative terms. It enables computerized devices to rea-
son more like humans. Using FLS, designers can generally
realize lower development costs, superior features, and better
application effects. The general structure of FLS is shown
in Fig.3.

1) INPUT AND OUTPUT
Let Xi = [−Ei,Ei](i = 1, 2, · · · , n) be the universe of the
input variable xi(i = 1, 2, · · · , n) and Y = [−U ,U ] be the
universe of output variable y.

2) FUZZIFIER
performs a mapping from a crisp input xi to a fuzzy set Axi
in Xi, where Axi is the label of the fuzzy set such as ‘‘small’’,
‘‘medium’’, ‘‘large’’, etc. In fuzzy set theory, a fuzzy setAxi of
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FIGURE 3. The structure of FLS.

a universe of discourse Xi is characterized by a membership
function µAxi (xi), which assigns to each element xi ∈ Xi a
numberµAxi (xi) in the interval 0 to 1 that represents the grade
of membership in Axi , i.e., Axi = ((xi, µAxi (xi))|xi ∈ Xi).

3) RULE BASE
consists of a collection of fuzzy IF-THEN rules. Assume that
there are M rules, and the lth rule is rule l: if x1 is Alx1 and
x2 is Alx2 and · · · and xn is A

l
xn then y is B

l , l = 1, 2, · · · ,M
where xi(i = 1, 2, · · · , n) and y are the crisp input and output
of the fuzzy system, respectively, and Alxn and B

l are labels of
fuzzy sets in Xi and y, respectively.

4) FUZZY INFERENCE MACHINE
performs a mapping from fuzzy sets in Xi to fuzzy sets
in Y based on the IF-THEN rules in the rule base.

5) DEFUZZIFIER
maps fuzzy sets in Y to a crisp value in Y . Here, we use
the sum-product inference and the center-average defuzzifier.
So, the FLS can be expressed as

y(x) =

∑M
l=1 y

l ∏n
i=1 µ

l
Axi

(xi)∑M
l=1

∏n
i=1 µ

l
Axi

(xi)

where y(x) is the crisp output of the fuzzy system, µlAxi
(xi) is

the membership degree of input xi to fuzzy set Alxi , and y
l is

the point at which the membership function of fuzzy set Bl

achieves its maximum value.

C. VUAFLS
After the concept of VUAFLS was presented by Li in 1995,
many studies were carried out to determine its properties and
constructions. Themost representative examples of VUAFLS
are the success of the simulation model control experiment
of a quadruple inverted pendulum [29] and the real quadruple
inverted pendulum control experiment [33]. As controlling a
quadruple inverted pendulum is an enormous challenge that
we noted have demonstrated VUAFLS’s good performance.

As seen below, Fig.4, (b) illustrates the initial universe
of discourse and is partitioned by the fuzzy sets, which
are triangular in shape. (a) and (c) show the expansion and

FIGURE 4. (a) The expansion of the discourse domain,(b) the original
discourse domain,(c) the contraction of the discourse domain.

contraction, respectively, of the discourse of the universe.
The variable universe means that universes X = [−E,E]
can change according to the changing of variables x ∈ X .
So, the universes are denoted by,

X (x) = [−α(x)E, α(x)E]

where α(x) is called the contraction-expansion factor. The
design of α(x) should follow the principle of duality, mono-
tonicity, coordination, normality and zero avoidance. Always
α(x) can be selected as

α(x) = 1− Kexp(−δx2)

where, K and δ are the design parameters. More details can
be found in reference [28].

Because FLS can be regarded as a type of interpolation
algorithm [27], the performance of FLS mainly depends
on the number of effective fuzzy rules in the validity of
the discourse universe. Thus, when the discourse universe
contracts, the amount of membership functions increases
relatively. Based on this concept, the design requirements of
the membership functions can be greatly relaxed. For sim-
plicity of application, the normal, consistent, and complete
fuzzy sets with the triangular membership functions are often
considered [25], [27], [34], although other shapes such as
the bell, Gaussian and trapezoid which are used to describe
the membership functions, can also be selected. Meanwhile,
the performance of FLS can be enhanced despite the limited
number of fuzzy rules in the rule base.

III. THE DESIGN FOR THE IMPROVEMENT OF CSAA
As mentioned before, the annealing temperature Tc is an
important factor. First, the fast cooling process may lose
better solution candidates, whereas slow cooling may require
excessive computation time.

Second, according to (1), the function exp((Ci−Ci+1)/Tc)
clearly explains that a higher temperature allows a higher
chance of transition to a worse solution. Conversely, the
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chance of uphill transition will reduce. Therefore, the possi-
bility of jumping out of the local minima will become lower
when accompanied by monotonically decreasing tempera-
ture. If the local minima are encountered at a temperature
that is low enough that the search is stopped, it will lead to
deterioration in the performance of CSAA.

Therefore, improvement can be made based on the con-
cept that, when the neighboring solution exhibits an upward
trend, Si, the heating process should be implemented in order
to provide more possibility of getting out of the local minima.
When the neighboring solution has a downhill trend, Sj,
meaning the value of the objective function is improved,
then decrease the temperature for better convergence to the
optimum, as shown in Fig.5.

FIGURE 5. The dynamic adjustment of temperature.

Therefore, to improve CSAA performance, consider-
ing the aforementioned tracks, this paper proposes a
novel method containing a cooling and reheating mech-
anism for the dynamic adjustment of the annealing
temperature according to neighboring solutions condi-
tioned relative to the current solution using a SISO
FLS scheme. Furthermore, the SISO VUAFLS will also be
used to further enhance the performance of CSAA.

A. THE DESIGN OF FLS FOR THE TUNING OF THE
ANNEALING TEMPERATURE OF CSAA
The Input of the FLS, 1C , is the change rate of the cost
function and is defined directly as

1C =
Ci − Ci+1

Ci

1C reflects the state of the solution. There are three cases
where a comparison is made between the current cost func-
tion Ci and the neighboring cost function Ci+1. 1C < 0
means the current solution Si is ‘‘better’’ than the neighbor-
ing solution Si+1. 1C = 0 means the current solution Si
shows ‘‘no change’’ relative to the neighboring solution Si+1.
Similarly, 1C > 0 means the current solution Si is ‘‘worse’’
than the neighboring solution Si+1.

So, we define three fuzzy sets for 1C , which are taken as
the triangle waves shown in Fig.6.

FIGURE 6. The three fuzzy sets of 1C .

FIGURE 7. The three fuzzy sets of 1T .

Expressions are as follows:

better(1C) =


1, 1C ≤ −1
−1C, −1 < 1C < 0
0, others

no change(1C) =


1+1C, −1 < 1C ≤ 0
1−1C, 0 < 1C ≤ 1
0, others

worse(1C) =


1C, 0 < 1C ≤ 1
1, 1 < 1C
0, others

The Output of the FLS is 1T , 1T will be used to
weight the current annealing temperature Tc. Here, we also
define three fuzzy sets for 1T , which are taken as triangle
waves. The three fuzzy sets are assigned the meanings ‘‘fast
cooling’’, ‘‘normal cooling’’ and ‘‘heating up’’ as shown
in Fig.7.

Expressions are as follows:

fast colling(1T ) =


1, 1T ≤ 0.800
−1T , 0.800 < 1T < 0.995
0, others

normal colling(1T ) =


1+1T , 0.800 < 1T ≤ 0.995
1−1T , 0.995 < 1T ≤ 1.025
0, others

heating up(1T ) =


1T , 0.995 < 1T ≤ 1.025
1, 1.025 < 1T
0, others
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where, 0.8, 0.995 and 1.025 are the peak values correspond-
ing to the three fuzzy sets, ‘‘fast cooling’’, ‘‘normal cooling’’
and ‘‘heating up’’, respectively.

The fuzzyrules for the construction of the FLS are listed as
follows:
Rule1 : if 1C is ‘‘better’’, then 1T should be ‘‘fast

cooling’’.
Rule2 : if1C is ‘‘no change’’, then1T should be ‘‘normal

cooling ’’.
Rule3 : if 1C is ‘‘worse’’, then 1T should be

‘‘heating up’’.
Rule1 means that a better solution has been discovered or

that the good trend in the optimization process is likely to
continue; so, the annealing process can be carried out rapidly
to accelerate the solution search process. This ‘‘fast cool-
ing’’ can improve algorithm efficiency, as shown by point D
in Fig.5.
Rule2 ‘‘no change’’, means that the solution just searched

may be near the optimum solution, so the annealing tem-
perature should be slowly decreasing comparatively because
the search for the neighbor solutions of the present solution
should be enhanced.
Rule3 embodies the very essence of CSAA: that is,

although the worse solution has been searched, the optimiza-
tion process may be in an ‘‘uphill’’ move. Accordingly, the
search process requires more energy to preserve the ‘‘uphill’’
trend by the specific operation for increasing Tc, as shown by
point C shown in Fig.5.
Here, the Mamdani fuzzy inference system is used for the

inference system. In this approach, according to [27] and [28],
only the peaks of the output fuzzy sets can be used. That
is, the inference process is irrelevant to the shapes of the
output fuzzy sets. So, each rule’s consequent parameter is
specified by a fuzzy singleton. Using the Mamdani inference
mechanism, the output of the FLS can be written as follows:

1T =

∑
i µi(1C)Peaki∑

i µi(1C)

where i is the index for the input and output set; here,
i should be three. To input, i = 1, 2, 3 indicate the three
fuzzy sets ‘‘better’’, ‘‘no change’’ and ‘‘worse’’, respectively.
Meanwhile, to output, i = 1, 2, 3 stands for the three fuzzy
sets ‘‘fast cooling’’, ‘‘normal cooling’’ and ‘‘heating up’’,
respectively.µi(1C) is the firing strength of the related fuzzy
set, and Peaki are the consequent parameters of the three
fuzzy sets ‘‘fast cooling’’, ‘‘normal cooling’’ and ‘‘heating
up’’, 0.800, 0.995 and 1.025, respectively.

B. THE DESIGN OF VUAFLS FOR THE TUNING OF THE
ANNEALING TEMPERATURE OF CSAA
As mentioned previously, VUAFLS can open the way to
improving FLS performance. As the annealing process con-
tinues, the range of the valid discourse domain of 1C is
in a constant process of change. So, in order to ensure the
performance of FLS, VUAFLS can dynamically adjust the
range of the valid discourse domain according to the change

FIGURE 8. The expansion-contraction factor.

in 1C . In this sense, for example, if the solution by which
FLS-CSAA searches becomes better and better approximated
by the optimum solution, the value of 1C will become
smaller and smaller. And the valid discourse domain of 1C
becomes smaller and smaller. With the domain of constant
discourse contraction, although there is no change in the
absolute number of fuzzy rules, the number of fuzzy rules
increases in a relatively small range of the discourse domain.
Obviously, the performance of FLS can be significantly
improved.

Also, by using the Mamdani inference mechanism, the
output of the VUAFLS can be written as follows:

1T =

∑
i µi(

1C
α(1C) )Peaki∑

i µi(
1C
α(1C) )

where, α(1C) is the expansion-contraction factor. In this
paper, α(1C) can be chosen as,

α(1C) = 1− 0.99exp(−51C2)

Fig.8 shows the mathematical properties of the expansion-
contraction factor α(1C).

From Fig.8, the mathematical properties of duality,
monotonicity, coordination, normality and zero avoidance,
which the expansion-contraction factor should have, can be
guaranteed [28].

C. THE GENERATION OF THE REAL RANDOM NUMBER
It is obvious that the random number plays a very important
role when CSAA is implemented. The fundamental cause of
the importance of the random number lies in the production
of the stochastic model and the assistance of the Metropolis
criterion. Only when the random number is a REAL random
number can the ergodicity of the solutions of the whole
solution space be ensured, meaning the certainty of reaching
the global optimum solution.

However, when the CSAA is implemented using a com-
puter, almost all the programming languages can only provide
the pseudo random numbers. To tackle this problem, the
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generation of the REAL random numbers based on CLOCK
is adapted in this paper. It is certain that the CLOCK will
continue changing with the running of CSAA. And this will
lead to the constant changing of the generation conditions of
the random number. So, the generation of the REAL random
numbers can be ensured.

IV. PERFORMANCE EVALUATION
In this section, two examples, the restoration of an image
problem and the TSP, are used to evaluate the performance
of CSAA, FLS-CSAA and VUAFLS-CSAA. The reason for
discussing the performance of FLS-CSAA here is that FLS
is the basis of VUAFLS, that is to say, VUAFLS is the
improvement of FLS. Therefore, for a better illustration the
advantage of VUAFLS-CSAA, this paper also compares the
performance of FLS-CSAA with VUAFLS-CSAA.

Because these two problems are categorized as discrete
combinatorial optimization problems, the new solution Si+1
and the new objective function Ci+1, which corresponds to
Si+1, can be generated by the ‘‘swapping’’ method. Here, the
‘‘2-option’’ swapping method is used [35].

Two kinds of algorithms are presented here. The CSAA
is implemented in accordance with Algorithm1. And
Algorithm2. indicates the running processes of FLS-CSAA
and VUAFLS-CSAA.

Algorithm 1
Step1. Generate an initial solution Si arbitrarily.
Step2. Set the initial value Tc for the temperature.
Step3. Generate the new candidate solution Si+1 by

random perturbing.
Step4. Calculate the objective function Ci and Ci+1

corresponding to Si and Si+1.
Step5. IfCi+1 is better thanCi, let Si be Si+1. Otherwise,

let Si be Si+1 with probability exp((Ci − Ci+1)/Tc).
Step6. If the given stopping condition is satisfied,

STOP. Otherwise, let Tc = 1T × Tc, and then go to
Step3. 1T is just a given constant for ‘‘normal cooling’’;
1T = 0.995 here.

A. ALGORITHM EVALUATION USING IMAGE
RESTORATION PROBLEM
Lenna is the name given to a standard test image widely
used in the field of image processing since 1973. The original
image is shown in Fig.9.

Here, the picture Lenna was separated into twenty parts.
And each part is assigned a random number from 1 to 20.
Fig.10. shows the twenty slices marked with the numbers
1, 2, 3, ..., 18, 19, 20 in sequence from left to right.
The goal is to restore the image by using CSAA,

FLS-CSAA and VUAFLS-CSAA. Every part contains
72 × 1440 pixels. That is, there are 1440 pixels in every
column and 72 pixels in every row. To finish the restoration
task, our thinking is to calculate the match degree of the
total 20 parts based on the individual column edge texture

Algorithm 2
Step1. Generate an initial solution Si arbitrarily.
Step2. Set the initial value Tc for the temperature.
Step3. Generate the new candidate solution Si+1 by

random perturbing.
Step4. Calculate the objective function Ci and Ci+1

corresponding to Si and Si+1.
Step5. IfCi+1 is better thanCi, let Si be Si+1. Otherwise,

let Si be Si+1 with probability exp((Ci − Ci+1)/Tc).
Step6. Calculate the change rate of objective function

1C = (Ci − Ci+1)/Ci). And then let 1C be the input
variable of the FLS or VUAFLS.
Step7. For FLS-CSAA, calculate the coefficient 1T

according to the value of 1C combined with the fuzzy
reference rules. For VUAFLS-CSAA, to get 1T , besides
the operations of FLS-CSAA, the expansion-contraction
factor α(1C) = 1 − 0.99exp(−51C2) should also be
considered.
Step8. If the given stopping condition is satisfied,

STOP. Otherwise, let Tc = 1T ×Tc, and then goto Step3.

FIGURE 9. Lenna.

and edge color of every part. So, the objective function
Ci should be the match degree of the total 20 parts, and
the solution Si is one group of sequences containing the
numbers 1 to 20.

The experiment is implemented following the coefficients
given below. For CSAA, the initial temperature Tc is 1. There
is only one coefficient 1T = 0.995 for the adjustment of
the annealing temperature. And, the criterion for stopping is
Tc ≤ 0.115. Hence, this is an algorithmwith the fixed iterative
number, 6891 times. For FLS-CSAA and VUAFLS-CSAA,
the annealing temperature Tc is adjusted by using CSAA
combined with FLS and VUAFLS; the initial temperature Tc
is also 1. But 1T will be calculated by FLS and VUAFLS,
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FIGURE 10. The disordered pieces of the image ‘‘Lenna’’.

which is elaborated in section 3. For the introduction to the
reheating mechanism, in addition to the stopping tempera-
ture Tc ≤ 0.115, a new stop condition named ‘‘consecutive
reheating times’’, which we shall denote by N , should also
be considered. N means that Si+1, which is searched N times
in succession, is always worse than the current solution Si,
so Si can be regarded as the optimum solution. Here, set
N = 300. For the simulated annealing algorithm, there
is one type of random searching algorithm, so this feature
will lead to unpredictable results of the newly generated
solution Si+1. Therefore, the iterative numbers of FLS-CSAA
and VUAFLS-CSAA are random. For this reason, to fully
test the performance of CSAA, FLS-CSAA and VUAFLS-
CSAA, we have performed FLS-CSAA andVUAFLS-CSAA
so many times. But due to the space limitations, only ten
results are listed here for the illustration. By using CSAA,
FLS-CSAA and VUAFLS-CSAA, the right sequence of
the twenty pieces of the image can be obtained, as shown
in TABLE 2.

TABLE 2. The correct sequence of the image.

But the ten experimental data shown in TABLE 3 illustrate
that the efficiency of CSAA, FLS-CSAA and VUAFLS-
CSAA is largely different. Under the premise of the suc-
cessful reassembling of the disordered pieces of the image
‘‘Lenna’’ to a holonomic image, only the comparison of iter-
ations of CSAA, FLS-CSAA and VUAFLS-CSAA is listed
here because the values of the objective function Ci are the
same when the disordered pieces of the image ‘‘Lenna’’ can
be restored successfully.

TABLE 3. The comparison of iterations(times).

B. ALGORITHM EVALUATION USING TSP
TSP [36] is a classic combinatorial optimization problem.
It belongs to the class of NP-complete problems that are
difficult to solve according to computational complexity
theory [37]. TSP is always used to test the performance of a
newly developed optimization algorithm. A salesman departs
from a city, and then he visits all cities once and only once,
finally returning to the city from which he departed. TSP can
be formulated as follows:

Minimize D =
∑
m∈�

∑
n∈�

λmndmn

where� represents the set of cities.D is the predefined objec-
tive function Ci, which needs to be minimized, representing
the total distance that the salesman travels. λmn is the decision
variable, λmn = {0, 1} ,m, n ∈ �. λmn = 1 means that the
salesman travels from city m to city n directly, or λmn = 0.
To ensure the legal solutions can be obtained, the λmn is
subject to qualifications such as∑

m∈�

λmn = 1, n ∈ �,
∑
n∈�

λmn = 1,m ∈ �

λmn forms a Hamiltonian cycle. dmn represents the distance
between the cities m and n.

TABLE 4. The thirty four provincial capital cities of China.

In this example, the solution Si is one group of sequences
that the salesman travels. The shortest total distance, objec-
tive function Ci, for the salesman travelling around thirty-
four Chinese provincial capital cities, listed in TABLE 4,
is calculated. And TABLE 5 shows the data of the
thirty-four provincial capital cities represented with longitude
and latitude values. The elements belonging to the two tables
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TABLE 5. The longitude and latitude value of the thirty four cities.

are the positional correspondence. That is, the city name and
the latitude and longitude value adhere to the correspondence
between the two tables. For example, the value of the longi-
tude and latitude of the city named ‘‘Beijing’’ in the ‘‘A2’’
position of TABLE 4 is 116.28, 39.54, which is listed in the
‘‘A2’’ position of TABLE 5.

In this example, the coefficients are set as follows.
For CSAA, the initial temperature Tc is also 1. And assume
the only coefficient 1T to be 0.995 too for controlling the
annealing process. Due to the condition of stopping criterion
Tc ≤ 0.120, this is an algorithm with a fixed iterative number
of 9188 times. As in the case of the image restoration exam-
ple, by using FLS-CSAA and VUAFLS-CSAA, the consec-
utive reheating times N should also be considered. Here, set
N = 300. In addition, the iterative numbers of FLS-CSAA
andVUAFLS-CSAAof this TSP example are random. There-
fore, each time the algorithm is implemented, the results may
differ. Confined to the length of this paper, the ten calculation
results for the comparison of the iteration times are listed in
TABLE 6.

TABLE 6. The comparison of iterations(Times) of TSP.

TABLE 7 shows the comparison of the objective function,
that is, the total travelled distance of the salesman.

The following three figures (Fig.11.-Fig.13.) illustrate the
simulated travelling paths of the salesman using CSAA,
FLS-CSAA and VUAFLS-CSAA, respectively.

The experimental result of TSP indicates that, compared
with CSAA, FLS-CSAA and VUAFLS-CSAA can greatly
improve the efficiency of CSAA by tremendously shortening
the iteration process under the precondition of achieving
better objective functions.

TABLE 7. The comparison of objective function(Km) of TSP.

FIGURE 11. The forth experiment of CSAA(corresponding to the forth
element of the first column in Tab 7).

FIGURE 12. The first experiment of FLS-CSAA(corresponding to the first
element of the second column in Tab 7).

When analyzing the results of the two examples, we
can easily see that compared to CSAA, there is a sud-
den drop in the iteration count of the optimization process
using FLS-CSAA and VUAFLS-CSAA. Given this, it can be
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FIGURE 13. The eighth experiment of VUAFLS-CSAA(corresponding to the
eighth element of the third column in Tab 7).

easily found that the CSAA search combined with FLC and
VUAFLS is more effective compared to CSAA.

V. CONCLUSION
In this paper, we have investigated a novel approach to
adjusting the annealing temperature of CSAA. By using FLS
and VUAFLS, the reheating mechanism and fast cooling
mechanism are introduced to improve the search performance
of CSAA. In CSAA, there have been problems where a
higher temperature allows a higher chance of transition into
a worse solution. Conversely, the chance of uphill transition
will decrease. To address the problem, we have developed
the FLS and VUAFLS, which are applied to the annealing
temperature control. By doing so, the annealing temperature’s
monotonical decrease is resolved, so algorithm efficiency
is much improved. In order to verify the effectiveness of
the novel approach, this paper examines two examples and
compares the results with CSAA. As a result, the experiments
reveal that FLC-CSAA and VUAFLS-CSAA show better
results than CSAA. In particular, the outstanding properties
of VUAFLS are shown through a comparison of the opti-
mization iteration count. Because of the many advantages of
FLS, the novel method presented in this paper can generally
be applied to other applications on the simulated annealing
algorithm. Consequently, compared to the CSAA, the two
novel algorithms and especially VUAFLS-CSAA could sig-
nificantly expand the scope of the application of the simulated
annealing algorithm in the future.
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