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ABSTRACT Micro-motion dynamics, such as rapid rotation, vibration and spinning motion, impose
additional time-varying frequency modulation on the returned radar signals, which is known as the micro-
Doppler (m-D) effect. Micro-Doppler frequency is considered as a stable and unique feature, where the
uniqueness means that different micro-motions have distinct signatures. Thus, radar m-D feature extraction
is of great potential in target classification and identification. This paper presents m-D frequency estimation
from the HRRPs of rotating targets in frequency-stepped signal (FSS) based on the circular correlation
(CC) coefficients and the circular average magnitude difference (CAMD) coefficients. The m-D frequency
of rotating targets can be estimated accurately from the two proposed methods and the corresponding
computational cost burden is also investigated. The accuracy and efficiency of the estimations are compared
and revealed by the simulated trials and experimental data.

INDEX TERMS Rotating targets, high resolution range profiles (HRRPs), frequency-stepped signal (FSS),
feature extraction, circular correlation (CC) coefficients, circular average magnitude difference (CAMD)
coefficients.

I. INTRODUCTION
In addition to the bulk motions, radar targets or any structures
on the targets may incorporate rapidly periodic micro-motion
dynamics, such as spinning ballistic targets, swing arms and
legs of human beings and rotating rotor blades of helicopters,
which impose additional time-varying frequency modulation
on the returned radar signals [1]–[5]. This modulation is
known as micro-Doppler (m-D) effect and the modulation
period in frequency is denoted as m-D modulation frequency,
i.e., m-D frequency, which provides significant information
of the micro-motion dynamics [6]–[10]. Thus, as a stable
and unique feature, m-D frequency can be used to distinguish
targets or components with various motions. For example,
ballistic missiles can be discriminated from the other nearby
ballistic targets (such as boosters, decoys and debris) since the
intrinsic nutation motion of war-heads induces distinct m-D
features [8]. The feature extraction for automatic target recog-
nition (ATR) have received increasing attention among the

radar community [4], [11]–[13]. Traditional time-frequency-
based (TF-based) feature extraction techniques rely primar-
ily on the assumption that more than one oscillation of the
sinusoidal frequency modulation (FM) curves of high res-
olution m-D frequency can be achieved [5], [10]. High
frequency resolution needs not only a long dwell time but
also a high-resolution TF transform which may increase the
observation time and the computational complexity [14].
Usually, bilinear transforms, such as the Wigner–Ville dis-
tribution (WVD), has better joint time–frequency resolution
than any linear transform, such as the short-time Fourier
transform (STFT) [15]. Since the radar signal is frequently
a multi-component signal, regarding the interference, the
cross term of bilinear transforms (such as the WVD) may
be unavoidable in the TF plane. Thus, more sophisticated
improved TF distribution is addressed to reduce the cross-
term interference (such as the smoothed pseudoWigner-Ville
distribution, SPWVD). Especially due to the shield effect,
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the m-D curves in the TF plane may be only partial at certain
aspect angles [16]. Based on the above factors, conventional
feature extraction methods based on the m-D curves in the
TF plane may not be effective [5], [17], [18], [21], [23],
and this deficiency is what motivates this paper.

Large time-bandwidth product signals are frequently
adopted to synthesize high resolution range profiles (HRRPs),
such as the chirp signals, the frequency-stepped sig-
nals (FSS) and the frequency-stepped chirp signals (FSCS)
[5], [19], [20]. HRRPs can also be utilized in feature extrac-
tion of targets with micro-motion dynamics [5], [21]–[23].
The main advantage of FSS, compared with other kinds of
high resolution radar signals, is that it can easily achieve
high range resolution without expensive hardware to sup-
port the instantaneous wide bandwidth [5]. For a wideband
target recognition radar with FSS, HRRPs can be easily
reconstructed by one dimensional (1-D) inverse fast Fourier
transform (IFFT) while the m-D curves in TF imaging plane
should be achieved by TF-based algorithm which is more
time-consuming [14], [24]. Especially in a case of multiple
targets with close velocity, m-D signatures will be non-
separable in TF plane and HRRP based method may be a
better choice if targets can be separated by range [12], [25].
Moreover, conventional m-D parameter estimation methods,
such as Hough Transform (HT) and extended Hough Trans-
form (EHT), are not only time-consuming but also easily
run into local optimums when the dimension of parameters
increases [18], [26]. The features of rotating targets with two
symmetrical corner reflectors are extracted from HRRPs via
FSS based on the three-point model. However, the three-
point model is derived under the assumption that the curves
of HRRPs are sinusoidal which would be disturbed in the
case of rotating targets with translation motion. In view of
this, the m-D frequency of rapid rotating targets is extracted
from the reconstructed HRRPs via FSS based on the cir-
cular correlation (CC) coefficients and the circular average
magnitude difference (CAMD) coefficients in this paper.
The reconstructed HRRPs of rapidly periodic rotating targets
moving at constant speed in the slow-time-range plane are
presented and the circular periodicity of HRRPs is also
revealed. The CC coefficients and CAMD coefficients are
then employed to characterize the circular periodicity of
HRRPs and to provide estimates of the rotating frequency,
respectively. The advantage of the proposed methods in this
paper is that feature extraction based on the CC and CAMD
coefficients can deal with rotating targets with or without a
translation velocity benefiting from the circular periodicity of
HRRPs while the method mentioned in reference [5] is only
suitable for rotating targets with no translation motion.

The rest of the paper is organized as follows: The recon-
structions of HRRPs of rapidly periodic rotating targets with a
constant speed in FSS radar system are depicted in Section II.
In Section III, the circular periodicity of the reconstructed
HRRPs is uncovered and the rotating frequency is estimated
via the CC coefficients and CAMD coefficients. Experiments
with simulated and real data reveal the accuracy and the

efficiency of the proposed feature extraction algorithms in
Section IV and Section V. Concluding remarks are provided
in Section VI.

II. MODELING OF RECONSTRUCTED HRRPS
Targets or components on targets with rapidly periodic
rotation are common in rotating rotor blades, scanning anten-
nas, turbines, etc. In this section, HRRPs of rapidly peri-
odic rotating targets moving at constant speed in FSS are
first addressed. Then the circular periodicity of HRRPs is
depicted.

FIGURE 1. Geometry of the rapid rotating targets moving at constant
speed in FSS radar.

Figure.1 shows the geometry of the radar and the rotat-
ing target with L strong scattering centers in a translation
velocity v. The target rotates along the point O which is
chosen as the origin and XOY is constructed as the body-
fixed coordinate system with X axis paralleling with the line
of sight (LOS). The angle between LOS and the translation
motion direction is denoted as θ . The rotating velocity is
denoted as ω = 2π fd , where fd is m-D frequency, i.e.
rotating frequency, and Td = 1/fd is m-D modulation period.
Usually, the rotating targets model in Figure 1 can cover most
of the typical scenarios in practice. For example, the two-
blade rotors are just the case that there are only two rotating
blades with radius of equal length and symmetrical about
the origin O, while the three-blade rotors are the case that
there are three rotating blades with radius of equal length
and separated by 120 degrees. And the scattering centers of
each blade can be determined by the physical optics (PO)
facet predictionmodel [27]. However, in the scattering at high
frequencies, the radar echoes from the rotating target can be
approximated as the sum of scattering from a finite number of
individual point-scatterers (namely scattering centers) and the
scattering center model has already been proven to be good
enough in radar signal simulation [28], [29].

Without loss of generality, suppose that there are strong
scattering centers on the moving target together. Consider the
l-th (l ∈ [1,L]) scattering center and the rotating radius is
denoted as rl . At time t = 0, the distance from the radar
to the origin O is denoted by R0 and the initial distance
from the radar to the scattering center l can be calculated

as Rl0 =
√
R20 + r

2
l + 2R0rl cosφl0 where φl0 is the initial

rotation angle. Then at time the range of the scattering center
l measured from the radar can be expressed by

Rlt = Rl0 + vt cos θ − rl cos (ωt + φl0) (1)
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The FSS uses a sequence of narrow sub-pulses to achieve
wide bandwidth, where each sub-pulse has a single carrier
frequency f0 changing by a fixed amount 1f . The received
baseband signal returned form the scatterering center
l follows

slt = σlrect

(
t − 2Rlt

c

TP

)
· exp

(
−j4π fnRlt

c

)
(2)

where σl is the backscattering coefficient of l; rect (·) is a
rectangular window; Tp is pulse width; c is the wave propa-
gation velocity; n = 0, 1, 2, . . . ,N − 1 denotes the n-th sub-
pulse in a burst and fn = f0+ n1f denotes the corresponding
carrier frequency.

It has been proven that the phase of the baseband signal is
linearly related to n when Rlt is constant in time. Since the
sequence of sub-pulses can be viewed as frequency samples
of the total radar bandwidth in the frequency domain, the
1-D IFFT with respect to can be adopted to achieve the range
compression, i.e., the reconstruction of HRRPs. However,
due to the translation and the rapidly periodic rotation, Rlt is
time-varying and the peak position of HRRPs changes with
respect to the time series. The phase of the returned signal at
sampling time instant t = mNTR + nTR is

φl =
4π fnRlt

c
|t=mNTR+nTR

=
4π fn
c

[Rl0 + v (mNTR + nTR)

− rl cos (ω (mNTR + nTR)+ φl0)] (3)

where m = 0, 1, 2, . . . ,M − 1 denotes the m-th burst and TR
denotes the pulse repetition interval (PRI). The peak positions
of HRRPs are determined by

k =
1
2π

dφl
n

=
21fRl0 + 2f0vTR cos θ + 2mNv1fTR cos θ

c

+
4nv1fTR cos θ

c

−
21frl
c

cos (ω (mNTR + nTR)+ φl0)

+
2f0rlωTR

c
sin (ω (mNTR + nTR)+ φl0)

+
2nrl1f ωTR

c
sin (ω (mNTR + nTR)+ φl0) (4)

In the case of rapidly periodic rotating targets illuminated
by a conventional FSS radar, ωnTR is usually very small
and cos (ωnTR) ≈ 1 and sin (ωnTR) ≈ 0. Ignoring the
last coupling term which is usually negligibly small in (4),
the peak positions of HRRPs can be approximately rewritten
as

k (m) =
2 (1fRl0 + f0vTR cos θ)

c
+

2mNv1fTR cos θ
c

+
21frl
c

√
1+

f 20 ω
2T 2

R

1f 2
sin (ωmNTR + φl0 − ε)

= k0 + k1 + r1 sin (ωmNTR + φlε0)

= k0 + k1 + k2 (5)

Where

k0 =
2 (1fRl0 + f0vTR cos θ)

c

k1 =
2mNv1fTR cos θ

c

r1 =
21frl
c

√
1+

f 20 ω
2T 2

R

1f 2

k2 = r1 sin (ωmNTR + φlε0)

φlε0 = φl0 − ε, and

ε = arcsin

1/

√
1+

f 20 ω
2T 2

R

1f 2

 (6)

The first term k0 in (2) is a constant, the second term k1 is
the first order term with respect to m which imposes a linear
modulation on the peak positions of HRRPs in the slow-
time-range plane and the last term k2 is the sinusoidal term
which further imposes a sinusoidal modulation on the peak
positions of HRRPs. The signal model in (5) can be simplified
down to that in [5] when v = 0. When v 6= 0, the feature
extractionmethod proposed in [5] based on three-point model
will be invalid since the curves of HRRPs are not sinusoids
anymore. Thus, new feature extraction methods via HRRPs
are extremely needed in this new situation.

As demonstrated in the Appendix-A, k (m+MT ) (where
MT is the period of time series) is actually a circular shift
form of k (m) and HRRPs perform a circular periodicity with
a period of Td , the same with the m-D modulation period.

III. FEATURE EXTRACTION
Ignoring the induced phase terms, the peak positions of
HRRPs of the scattering center l have a simplified and gen-
eralized form as

|Hl (k,m)| ≈ ρlδ (k − (k0 + k1 + k2)) (7)

where ρl is a constant. Letting m = m+MT , we have

|Hl (k,m+MT )| = ρlδ (k − k0 − k1
− r1 sin (2π + ωmNTR + φlε0)

− 2NMT v1fTR cos θ/c)

= ρlδ (k − k0 − k1
− r1 sin (ωmNTR + φlε0)

− 2NMT v1fTR cos θ/c) (8)

A. CC AND CAMD COEFFICIENTS [10], [31]
As shown in the Appendix-B, the CC coefficients matrix
MC preserves the periodicity in row and column dimensions.
Then the lag in the same diagonal of the CC coefficients
matrix MC is a constant and elements in the same diagonal
are supposed to be almost equivalent. Define the average CC
coefficients as the average of p-th diagonal of the matrix

C (p) = mean (diag (MC , p)) (9)
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where

diag (MC , p) = {MC (m1,m2) ,m2 = m1 + p,

1 ≤ m1 ≤ M , 1 ≤ m2 ≤ M} (10)

Apparently, C (p) has the same periodicity and shows
peaks at time instant iMT , i = 0,±1,±2, · · · .
Similarly, as shown in the Appendix-C, the CAMD coeffi-

cients matrix MD also preserves the periodicity in row and
column dimensions. Then the lag in the same diagonal of
the CAMD coefficients matrix MD is also a constant and
elements in the same diagonal are supposed to be almost
equivalent. Like the definition of the average CC coefficients,
the average CAMD coefficients can be defined as

D (p) = mean (diag (MD, p)) (11)

where

diag (MD, p) = {MD (m1,m2) ,m2 = m1 + p,

1 ≤ m1 ≤ M , 1 ≤ m2 ≤ M} (12)

Similarly,D (p) has the same periodicity and shows valleys
at position iMT , i = 0,±1,±2, · · · .
Thus, to estimate the rotating m-D frequency is equivalent

to extract the intervals of the peaks of C (p) or the intervals
of the valleys of D (p).

B. EXTRACTION STEPS AND COMPUTATIONAL
COMPLEXITY
The rotating frequency can be estimated from the intervals
of peaks of the CC coefficients or the intervals of the valleys
of the CAMD coefficients. The concrete steps of the rotating
frequency estimation method are enumerated in the following
list.

Step 1) Reconstruct HRRPs of rotating targets in FSS via
FFT, i.e., Hl (k,m).

Step 2) Calculate the CC coefficients matrix MC of
|Hl (k,m)| via (25) in theAppendix-B or calculate the CAMD
coefficients matrixMD via (33) in the Appendix-C.
Step 3) Calculate the average CC coefficients C (p)

via (6) or calculate the average CAMD coefficients D (p)
via (15).

Step 4) Estimate the intervals of peaks of the average CC
coefficients or the intervals of valleys of the average CAMD
coefficients.

Step 5) Yield an estimate of rotating period T̂d by averag-
ing the estimations of intervals and f̂d = 1/T̂d .
The computational complexity of estimated T̂d primarily

relies on the calculation of MC or MD. There are times mul-
tiplication to calculate eachC (m1,m2) andM×M×N times
multiplication to calculateMC . There are times subtraction to
calculate each D (m1,m2) andM ×M ×N times subtraction
to calculate MD. The computational complexity of rotating
frequency estimation via the CC coefficients and the CAMD
coefficients will be compared with each other later in the
simulated trials.

IV. SIMULATIONS
From Section IV-A to IV-D, the characteristics of recon-
structed HRRPs of rapidly periodic rotating targets with
translation motion in FSS are revealed. Then in Section IV-E,
the estimation of rotating rotor blades of helicopters without
translation motion is also presented.

TABLE 1. The simulation parameters.

In Section IV-A∼IV-D, two sets of fd (5Hz and 7Hz) are
chosen in the following simulations and the translation veloc-
ity is set to be nonzero for a more general case. According to
the electromagnetic (EM) scattering model in high frequency,
for a real complex target, the radar echo signal can be decom-
posed into multiple point scattering centers neglecting the
interaction effect of EM scattering. Suppose that there are five
strong scattering centers on the moving targets with different
rotating radii and scattering coefficients. Themain simulation
parameters are listed in Table 1.

FIGURE 2. Peak values of HRRPs, k0, k1 and k2, (a) fd=5 Hz. (b) fd=7 Hz.

Choose the fifth scattering center (rl = 2.3 m,
σl = 0.8 m2, and φl0 = 287 degree) for the purpose of
illumination, the ideal peak positions of HRRPs when fd =
5 Hz and fd = 7 Hz are shown in Figure 2(a) and Figure 2(b),
respectively. As depicted in the two figures, each curve of the
peak values can be decomposed into k0, k1 and k2, where k0
is a straight line with zero slope represented by a dotted line,
k1 is a slash represented by a long dash line and k2 is a sinu-
soid represented by a short dash line. The simulation results
are in accordance with the theoretical analysis in equation (6).
And it can also be seen that the sinusoidal periodicity of
HRRPs is disturbed by the first order term k1 induced by the
translationmotion in both two figures. The whole observation
time is about M × N × TR ≈ 0.874 s which implies that
there are four peaks in the CC coefficients or four valleys in
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the CAMD coefficients when fd = 5 Hz and five peaks in
the CC coefficients or five valleys in the CAMD coefficients
when fd = 7 Hz.

FIGURE 3. HRRPs of the rapid rotating targets with different m-D
frequencies with translation motion. (a) fd=5 Hz. (b) fd=7 Hz.

The HRRPs of the rapid rotating targets with fd = 5 Hz
and 7 Hz but moving at a constant speed v = 80 m/s
under SNR=25 dB in FSS radar are shown in Figure 3(a)
and Figure 3(b), respectively. Just as depicted in the figures,
the HRRPs are wrapped in the time-range plane since the
rotating frequency is extraordinarily high [5]. It can also be
seen that HRRPs of the scattering centers are not normal
sinusoidal curves due to the translation motion but with
circular periodicity yet; because of this, the conventional
feature extraction methods such as three-point model, Hough
Transform (HT) or Extended Hough Transform (EHT) may
be ineffective or with a huge computational burden.

To demonstrate the extraction of the rotating frequency
from the HRRPs, the estimations via the CC coefficients and
the CAMD coefficients are presented in following simula-
tions. The precision of the estimations of the two extraction
methods are compared with that of EHT and the robustness
is also validated from the following simulations with various
SNRs. The computational complexity is revealed by the time
consumed for rotating frequency estimation.

FIGURE 4. Estimated results via CC (fd=5 Hz and SNR=25 dB). (a) CC
coefficients matrix. (b) average CC coefficients.

A. ESTIMATED RESULTS BASED ON THE CC COEFFICIENTS
The CC matrix of the HRRPs in Figure 3(a) when fd = 5Hz
is shown in Figure 4(a) and the average CC coefficients are
shown in Figure 4(b) which reach four peaks at 0.192 s,
0.3968 s, 0.5952 s and 0.7936 s. The intervals of the peaks

FIGURE 5. Estimated results via CC (fd=7 Hz and SNR=25 dB). (a) CC
coefficients matrix. (b) average CC coefficients.

yield an estimate T̂d = 0.1968 s and f̂d = 5.0813 Hz with a
relative error of 1.63%.

The CC matrix of the HRRPs in Figure 3(b) when fd =
7Hz is shown in Figure 5(a) and the average CC coefficients
are shown in Figure 5(b) which reach five peaks at 0.1344 s,
0.2816 s, 0.4224 s, 0.5632 s and 0.7104 s. The intervals of the
peaks yield an estimate T̂d = 0.1398s and f̂d = 7.1543Hz
with a relative error of 2.2%.

From the estimated results of simulated data with high
SNR, it can be concluded that the CC matrix presents peri-
odicity in row and column dimensions and the rotating fre-
quency can be estimated accurately via the CC coefficients
of HRRPs.

FIGURE 6. Estimated results via CAMD (fd=5 Hz and SNR=25 dB).
(a) CAMD coefficients matrix. (b) average CAMD coefficients.

B. ESTIMATED RESULTS BASED ON THE
CAMD COEFFICIENTS
The CAMD matrix of the HRRPs in Figure 3(a) when fd =
5Hz is shown in Figure 6(a) and the average CAMD coeffi-
cients are shown in Figure 6(b) which reach four valleys at
0.192 s, 0.3968 s, 0.5952 s and 0.7936 s. The intervals of the
valleys yield an estimate T̂d = 0.1968 s and f̂d = 5.0813 Hz
with a relative error of 1.63% which are the same as the
estimation from CC coefficients.

The CAMDmatrix of the HRRPs in Figure 3(b) when fd =
7Hz is shown in Figure 7(a) and the average CC coefficients
are shown in Figure 7(b) which reach five valleys at 0.1344 s,
0.2816 s, 0.4224 s, 0.5632 s and 0.7104 s. The intervals of the
valleys yield an estimate T̂d = 0.1398s and f̂d = 7.1543Hz
with a relative error of 2.2% which are also the same as the
estimation from CC coefficients.

Although the rotating frequencies extracted from HRRPs
based on the two extraction methods are with the same
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FIGURE 7. Estimated results via CAMD (fd=7 Hz and SNR=25 dB).
(a) CAMD coefficients matrix. (b) average CAMD coefficients.

FIGURE 8. MSE of f̂d in various SNR. (a) via CC coefficients. (b) via CAMD
coefficients.

precision under SNR=25 dB, it should be noticed that a high
SNR is presented in the above simulations which may be not
accord with the real scenarios. To reveal the robustness of the
two methods, simulations with different SNRs are presented
in the following.

C. ESTIMATED RESULTS IN VARIOUS SNRS
To prove the robustness of the two extraction methods in a
more realistic scenario, simulations with Gaussian distributed
complex noise in different SNRs (0 dB, −5 dB, −8 dB and
−9 dB) when fd = 5 Hz are presented here. The additive
Gaussian noise with given SNR is added into the simulated
radar echo of each burst, i.e. m, as follows,

Step 1)Letm = 0 and simulate the radar echowith s (n,m)
the signal amplitude assumed to be 1 Voltage. The power of
the simulated radar echo of them-th burst (without noise) can
be calculated as

Pm =
N−1∑
n=0

s2 (n,m) (13)

Step 2) For a given SNR (units in dB), the variance of noise
can be calculated as

Var =
Pm

10
SNR
10

(14)

Step 3) The complex noise can be simulated as

Noise (n,m) = hilbert
(√

Var× randn (n,m)
)

(15)

where hilbert (·) computes the so-called analytic signal and
randn (·) returns a matrix containing pseudorandom values

FIGURE 9. Estimated results with various SNR based on CC coefficients.
(a) 0 dB. (b) −5 dB. (c) −8 dB. (d) −9 dB.

FIGURE 10. Estimated results with various SNR based on CAMD
coefficients. (a) 0 dB. (b) −5 dB. (c) −8 dB. (d) −9 dB.

drawn from the standard normal distribution. Then the finally
simulated radar echo is

s′ (n,m) = s (n,m)+ Noise (n,m) (16)

Step 4) Repeat Step 1) to Step 3) with the increase of until
m = M − 1.
The corresponding CC coefficients and the CAMD coef-

ficients are shown in Figure 9 and Figure 10, respec-
tively. The estimated f̂d s and the relative errors are given
in Table 2.

The results are mean values calculated for a few
independent measurements using Monte Carlo simula-
tion (100 times). The mean squared errors (MSE) of f̂d via
CC and CAMD coefficients in various SNR are plotted in
Figure 8(a) and Figure 8(b), respectively.

From the estimated MSE shown in Figure 8(a) and the
CC coefficients shown in Figure 9(a)∼(d), the peaks of CC
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TABLE 2. Estimated results.

coefficients are not obvious when the SNR decreases seri-
ously. As depicted in Table 2, when SNR=−8 dB the rotat-
ing frequency estimation is 4.8675 Hz with a relative error
of 2.65% and the MSE of f̂d is about 10−1.69 which is almost
acceptable. When SNR=−9 dB, the peaks are contaminated
by the additive Gaussian distributed noise and the rotating
frequency estimation sunk to 4.7215 Hz with a relative error
of 5.57% and the MSE of f̂d is about 10−1.25 which is already
relatively poor.

From the estimated MSE shown in Figure 8(b) and the
CAMD coefficients shown in Figure 10(a)∼(d), the valleys
of CAMD coefficients are also not obvious when the SNR
decreases seriously. The rotating frequency estimation is
4.8005 Hz with a relative error of 3.99% and the MSE of
f̂d is about 10−1.4 when SNR=−8 dB. When SNR=−9 dB,
the peaks are already contaminated by the noise and not easy
to identify and the number of valleys increases to five and the
last one is a fake. The rotating frequency estimation sunk to
4.6835 Hz with a relative error of 6.33% and the MSE of f̂d
also degraded to 10−1.19.
Compared the estimated results with each other, we can

see that the estimated f̂d via the CC and CAMD coeffi-
cients is good enough when SNR is no less than −8 dB.
But from the MSE of estimated rotating frequency in Fig-
ure 8, it can be concluded that the rotating frequency extrac-
tion via the CC coefficients is more robust than that via
the CAMD coefficients in low SNRs. Besides these char-
acteristics, the time consumed for rotating frequency esti-
mation via the CC coefficients is also less than that via
the CAMD coefficients, which will be demonstrated in the
following.

D. COMPUTATIONAL COMPLEXITY
To validate the accuracy and efficiency of the two proposed
estimation algorithms compared to the conventional works,
EHT is utilized to extract the m-D parameters from HRRPs.
The location of scattering center in the range domain can be
scaled by dividing k (m) by 21f /c in equation (5), i.e.,

Rl (m) = Rl0
f0TR cos θ
1f

+ mNvTR cos θ

+ rl

√
1+

f 20 ω
2T 2

R

1f 2
sin (ωmNTR + φlε0)

= R∗l + r
∗ sin (ωmNTR + φlε0) (17)

FIGURE 11. Estimated fd against Rl0 estimated via six-parameter EHT. (a)
fd=5 Hz. (b) fd=7 Hz.

FIGURE 12. Estimated fd against estimated Rl0 via four-parameter EHT
(SNR=0 dB). (a) fd=5 Hz. (b) fd=7 Hz.

where R∗l = Rl0
f0TR cos θ
1f + mNvTR cos θ and r∗ =

rl

√
1+

f 20 ω
2T 2

R
1f 2

.

The constructed six-parameter EHT equation to extract the
m-D parameters (Rl0; fd ; r∗;φlε0; v; θ) is as
follows

Rl0 = Rl (m)− r∗ sin (2π fdmNTR + φlε0)

−
f0vTR cos θ

1f
− mNvTR cos θ (18)

The estimated parameters via the six-parameter EHT are
partly shown in Figure 11 in which SNR=0 dB. When
fd = 5 Hz, the estimated m-D frequency fd in the param-
eter domain of the six-parameter EHT is shown in Fig-
ure 11(a) in which it is clearly that the estimations run
into local optimums at 5.3 Hz, 5.7 Hz and 5.8 Hz. When
fd = 7 Hz, the estimations run into local optimums at
4.45 Hz, 4.55 Hz, 4.65 HZ, 4.75 Hz, 4.85 Hz, 4.95 Hz
and 7.85 Hz.

To remove the local optimums and the cost burden,
the velocity v is assumed to be zero and the parame-
ter dimensions of EHT are reduced to four. Then the
four-parameter EHT equation to extract the m-D parame-
ters ((Rl0; fd ; r∗;φlε0)) is as follows

Rl0 = Rl (m)− r∗ sin (2π fdmNTR + φlε0) (19)

The estimated parameters via the four-parameter EHT are
partly shown in Figure 12 and the peak value yields an
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estimation of m-D frequency. When fd = 5 Hz, the esti-
mated m-D frequency fd in the parameter domain of the four-
parameter EHT shown in Figure 12(a) in which it is clearly
that the estimation equals 4.9 Hz with a relative error of 2%
and when fd = 7.1 Hz, the estimation is 7.1 Hz with a relative
error of 1.4% as shown in Figure 12(b). The estimations are
accurate by the four-parameter EHT. The results imply that
the precision of EHT-based parameter estimation method is
limited when the parameter dimension increases.

FIGURE 13. Estimated fd against estimated Rl0 via four-parameter EHT
under various SNRs. (a) SNR=−5 dB. (b) SNR=−8 dB. (c) SNR=−9 dB.

Another three groups of feature extractions via the four-
parameter EHT with different SNRs (−5 dB, −8 dB and
−9 dB) are conducted to illuminate the effect compared
to that via the CC and CAMD coefficients. The estimated
m-D frequency fd via the four-parameter EHT under various
SNRs are partly shown in Figure 13. When SNR=-5 dB,
f̂d = 5.9 Hz with a relative error of 18% which is not
acceptable, as shown in Figure 13(a).When SNR=−8 dB and
−9dB, as shown in Figure 13(b) and Figure 13(c), the peaks
are contaminated by the noise and the estimations are also out
of true.

To demonstrate the computational complexity of the two
extraction methods compared with the four-parameter EHT,
simulations with fd = 5 Hz with various M (128, 256 and
512) are presented here. In the same system and hardware
condition, which includes a 64-bit Windows R©7 SP1 OS,
an Intel R©Core i7-6500U 2.5 GHz CPU, a 1-MB L2 cache,
and an 8192-MB memory capacity, the time consumed
for rotating frequency estimation via the CC coefficients,
the CAMD coefficients and the four-parameter EHT is given
in Table 3.

Thematrix of HRRPs is a 128×256matrixwhenM = 128,
a 256× 256 matrix when M = 256, and a 512× 256 matrix
when M = 512. The CAMD coefficients calculation from

TABLE 3. Time consumed for estimation.

a huge matrix is very expensive in terms of computational
time while the CC coefficients can be calculated by the
fast algorithm of circular convolution. Thus, the efficiency
of rotating frequency estimation via the CC coefficients is
usually very high which is proven in Table 3. The compu-
tational time of estimations via the four-parameter EHT is
more than that of estimations via the CC coefficients and less
than that of estimations via the CAMD coefficients. However,
the EHT easily runs into local optimums when the parameter
dimensions increase which leads to inadequate estimations as
shown in Figure 11.

Thus, in general, in the cases of SNR no less than -8 dB,
rotating frequency extractions via the CC coefficients and the
CAMD coefficients are both acceptable with high accuracy
compared with that via the EHT, but estimation method via
the CC coefficients is more efficient than that via the EHT
and the CAMD coefficients. In low SNR cases, the extraction
method via the CC coefficients is not only accurate but also
efficient compared to that via the EHT and the CAMD coef-
ficients. Although the extraction efficiency via the CAMD
coefficients is much lower than that via the CC coefficients,
its accuracy under SNR no less than -8 dB is validated and
it is more reliable than high-dimensional EHT which easily
runs into local optimums. The rotating frequency estima-
tion via the CAMD coefficients does enrich the methods of
m-D feature extraction and the fast algorithm to calculate the
CAMD coefficients matrix is a potential direction in further
researches.

E. ESTIMATED RESULTS OF ROTATING ROTOR BLADES
For real rotating rotor blades of helicopters, the rotation rate
is nearly from one to a few revolutions/second (r/s), typi-
cally 1-9 r/s, i.e., fd = 1-9 Hz. For example, the rotating
rate of USA Air Force Bell AH-1 helicopter, also known as
‘‘Huey Cobra’’, is 4.9 r/s with fd = 4.9 Hz. For this reason,
the simulated data utilized in [27] is chosen here to validate
the effect of the proposed rotating frequency estimation algo-
rithms via the CC and the CAMD coefficients in this paper.
In the simulations, the radar is supposed to be at C-band
with a wavelength of 0.06 m and a bandwidth of 300 MHz.
The length of rotor blades is about 6.5 m. The rotation rate
fd = 4 Hz, the translation velocity of the helicopter is
about 100m/s and the range from the radar to the center
of the rotor is about 750 m [27]. The HRRPs of the two-
blade rotating rotor and the three-blade rotating rotor with-
out translation motion are presented in Figure 14(a) and
Figure 14(b), respectively [27].
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FIGURE 14. HRRPs of the rotating rotor blades with various number of
blades. (a) two-blade rotating rotor. (b) three-blade rotating rotor.

FIGURE 15. Estimated results of rotating rotor blades. (a) CC coefficients
of two-blade rotor. (b) CAMD coefficients of two-blade rotor. (c) CC
coefficients of three-blade rotor. (d) CAMD coefficients of three-blade
rotor.

The average CC coefficients and the average CAMD coef-
ficients of two-blade rotating rotor are shown in Figure 15(a)
and Figure 15(b) while that of three-blade rotating rotor are
shown in Figure 15(c) and Figure 15(d), respectively.

In Figure 15(a) and Figure 15(c), the average CC coef-
ficients reaches its three peaks at 0.2431 s, 0.4929 s and
0.7425 s and the intervals of the peaks yields an estimate
T̂d = 0.2457 s and f̂d = 4.0702 Hz with a relative error
of 1.76%. In Figure 15(b) and Figure 15(d), the average
CAMD coefficients also reaches its three valleys at 0.2433 s,
0.4929 s and 0.7424 s and the intervals of the peaks yields
an estimate T̂d = 0.2457 s and f̂d = 4.0702 Hz with a
relative error of 1.76%. The estimations from the HRRPs of
the rotating rotor blades of helicopters without translation
motion also demonstrate the effectiveness of the proposed
algorithms based on the CC and CAMD coefficients under
high SNRs.

V. EXPERIMENTAL RESULTS
In this section, experimental trials of rotating targets are con-
ducted to prove the validity of the m-D frequency extraction

FIGURE 16. Outfield experiments of rotating targets. (a) FSS radar and
the scenario of the outfield experiments. (b) Rotating targets.

FIGURE 17. Geometry of the outfield experiments.

methods. The FSS radar works in millimeter wave band with
awavelength of 0.8 cm and a peak power no less than 1.5watt.
The conformal antenna is a planar slot array antenna with an
aperture of 152 mm. The main parameters of the FSS radar
are as follows: fc = 37.5 GHz, TR = 20 µs, 1f = 0.5 MHz
and with a totally bandwidth 512 MHz. Thus, we have that
N = 512/1f = 1024 and the range resolution is about 0.5m.
The scenario of the outfield experiments is shown in

Figure 16(a). The rotating target consists of two metal trihe-
dral corner reflectors connected by a wooden spiral arm and
the center of rotation is in the center of the wooden spiral arm.
The rotating target is driven by a rotary motor and has been
placed on the groundwith a translation velocity v = 0m/s and
radius rA = rB = 0.4 m as shown in Figure 16(b) [5]. The
geometry of the outfield experiments is shown in Figure 17.
Since the rotating target has been placed on the ground,
the FSS radar is set up on a high distance for vision. On the
other hand, the slant range between the center of rotation
O and the FSS radar is about 160 m to fulfill the far field
assumption.

The main interference in the scenario is the inevitable
ground clutter when the FSS radar looks down upon
the ground which can be cancelled by the method pro-
posed in [23]. The original HRRPs of rotating targets with
fd = 1.61 Hz are illustrated in Figure 18(a) which can be seen
that HRRPs are contaminated with strong ground clutter and
the HRRPs after the first-order ground clutter cancellation are
shown in Figure 18 (b) [5].

It is difficult to track moving targets in the scenario men-
tioned above, so there is no translation motion in the original
measured data of the rotating targets. But it is easy to add
the phases induced by the translation motion into the mea-
sured data. The phases can be extracted from equation (3) in
section II which is 4π fn

c v (mNTR + nTR) cos θ . The velocity
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FIGURE 18. HRRPs of rotating targets. (a) Original HRRPs. (b) HRRPs after
clutter cancellation.

FIGURE 19. HRRPs of rotating targets with translation motion added.
(a) Original HRRPs with translation motion added. (b) HRRPs with
translation motion added after clutter cancellation.

of translation motion is set to be 14 m/s and θ = 60 degree
without loss of generality.

The HRRPs of rotating targets with translation motion are
shown in Figure 19(a). The HRRPs are slanted compared
with the original HRRPs shown in Figure 18(a) after the
phases induced by the translation motion are added into the
real data. The HRRPs of rotating targets with translation
motion added after the first-order ground clutter cancellation
are shown in Figure 19 (b). From Figure 19(b) it can also be
seen that although the scattering strength of each scattering
center changes with time and the scattering blinking when
the target is rotating, the circular periodicity of HRRPs is still
preserved.

The average CC coefficients of the HRRPs with translation
motion are shown in Figure 20(a) which reaches its three
peaks at 0.5939 s, 1.229 s and 1.864 s. The intervals of the
peaks yield an estimate T̂d = 0.6099 s and f̂d = 1.64 Hz
with a relative error of 1.9%. The average CAMD coefficients
is shown in Figure 20(b) which reaches its three valleys at
0.6144 s, 1.229 s and 1.864 s. The intervals of the valleys
yield an estimate T̂d = 0.6167 s and f̂d = 1.62 Hz with
a relative error of 0.62%. The estimated parameters via the
four-parameter EHT are partly shown in Figure 20(c) in
which it is clearly that the estimation equals 1.54 Hz with
a relative error of 4.35%.

Another four groups of experiments with different values
of rotating frequencies are also performed. The true values of
fd in each experiment and the estimated results f̂d via the CC
coefficients, the CAMD coefficients and the four-parameter
EHT can be found in Table 4. The relative errors are also

FIGURE 20. Estimated results of real data (fd=1.61 Hz). (a) average CC
coefficients. (b) average CAMD coefficients. (c) estimations via the
four-parameter EHT.

TABLE 4. The true values and estimated results of rotating frequency.

presented in Table 4 in the corresponding bracket of each
estimation. From these five groups of outfield experiments
of rotating targets, the frequency estimation algorithms based
on the CC coefficients and the CAMD coefficients of HRRPs
are demonstrated.

VI. CONCLUSSION
In this paper, the HRRPs of rotating targets with translation
motion in FSS are presented and the rotating frequency is esti-
mated accurately based on the circular periodicity of HRRPs.
The novelty of this paper is that it demonstrates the use-
fulness of the parameter estimation algorithms based on the
CC coefficients and the CAMD coefficients of HRRPs with
translation motion. From the analytical results, it is shown
that the curves of HRRPs cannot be represented as norm
sinusoidal modulation due to the translationmotion. Based on
the analyses, rotating frequency estimation algorithms based
on the CC coefficients and the CAMD coefficients of HRRPs,
are proposed and compared with each other under simulation
trials with different SNRs. The proposed two methods both
perform accurately under high SNR conditions while the
feature extraction method via the CC coefficients is more
efficient. Under low SNR conditions (less than -8 dB), only
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the estimation via the CC coefficients have high precision.
However, the estimations via the CAMD coefficients perfor-
mance better than the estimations via the EHT algorithms
with high parameter dimensions and the improvement of
calculation cost of the CAMD matrix is a potential research
field yet.

APPENDIX
A. CIRCULAR PERIODICITY OF HRRPs
To demonstrate the circular periodicity of HRRPs of rotating
targets with translation motion, let m = m +MT , giving the
following

k (m+MT ) = k0 + k1 +
2NMT v1fTR cos θ

c
+ r1 sin (ω (m+MT )NTR + φlε0)

= k0 + k1 + r1 sin (2π + ωmNTR + φlε0)

+
2NMT v1fTR cos θ

c

= k (m)+
2NMT v1fTR cos θ

c
(20)

whereMT is the period of time series.
Due to the translation motion, i.e., v 6= 0, the sinusoidal

periodicity of HRRPs is disturbed just as depicted in (20).
However, the last term in (20) is constant in each m-D modu-
lation period and k (m+MT ) is a circular shift form of k (m)
which means that HRRPs perform a circular periodicity with
a period of Td .

B. CC COEFFICIENTS
The circular cross-correlation of two slices of Hl (k,m) at
instant m1, m2 is defined as [10]

Cl (q;m1,m2) =

N−1∑
k=0

|Hl (k,m1)|

× |Hl (mod (k + q) ,m2)|

=

N−1∑
k=0

ρlδ (k − k0 − k1

− r1 sin (ωm1NTR + φlε0))

× ρlδ (mod (k + q)− k0 − k1
− r1 sin (ωm2NTR + φlε0)) (21)

Letting m2 = m2 +MT

Cl (q;m1,m2 +MT ) =

N−1∑
k=0

|Hl (k,m1)|

× |Hl (mod (k + q) ,m2 +MT )|

=

N−1∑
k=0

ρlδ (k − k0 − k1

− r1 sin (ωm1NTR + φlε0))

× ρlδ (mod (k + q)− k0 − k1
− r1 sin (ωm2NTR + φlε0)

− 2NMT v1fTR cos θ/c) (22)

Letting mod(k + η) = mod(k + q) − 2NMT v1fTR
cos θ/c, then (22) becomes

Cl (mod (η + 2NMT v1fTR cos θ/c) ;m1,m2 +MT )

=

N−1∑
k=0

ρlδ (k − k0 − k1

− r1 sin (ωm1NTR + φlε0))

× ρlδ (mod (k + η)− k0 − k1
− r1 sin (ωm2NTR + φlε0))

= Cl (η;m1,m2 +MT ) (23)

According to (22) and (23), it has

Cl (q;m1,m2) = Cl (mod (η + 2NMT v1fTR cos θ/c) ;

m1,m2 +MT ) (24)

It can be seen from (24) thatCl (q;m1,m2 +MT ) is the cir-
cular shift of Cl (q;m1,m2) and the circular cross-correlation
of Hl (k,m) preserves the periodicity of Hl (k,m). Then the
CC coefficients matrix of Hl (k,m) can be defined as

MC =

 C (0, 0) . . . C (0,M − 1)
...

. . .
...

C (M − 1, 0) · · · C (M − 1,M − 1)

 (25)

where the CC coefficient,C (m1,m2), is the normalized max-
imal value of Cl (q;m1,m2), i.e.,

C (m1,m2) =
maxq (Cl (q;m1,m2))√

N−1∑
k=0
|Hl (k,m1)|

2

√
N−1∑
k=0
|Hl (k,m2)|

2

(26)

According to the definition of C (m1,m2), it is easy to
prove that

C (m1,m2) = C (m2,m1) , 0 ≤ C (m1,m2) ≤ 1 (27)

Usually, C (m1,m2) = 1 when m2 = m1 + iMT (i ∈ M ),
which means that C (m1,m2) has the same periodicity with
Cl (q;m1,m2), i.e.,

C (m1,m2) = C (m1,m2 +MT ) (28)

Therefore, the CC coefficients matrix preserves the peri-
odicity in row and column dimensions.

C. CAMD COEFFICIENTS
In this segment, we reveal the circular periodicity of the
CAMD coefficients. Consider two slices of Hl (k,m) at
instant m1, m2, the CAMD is defined as [30]

Dl (q;m1,m2 +MT )

=

N−1∑
k=0

||Hl (k,m1)| − |Hl (mod (k + q) ,m2 +MT )||

=

N−1∑
k=0

|ρlδ (k − k0 − k1

− r1 sin (ωm1NTR + φlε0))
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− ρlδ (mod (k + q)− k0 − k1
− r1 sin (ωm2NTR + φlε0))| (29)

Letting m2 = m2 +MT yields

Dl (q;m1,m2 +MT ) =

N−1∑
k=0

|ρlδ (k − k0 − k1

− r1 sin (ωm1NTR + φlε0))

× ρlδ (mod (k + q)− k0 − k1
− r1 sin (ωm2NTR + φlε0)

− 2NMT v1fTR cos θ/c)| (30)

Letting mod(k + η) = mod(k + q) − 2NMT v1fTR
cos θ/c, (30) becomes

Dl (mod (η + 2NMT v1fTR cos θ/c) ;m1,m2 +MT )

=

N−1∑
k=0

|ρlδ (k − k0 − k1

− r1 sin (ωm1NTR + φlε0))

− ρlδ (mod (k + η)− k0 − k1
−r1 sin (ωm2NTR + φlε0))|

= Dl (η;m1,m2 +MT ) (31)

According to (30) and (31), we can get

Dl (q;m1,m2) = Dl (mod (η + 2NMT v1fTR cos θ/c) ;

m1,m2 +MT ) (32)

From (32) (15), it relates explicitly that that
Dl (q;m1,m2 +MT ) is the circular shift of Dl (q;m1,m2)

and CAMD also preserves the periodicity of Hl (k,m). Then
the CAMD coefficients matrix of Hl (k,m) is denoted by

MD =

 D (0, 0) . . . D (0,M − 1)
...

. . .
...

D (M − 1, 0) · · · D (M − 1,M − 1)

 (33)

where the CAMD coefficients, D (m1,m2) is the normalized
minimal value of Dl (q;m1,m2), i.e.,

D (m1,m2) =
minq (Dl (q;m1,m2))

N−1∑
k=0

(|Hl (k,m1)| + |Hl (k,m2)|)

(34)

It is also easy to prove that

D (m1,m2) = D (m2,m1) , 0 ≤ D (m1,m2) ≤ 1 (35)

and C (m1,m2) = 0 when m2 = m1 + iMT (i ∈ M ), i.e.,

D (m1,m2) = D (m1,m2 +MT ) (36)

D (m1,m2) has the same periodicity with Dl (q;m1,m2) and
the CAMD coefficients matrix also preserves the periodicity
in row and column dimensions.
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