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ABSTRACT The arms race between the distributors of malware and those seeking to provide defenses has
so far favored the former. Signature detection methods have been unable to cope with the onslaught of new
binaries aided by rapidly developing obfuscation techniques. Recent research has focused on the analysis
of low-level opcodes, both static and dynamic, as a way to detect malware. Although sometimes successful
at detecting malware, static analysis still fails to unravel obfuscated code, whereas dynamic analysis can
allow researchers to investigate the revealed code at runtime. Research in the field has been limited by the
underpinning data sets; old and inadequately sampled malware can lessen the extrapolation potential of such
data sets. The main contribution of this paper is the creation of a new parsed runtime trace data set of over
100 000 labeled samples, which will address these shortcomings, and we offer the data set itself for use by
the wider research community. This data set underpins the examination of the run traces using classifiers
on count-based and sequence-based data. We find that malware detection rates are lessened when samples
are labeled with traditional anti-virus (AV) labels. Neither count-based nor sequence-based algorithms can
sufficiently distinguish between AV label classes. Detection increases whenmalware is re-classed with labels
yielded from unsupervised learning. With sequenced-based learning, detection exceeds that of labeling as
simply ‘‘malware’’ alone. This approach may yield future work, where the triaging of malware can be more
effective.

INDEX TERMS Network security, machine learning, computer security.

I. INTRODUCTION
From the first PC virus, titled Brain, in 1986 to recent highly
obfuscated ransomware, the malware pandemic has demon-
strated alarming expedition. By mid-2017, the number of
new malware samples had breached the 30 million mark in
Q1 alone; the total quantity of malware samples held by
McAfee Labs has broken the 650 million mark [1]. The
unending evolution and distribution of advanced malware has
created a major challenge to end users, from industry to the
private citizen. Previously seen as merely a bragging right
for marginalized youths, malware has evolved into a major
tool for the extortion of invididuals, businesses and the public
sector.

The main aim of the on-going fight against malware is to
be able to detect, prevent and mitigate such disruptive soft-
ware effectively. With recent advances in malware sophisti-
cation, current signature-based and vulnerability-monitoring

malware detection methods have been demonstrated to be
increasingly ineffective in detecting malicious code [2].

Signature-detection methods are the most widely utilized
approach within commercial anti-virus (AV) software [3].
These methods rely on statically analyzing an entire file for
pre-known malware signatures stored in databases. As such,
any new malware instance must be captured, analysed for a
signature, stored, and any updates to anti-malware software
deployed globally as counter-measures to the new threat.
With the rapid development of malware, the production of
relevant and up-to-date anti-malware measures in a timely
fashion is an increasingly difficult task. Furthermore, with
increasingly sophisticated obfuscation techniques, the same
piece of malware can employ polymorphic and metamor-
phic strategies to generate new signatures on each run, thus
evading detection. These weaknesses in signature-detection
methods are particularly apparent with Zero-Day attacks.
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Such attacks exploit unknown or unresolved vulnerabilities,
which must be retrospectively patched. The time-lag between
the release of the malware ‘in the wild’ (Zero Day) and the
counter-measures being developed, allows a window for the
malware to cause substantial damage. The effort against
malware is therefore constantly playing catch-up against the
creation of new forms of malicious code and the resulting
damage caused in the interim period can be significant [4].

The motivation for the present research is to develop a
strategy, immune to modern obfuscation methods, for the
detection of malware. The approach proposed in the present
research uses virtualized dynamic analysis to yield program
run-time traces of both benign and malicious files. Machine
learning techniques are applied to the execution traces, with
the aim being to create a predictive model which can accu-
rately and speedily discriminate between unseen samples of
malicious and benign code.

In section II, related research is presented and the created
dataset is placed in the context of other datasets. In section III,
the rationale for the present research is explained and the
scope is defined. In section IV, the methodology used to
create the new dataset from beginning to end is outlined.
Section V describes the dataset to date. Section VI presents
the clustering used, with count-based and sequence-based
classification. SectionVII discusses the results with respect to
the effects of AV labels on classification. Finally, section VIII
summarizes the paper’s contributions.

II. RELATED RESEARCH
Obfuscation has presented challenges for malware detection,
both for anti-virus (AV) vendors and researchers. Malware
research has previously been frustrated by analysis evasion
strategies increasingly employed bymalware authors. Several
authors have researched the use of machine learning algo-
rithms for classification of malware from unseen datasets.
Reference [5] presented the first such study. Three classifiers
were employed and compared to a signature-based commer-
cial AV-scanner, with features such as program header, string
features and byte sequence features examined. Two of the
classifiers doubled the accuracy of the scanner, and all three
were more accurate. In [6], boolean n-gram analysis was
applied to the hex representation of malware executables.
A boosted decision tree classifier gave excellent accuracy,
with an area under receiver operating characteristic (ROC)
curve of 0.996. Moskovitch et al. [7] collected data on
323 features per second across 5 unseen worm variants.
Using only 20 features, the authors demonstrated an aver-
age detection rate of >90% accuracy, with specific worms
exceeding 99%.

A. OPCODE ANALYSIS
Recent investigations into malware detection have focused
on the run-time behaviors of malware and how these dif-
fer from the benign behavior of goodware. Operational
codes (opcodes) are assembly language instructions which
perform various CPU operations [8]. Analyzing the host

environment’s native run-time opcodes, allows the user to
detect the presence of malware while circumventing obfus-
cation tactics [2].

Reference [9] examined the n-gram representations
of opcode traces from statically-yielded datasets. With
ROC-SVM(support vector machine), the authors achieved
accuracy and an F-measure rate of >85%, though only
bi-grams (n=2) were investigated.
Reference [10] applied graph algorithms to opcode traces

from Windows Portable Executable (PE) files, extend-
ing [11] with metamorphic malware. Using similarity scores,
the model detected metamorphic malware from both benign-
ware and also metamorphic malware from different families
within the same malware type.

The work of [2] created a process to investigate
dynamically-yielded opcodes in the classification of
malware using supervised machine learning techniques.
Run-time opcode traces of both goodware and malware files
were captured using a virtual machine (VM). The virtualiza-
tion platform enabled the researchers to execute malicious
files in a contained environment.

B. HIDDEN MARKOV MODELS IN MALWARE DETECTION
The research in [11] used dynamically-yielded runtime traces
modeled by Markov chains and represented by weighted
directed graphs, which showed the probabilities of one
opcode being followed by another. The main research aim of
the authors was to demonstrate that their method could per-
form better than n-gram representations and signature-based
detection algorithms. The dataset was composed of 1615mal-
ware samples and 615 benign samples, however no detail is
given on the make-up of the dataset in terms of malware type,
family, age, obfuscation or size, which severely limits the
interpretation of the analyses provided. The Markov model
out-performed the others with an accuracy of 96.41%, 47 FPs
and 33 FNs. However, with the dataset skewed in the positive
class direction, the authors note that the FN rating may be
an artifact of the sampling; this underlines the data collection
issue.

Reference [12] sought to find weaknesses in HMM-based
detection tools which could be exploited by metamorphic
malware. The authors developed a kit for metamorphic virus
creation and were able to use the subsequently derived mal-
ware samples to evade detection by HMM algorithms. The
authors note that high levels of metamorphism to render the
malcode different to similar families of malware was not
sufficient to evade detection. Rather, altering the code to
resemble benignware by injection subroutines from normal
files caused a rise in misdetection.

Reference [13] used Profile HMMs (PHMM) to investigate
metamorphic malware which uses code slicing with jumps as
an obfuscation tactic. A reduced instruction set of 36 opcodes
plus a wild card for all other opcodes was used to detect mal-
ware created using three separate metamorphic kits. Sample
sizes were low (10, 30 and 200) and a large error rate was
found for the largest class, rendering the solution impractical.
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Reference [3] compared traditional HMMs with PHMMs
on the frequency of the 36most commonAPI calls, using both
static and dynamic analysis. Dynamic analysis outperformed
static on all but one of the 7 malware types examined, using
both regular HMM and PHMM (which was only dynamically
attained).

Reference [14] trained HMMs to identify which of three
families to which 1500 malicious samples belonged. Their
models were successful on 88.4%-90.86% of the samples,
exceeding 2 major AV products and the work of [15]. How-
ever, this work did not attempt to detectmalware from benign-
ware, but merely confirmed the accepted family label. This
family label was assigned by [16] and so the models of [14]
rely on this for accuracy.

C. CLUSTERING IN MALWARE DETECTION
Reference [17] trained HMMs on statically-yielded opcode
sequences for five compilers and two metamorphic gener-
ators. Each of 8119 malware samples was scored against
each model and K-means clustering was applied to the
7-tuple. The authors found that clusters formed from the
scores of HMMs untrained on the families under investiga-
tion, were able to accurately classify unseenmalware samples
into their correct families 84% of the time. Reference [18]
used partitional clustering algorithms, including k-medoids
and Density-Based Spatial Clustering of Applications with
Noise (DBSCAN), to group malware instances with sim-
ilar statically analyzed call graphs. Using this approach,
the authors were able to correctly assign data sets of 194,
675 and 1,050 distinct malware samples to one of 24 malware
families which had been manually designated by an AV com-
pany. Reference [19] performed large-scale dynamic analy-
sis of 270,000 malware samples using 351 features. These
were derived from three behavioral feature-types: Passed API
Calls, Failed API Calls, and Return Codes, reduced to 32 fea-
tures using feature extraction. The subsequent dataset was
clustered using the unsupervised Self OrganizingMap (SOM)
algorithm and clusters were evaluated with respect to the
number of AV-provided types and the correct classifica-
tion rate. A 2x2 4-cluster SOM model provided the lowest
level of misclassified instances at around 20%. The authors
note, however, that classification onmalware behavior should
avoid using AV labels as the information provided does not
match the actual behavior of the malware.

D. PREVIOUS DATASETS IN CONTEXT
The dataset of [2] is comprised of 300 benign and
350 malicious PE files. Although greater than previous
research, for example [20], the size of that dataset is
comparatively inadequate when other similar research is
considered.

Reference [5] sampled 3265 malicious files and 1001 ben-
ign files in the first such study in the current branch of
research. Reference [21] used a dataset of 2000 files, split
evenly between classes. References [22] and [23] compared
7688 malicious files with 22735 benign, reported by the

authors to be the largest dataset in the field at the time
of writing. These datasets enable a greater range of compar-
isons to be made along a wider variety of variables; however
there are limitations with the manner in which the data in [23]
were collected. The authors report that the software could
only actively disassemble 74 % of their source files. The
attrition rate for malware was approximately 26% (2011 files)
and 10%(2319 files) for benignware. No analysis is provided
into the remaining 26%, except for a statement that the files
excluded were either compressed or packed. The implication
is that more malware was unable to be disassembled by the
researchers than benign software. This, again, could well
have introduced a bias into the dataset, as it may be that the
analyses used by the authors could not be replicated on more
sophisticated obfuscated malware.

The dataset used by [9] comprised 2000 files, due to
unspecified technical limitations. The malicious files were
randomly sampled from 17000 sample files archived on
the VxHeaven website [24]. Critically, packed files were
not used during the analysis, which was static in nature.
The implication is that more sophisticated obfuscated mal-
ware was not examined by the process, a very real limita-
tion of the study. Over 50% of the sample set was made
up of three classes of malware: back-door, hack-tool and
email worm, whichmay have artificially inducedwithin-class
imbalances.

Reference [25] used 6721 malware samples harvested
from VxHeaven [24] and categorized into 3 types (back-
door, trojan, worm), with a total of 26 malware families
and >100 variants per family. No controls were in place
to ensure matched sampling across categories, resulting
in 497worm variants, 3048 backdoor variants and 3176 trojan
variants. The dataset generated by [2] has the benefit of being
dynamically generated from the source PE, yielding a stati-
cally analyzable raw file. The run-times were fixed, which
controls for opcode quantity being passed to the machine
learning component.

III. RATIONALE FOR THE CURRENT RESEARCH
It is an aim of the current project to create a dataset using
the same dynamic approach as [2]. The dataset generation
process is envisaged as open-ended as, with the proliferation
of new malware, any detection models must include recent
variant samples of zeitgeist threats. Reference [23] catego-
rized their dataset into year of creation, from 2000-2007 to
investigate the effects on a machine learning algorithm of
training on historical samples, but testing on recent samples.
The authors found a decline in performance in every test
of a historically-trained model with a more recent test set,
by as much as > 30 % in as little as one year variation.
Although prescience may not be entirely possible from a
machine learning perspective, the development of a malware
detection model which cannot detect new or emerging threats
would, therefore, be redundant from the offset.

Previous research typically uses samples harvested from
the VxHeaven website [24], which are old and outdated,
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FIGURE 1. Processing malware samples to store their descriptive attributes.

having been last updated in 2010. The new dataset should
be comprised of samples sourced from the most up-to-date
repository possible, including any emerging threat families
of malware. The new dataset should be capable of subdivi-
sion along a number of variables for example type, family,
variant, file size, runtime, payload, attack vector, creation,
obfuscation-type, while retaining sufficient quantities per
sub-category. This will allow a large degree of sub-analyses
in order to investigate methods to increase detection rates.
An initial categorization-by-type approach to organizing the
database will be necessary, although this will present chal-
lenges of its own, as discussed further below. This proposed
dataset would address the limitations identified in previous
literature as already stated.

From the body of research in this field, there are clear
and notable limitations. Of the studies reviewed, the majority
had datasets which were inadequately sized, sampled, and
structured. Statically generated datasets failed to bypass any
serious form of obfuscation, with some just disregarding
any packed executable. Although dynamic analysis is not
without flaw, it at least offers a snapshot of the malware at
runtime. Few attempts were made to properly structure data
with both static and dynamic analyses providing insufficient
instances across categories. Malware types have different
methods of action, which is what defines their type. Each
has different instruction sets, yet little attempt has been made
to investigate malware per type, particularly in a dynamic
setting. Discrimination is tested with binary results, without
regard for the differing make-up of each type of malware.
We believe this will give greater scope to applying machine
learning and data mining techniques by covering a more
representative sample of malware. In this paper, we examine
the effectiveness of traditional malware labels as provided by
54 AV scanners.

A. SCOPE
The main overall challenges to be addressed in this paper are:
• Configuration of a host environment, capable of auto-
mated dataset creation which captures the dynamic run-
time of both benign and malicious software.

• Generation of a dataset sufficient in size and depth
to allow sub-analyses along specific parameters, which
will be made available

• Explore and improve on the data mining and machine
learning techniques already in use to extract meaningful
information from the dataset, in order to increase detec-
tion accuracy and minimize false-negative decisions.

• Explore malware types and the advantages of investigat-
ing per malware type.

• Explore unsupervised learning techniques to allow mal-
ware to self-organize along their opcode representations.

This paper will present the methodology used to create
a dataset of sufficient quality to enable these aims, and the
analyses of the effectiveness of classification per type.

IV. METHODOLOGY
A. SOURCE DATA
Many studies in the area have used malware reposito-
ries such as VxHeaven.org [24]. The malware collection
in the VxHeaven repository is now old in malware terms,
having not been updated since 2010. The repository at
VirusShare.com [26] was selected for its size, modernity and
facilities. For the present paper, the most recent 3 folders,
at the time of writing, from the corpus of the repository
were obtained, representing approximately 180,000 sam-
ples of malware. The dataset from [16] was also obtained,
with 11,688 malware binaries collected in the wild. As all
samples are named by MD5 hash with no other metadata,
a bespoke file attribution system was engineered to create a
database of the metadata of each sample. Fig. 1 depicts the
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working system employed. An API key was obtained for
the VirusTotal.com back-end, allowing rapid automatedMD5
hash searches to be performed, causing the files to be checked
against 54 AV scanners, along with domain scanners and file
characterizers. Using the report from the analytics engine,
files were categorized, creating a database of all salient
attributes for each file. For the present research, PE files were
extracted and processed, yielding almost 90,000 instances of
executables.

FIGURE 2. Depletion of sample quantities during work flow.

When building the database of attributed malware, a wide
variation existed in the detection of each binary by
AV scanners. If a sample of malware was detected by a
few AV scanners, it could be either a false positive detec-
tion, or a sample of malware which can successfully evade
detection by scanners. To select the malware files to be exe-
cuted, a majority-rules algorithmwas used.Malware detected
by 50% or more of scanners was selected for execution.
While this may be a point of discussion in our methodology,
the establishment of a baseline corpus of malware is one main
aim of this research; established instances of malware are
weighted accordingly. The data flow, and sample depletion,
is depicted figuratively in fig. 2.

In the next phase, the attribution system used the AV scan-
ner reports to give an initial label to each malware sample.
A majority-decision algorithm was employed, with the most
common label being selected and applied to each sample;
15 AV classes were selected. Work carried out in parallel
by [27] follows a very similar approach, though focused
on malware family. Further, that work was published after
our attribution work had completed, so their system was not
available to us.

B. PROCESS AUTOMATION
The process for extracting runtime opcodes from dynamically
executed software, as established in [2] and [8], is manually
configured, implemented and operated, which limits the
potential to create large scale datasets, due to the slow and
laborious nature. The process developed for the present work,
as also used in [28], is now described.

Consideration was given to the popular Cuckoo sandbox
framework. While an asset to the malware research commu-
nity as a whole, we wanted a system which provided exactly
the desired output using an established procedure. Further,
a long term goal of our research is to develop an opcode-
focused malware detection framework. As such, our own
analysis environment was engineered.

VirtualBox was employed as the virtualization platform
for the present research. VirtualBox exposes a rich API [29],
one of the features for which VirtualBox was selected over
other virtualization platforms. The platform is freely avail-
able, has a large open-source community and provides regular
updates. The VirtualBox environment is composed of mul-
tiple layers built upon the core hypervisor, which operates
at the kernel level. It is responsible for the actual execu-
tion and control of the VMs, ensuring isolation from the
host and any additional VMs. Next in the stack resides a
layer of extra features, including resource monitors and RDP
services. The API resides on the subsequent layer, expos-
ing a full-feature implementation of the layers below. This
API can be accessed through the application GUI, through
the command line or programmatically. As the API which
exposes the full feature set of the hypervisor is used in
the standard public-facing GUI, it is well-documented and
well-tested [30].

A clean VM image was created with Windows 10
64-bit, 2GB RAM, VT-x acceleration, using 2 cores of
an Intel i5 5300 CPU, and the VBoxGuestAdditions
v4.3.30 add-on installed. Windows 10 was employed, as the
OS is reported as having a similar market share toWindows 7
in some sectors and is growing. VBoxGuestAdditions
allows extra features to be used by the VM, including guest
application execution permission from the host, read-only
shared folders and time synchronization. Full internet access
was granted to the guest and the packet traffic was captured
for parallel research, but monitored as a further check for
the liveness of the executed malware. Security within the
guest OS was minimized to maximize the potential effects
of the malware. To yield the runtime trace of the file-
under-investigation(FUI), Ollydbg v2 was employed as a
debugger as per [2]. Ollydbg is an open-architecture
assembler-level debugger, capable of direct loading and
debugging of PE and DLL files. The use of debugging tools
can, however, be detected by the FUI and anti-debugging
tactics deployed. This is true not just for malware, but for
obfuscating legitimate code too. StrongOD v0.4.8.892 was
used to mask the presence of the debugger, as per [2]. The
guest OS was crafted to mimic a real system, with objects
in the recycling bin, a browsing history, a recent document
history, Flash, Java, .Net Framework etc. Although tactics to
mitigate anti-virtualization techniques were originally inves-
tigated, they were not fully utilized in the execution stage.
The presence of VBoxGuestAdditions is one such indica-
tor of being in a virtual environment, but it is required to
provide guest program execution and the automation pro-
cess. Further mitigation attempts would still falter at this
point. Furthermore, the aim of the dynamic investigation of
malware is to experience the execution of the malware as a
user would potentially experience it, including in virtualized
instances. Lastly, the anti-virtualization tactics and strategies
of malware can also provide useful features for detection.
When examining executables at the opcode level, these can
be observed.
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FIGURE 3. Automated data collection system model.

As shown in fig.3, the system automates processing of the
executables and extraction of runtraces. The guest VM is
spun-up from a pre-configured image set to the required
state, in order to reset any impact from previously executed
malware. The debugger performs a trace of the FUI, recording
opcode instructions issued to the CPU. It is a key point to note
that this is a major difference from statically analyzed code,
as only the actions which are actually performed are recorded,
rather than all possible functions. The runtime trace files are
saved in a standard format and the VM is torn down and the
trace file is archived on the host. The process then repeats,
with a clean snapshot and the next FUI from the folder, until
it has been exhausted. The runtime trace files yield a standard
file as depicted in fig. 4.

FIGURE 4. Sample lines from a runtime trace file.

A nine minute execution time was allowed for the present
work, with a one minute for set-up/tear-down. This window
was allocated to provide enough time for the samples to exe-
cute, but allowing coverage over a large number of samples
with limited time and resources. A longer execution time
may give better results when investigating malware which
employs sleep functions in order to avoid detection. Other
frameworks allow the stepping-over of such sleep functions,
but are negated by analysis of time-stamps and mouse move-
ments. Similarly to anti-virtualization issues, it would not
be feasible to create a virtualised system mitigating all such
variables. A fundamental aim of the present research is to
detect malware within as short an execution time as possible,
and the dataset generation is therefore concentrated on the
initial stages of execution.

C. DATA POST-PROCESSING
The runtime trace files must be parsed for extraction of the
individual opcode instructions, prior to any analysis being

performed. While tools are available to yield opcodes from
PE files, these are static in nature and do not examine traces
from executed applications. A bespoke parser was imple-
mented to store a running count for all opcodes from a pre-
known list. The preconfigured list of opcodes was, for the first
count phase, the 610 opcodes from the Intel x86/x64 archi-
tecture [31]. This approach is more fine-grained than [2],
as prior work [20] and [25] has indicated that observing
rarely occurring opcodes may increase malware detection.
The parser exports this file as csv, ready for use in any external
processing.

As the raw runtime trace files will vary in length depending
on the FUI, it is necessary to standardize the instances into set
run lengths as defined by the opcode quantities. A bespoke
file slicer was employed to splice files into file sets of given
runtime length, as discussed in [8]. This provides control
over the quantity of opcodes passed to the machine learning
algorithm, allowing direct comparison of files. The parser
was then rerun over the truncated data, to form opcode count
datasets of various run-lengths, where length is stated in
quantity of observed opcodes.

FIGURE 5. Derived datasets.

One benefit of dynamic analysis is the ordered and time-
sequenced yielding of opcodes, which can be utilized by
sequence-based algorithms. A second parser was imple-
mented in order to translate the observed run traces into a
format readable by sequence-based machine learning tool-
boxes. The stated opcode observed sequences are trans-
lated into a numerical representation and cut at a specified
length, depending on the observation sequences desired.
These sequences were compiled into a separate dataset. Fig. 5
enumerates the datasets which were derived from the overall
corpus of run traces. For example, in 4, the count-based
data would yield: PUSH: 4, MOV: 1, LEA: 1, CALL: 1.
The sequence-based data would consider PUSH MOV LEA
PUSH PUSH PUSH CALL as the ordered sequence.

V. DATASET COMPOSITION
The quantity of malware samples depleted at each stage
of the process. Typically from full corpus to executables-
only, and from executables-only to executables with detection
rate >50%, there was 20% data loss. There was approxi-
mately a further 10% attrition rate from selected samples
failing to provide a run trace due to a variety of reasons,
including missing dlls, lock-outs and forced reboots.

At the point of commencing our experiments, the dataset
stood at approximately 48,000 executed, traced, and labelled
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samples. The categorization of malware into discrete labels is
inexact andmeant for a reference starting point only. Analysis
of these labels will be presented in future work. The label of
each individual piece of malware in our database differs from
scanner to scanner, and even within scanners may be subject
to change. Our corpus of total executables still contains a
substantial quantity of unexecuted samples, which await pro-
cessing. This is a continuous process and our dataset grows
by up to 14,000 samples per week. We wish to present this
parsed runtrace dataset and the further derived datasets in this
paper for use by the wider research community.

VI. ANALYSES
For analysis purposes, we took an early version of the dataset
presented here, while the tracing effort continued in parallel.
Our analysis focussed on the following questions:

When examining opcode representations:
1) Can benignware be distinguished from malware (taken

as a single descriptive entity)?
2) Does labeling malware using traditional AV labels

(MalAV) improve classification against benignware?
3) Can each class of AV-labeled malware be distinguished

from the others (MalAV)?
4) Can benignware be distinguished from malware,

which has been relabeled using unsupervised learn-
ing (MalCL)?

5) Can each cluster of MalCL be distinguished from each
other?

6) If clusters accurately describe new information, based
on opcode analysis, is this consistent across both count-
based and sequence-based learning?

A. DATA PRE-PROCESSING
Preliminary analysis of opcode sequences showed that the
models were sensitive to differing sequence lengths, par-
ticularly shorter lengths. As the focus of this paper is on
the effects of malware labeling on classification of dif-
fering types, we truncated the malware dataset to include
sequenced instances of only 1000 opcodes with a 1%margin,
i.e. 990-1000 opcodes in a sequence. For direct comparison
of models, the datasets must be matched and we therefore
used the same instances from the count-based dataset to
match the two experimental datasets for this paper. The exper-
imental datasets comprised 18,827 malicious samples and
764 benign samples. The sample sizes for each AV label class
are depicted in table 2.

B. CLUSTERING
Creating a dataset of this size provided the opportunity to
apply unsupervised learning in order to yield new infor-
mation about malware types. During pilot work, compar-
isons were made between various clustering algorithms. The
Expectation-Maximization (EM) algorithm provided clusters
which, though performed well with subsequent inter-cluster
classification, provided a numerically-shallow model for the
data, with very large clusters eclipsing small clusters.

TABLE 1. Cluster sample sizes.

TABLE 2. AV label sample sizes.

K-means clustering was also applied, though traditionally
this algorithm requires the number of clusters, k, to be defined
in advance. For this reason, we used x-means to determine
the optimal k value. X-means [32] extends k-means by using
a Bayesian Information Criterion (BIC) to find the optimal
number of clusters. This search informed us that four clusters
appeared optimal, which was reinforced by asking a Random
Forest classifier to distinguish between the clusters, with an
f-measure of 99.3% averaged across all clusters. However,
the f-measure range was 81.1% - 100%. To improve this,
we used the k-means algorithm with 4 clusters requested.
These clusters were then validated in a similar manner, with
an averaged f-score of 98.8% and a range of 96.8%-99.1%.
Further, three of the four clusters achieved an AU-ROC
of 100%, with the fourth at 99.9 %. These clusters were
applied to the dataset as an extra set of labels, the quanti-
ties of which are described in table 1. The mapping of the
15 AV classes to the new clusters is visualized in fig. 6.
Future work will examine the reasoning for each cluster, with
analysis beyond the descriptives issued in the present paper.

C. COUNT-BASED CLASSIFICATION
The Random Forest (RF) [33] classifier was used, as imple-
mented in WEKA 3.8, to classify all count-based data for
each experiment.
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FIGURE 6. Traditional AV labels mapped to new clusters.

RF is an ensemble learner, combining the decisions of
multiple smaller learners (decision trees). RF differs from
traditional tree-based classifiers, in that the number of fea-
tures used at each node in the tree to decide the parameter
is randomized, which improves noise immunity and reduces
overfitting. RF performs well on larger datasets, both in
terms of instances and features. It parallelizes well [33],
and is recommended with data with imbalanced classes [34].
In pilot experiments, RF provided the highest accuracy,
despite imbalanced classes and shorter run-lengths, even with
a large quantity of features. The RF classifier was trainedwith
a holdout, with 2/3 of the dataset used for training and the
remaining 1/3 for testing.

D. SEQUENCE-BASED CLASSIFICATION
Generative models can be used within the area of sequence
based classification to model the probability distribution of
sequences associated with a given class. The assumption by
these models is that sequences associated with a given class
are generated by an underlying model. Depending upon the
model used, a specific set of assumptions is employed to
define the model and a set of parameters defined to describe
the probability distributions. A training process is used to
determine an appropriate set of parameters from available
data and then a classification, or recognition, process is used
to assign a new sequence to the class associated with the
highest likelihood [35].

1) HIDDEN MARKOV MODELS
Hidden Markov Models (HMMs) are an example of such
generative models used to describe stochastic processes.
HMMs are a popular choice for users wishing to model
dynamic behaviors of underlying systems and are well known
in the field of artificial intelligence and pattern recogni-
tion. HMMs are used to model time series data and have
been applied successfully to a multitude of domains includ-
ing speech recognition, computational biology and malware
detection.

HMMs represent probability distributions over sequences
of observed variables and can be easily visualized as a
Bayesian network with a temporal dimension, more formally
know as dynamic Bayesian networks [36], as seen in Figure 7.

FIGURE 7. Example of hidden Markov model.

In fig. 7 a variable is represented by a node and the
conditional dependencies between variables are represented
by directed arcs. An observed variable at time t is denoted
by Yt for a given sequence of length t = 1, . . . ,T . These
observed variables are sampled at equally spaced discrete
time intervals. The discrete hidden state at time t is denoted
by Xt and is a naming factor of HMMs, as it is assumed
that at time t an observation, Yt , is generated by a hidden
process, Xt , which cannot be directly observed by the user.
Another defining property of HMMs is that the hidden state
is assumed to satisfy the Markov property, meaning that the
current state Xt is independent of all states prior to t − 1
given Xt−1. The HMM observations also satisfy the Markov
property with respect to the hidden states, whereby Yt is
independent of the hidden states and observations at all other
time points. That is, the current time slice within a HMM
encapsulates all that is required to predict the future process.

These properties allow a joint probability distribution over
a sequence of hidden states and observations to be factored
as follows;

P(X1:T ,Y1:T ) = P(X1)P(Y1|X1)
T∏
t=2

P(Xt |Xt−1)P(Yt |Xt ) (1)

Given this factorization a number of components are
required to define the joint probability distribution over a
sequence of observed variables; a probability distribution
over the initial state (prior), π = P(X1), a transition matrix
associated with the hidden state, A = P(Xt |Xt−1) and an
output model B = P(Yt |Xt ) (which is defined as an obser-
vation matrix in the case of discrete observation symbols).
A Hidden Markov Model can therefore be represented as a
triple, λ = {A,B, π} [37]. HMMs are traditionally assumed
to be time invariant, meaning the transition and observation
matrices are not dependent on time t .

2) HIDDEN MARKOV MODEL CLASSIFIERS
The main difference between utilizing Hidden Markov Mod-
els for the purpose of classification and traditional machine
learning classifiers is that HMMs aim to classify instances
based on temporal relations and can offer a different perspec-
tive on problem domains.

For the purpose of classification, or recognition, the aim
is to classify new unseen sequences of observed symbols.
To this end, a unique Hidden Markov Model is learnt per
category using a training set compiled of sequences associ-
ated with a given class. For a problem domain consisting of
N classes, the new observation sequence is assigned to the
HMM that best describes the observation symbol sequence
from the N available HMMs. That is, if λj describes the
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parameter set used to define each of the N models, where
j = 1, . . . ,N , and λj = {Aj,Bj, πj}, when a new obser-
vation symbol sequence of unknown class is obtained Y =
{Y1, . . . .,YT }, then Pr(λj|Y) is calculated for each HMM
j = 1, . . .N and the HMM described by λN∗ is selected so
that,

N ∗ = argmax
j

(Pr(λj|Y)) (2)

Simply put, we find the HMM that most probably gener-
ated the new sequence [38].

The task of classification therefore consists of two distinct
problems; the user must first learn each HMM parameter
set λj and then, given a new observation sequence, evalu-
ate the log-likelihood of that sequence given each possible
HMM. This log-likelihood defines the probability of a spe-
cific parameter set (HMM) given the observation sequence.
During training a unique HMM must be learnt per class,
whereby that HMM is most likely to have generated the
observation symbol sequences for that class. This learn-
ing procedure consists of optimizing the model parame-
ter set λ = {A,B, π} to maximize the probability of the
observation sequence (log-likelihood). To do so a special
case of Expectation-Maximization is used known as the
Baum-Welch algorithm [39] to find the maximum likelihood
estimate of the HMMparameters. This consists of an iterative
process, where an initial set of probability estimates are used
to compute expectations of transitions/observations using the
forward-backward algorithm and probability estimates are
then maximized based on these expectations. The algorithm
iterates between these two steps until convergence, which can
be defined by a number of iterations or a difference in succes-
sive log-likelihood scores. The second task of calculating a
score, or likelihood, of a new observation given each trained
model can be computed using the forward algorithm [40].
The log-likelihood is calculated for each HMM and the most
likely (greatest log-likelihood) is selected as the classification
result.

3) IMPLEMENTATION OF HIDDEN MARKOV MODEL
CLASSIFIERS IN OPCODE ANALYSIS
For the application of HMM classifiers to opcode analysis,
the models are implemented using Kevin Murphy’s HMM
toolbox in Matlab [41]. A HMM is built per class for each
individual experiment. For the binary classification task of
determining benign or malicious sequences, a HMM is built
to represent benign behavior and another to represent mali-
cious behavior. In the case of the multi-label classifica-
tion task of identifying malware families as determined by
AV scanners, a HMM is built per family with the aim of
representing the statistical properties of the malware family
and so on. To describe a unique discrete HMM a number of
initial parameters are required;

• T = length of the observation sequence.
• Q = Number of hidden states within the model
• M = Number of observation symbols

Given these parameters, the necessary triple can be defined
for each HMM by training on available data to determine the
prior π , the observation matrix B and the transition matrix A.
For the purpose of this experiment the sequences used for
both training and testing consisted of 1000 observations,
T = 1000. Unlike the work presented in [42], who also
apply HMMs to opcode sequences, a fixed set of opcodes are
used as observable symbols, meaningM can be set appropri-
ately. For this study 615 unique opcodes were incorporated,
M = 615. To provide a usable data format for this analy-
sis, each unique opcode was given a unique numeric value
between 1 and 615, providing a final numeric sequence for
training and testing purposes. Determining the number and
representation of hidden states is an open problem [42] and
one that has in the past been determined through empirical
evaluation. To this end, a subsample of the dataset was uti-
lized to determine the optimal number of hidden states, with
Q = 2 providing the most promising preliminary results.
A standard holdout procedure is used for experimental pur-
posed, identical to that carried out during the implementa-
tion of count-based approaches. A 2/3 training to 1/3 testing
(per class) was implemented i.e. the sequences found within
the first 2/3 of the complete within class dataset are isolated
for training and the final 1/3 are held out and compiled into a
final testing set of all classes with the class label removed.

FIGURE 8. Effects of MalAV labels on accuracy for both algorithms.

VII. RESULTS
The use of AV labels can be shown in our research to be detri-
mental to malware classification when examining runtime
behavior using opcode analysis. Fig. 8 shows two reductions
in accuracy each time AV labels are used as class identi-
fiers, which is markedly more severe for the sequence-based
HMMs. Benignware can be distinguished from malware
which has been represented as a homogeneous entity, even
after only 1000 instructions. In this implementation, count-
based classification offers superior accuracy to sequence-
based classification in all comparisons. For the RF classifier,
trying to discriminate between benign and malAV reduces
overall detection from 98.4% to 74.6%, but reduces the detec-
tion of the malware category from 99% to 55% (see table 3).
Similarly, trying to distinguish malAV classes from each other
is only successful for 74% of the test set.When themalware is
relabeled into one of four clusters, the discrimination between
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TABLE 3. Performance of RF across 5 conditions.

TABLE 4. Performance of HMM across 5 conditions.

benign andmalCL increases again to 89%. The malCL clusters
can then be distinguished from each other to 90.2% accuracy.
However, using the main dataset in preliminary work, this
figure was as high as 98.4%, which could be in part due to
sample size and class-imbalance problems. As illustrated in
Table 4, this further indicates that there is a large degree of
co-morbidity in the first 1000 opcodes between AV labels.
This is exacerbated by the sequence-based learning, which
suggests that the initial malware instructions are too simi-
lar or the AV labels do not sufficiently describe the runtime
behavior of the malware. HMM had a poor performance on
the benign test set, which may be due to the sample size and
class-imbalance which occurred for both training and testing.
However, the use of clusters notably enhances the detection
of malware over that of the single-class representation.

VIII. SUMMARY AND CONTRIBUTIONS
Research to date using opcode analysis in both static and
dynamic frameworks has failed to use adequately sampled
datasets. Typically in the literature, the survey section of a
paper will quote figures of the prevalence of malware, usually
in the tens of millions. Yet in the experimental design section,
as few as 70 samples are used in analysis. The make up of
datasets mostly fails to address the percentage of malware
in both training and testing sets, thus creating a machine
learningmodel whichmay not be generalizable to a real world
scenario. Further, the datasets are comprised of unmatched
categories of malware, which introduces imbalances with the
malicious set and between the malicious and benign sets.

This work presents a dataset of runtime trace opcodes, gen-
erated by a well-structured corpus of malware which has been
attributed and initially labeled using traditional AV labels.
This dataset of over 100,000 run traces, which grows con-
tinually, will be made freely available to the wider research
community.

Our work, based on this new dataset, shows that malware
can be detected within as few as 1000 instructions. The use
of malware labels shows a negative impact across both algo-
rithms when distinguishing between benign and malware,

and shows poor classification between the AV labels them-
selves. We demonstrate that our clustering based on run-time
opcodes provides new information in categorizing malware.
We believe this approach will aid detection in a practical
application, and will be of benefit to the continuing fight
against malware.
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