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ABSTRACT Magnetic resonance imaging (MRI) has been widely employed in medical diagnosis, since
it enables superior visualization of anatomical structure with noninvasive and nonionizing radiation nature.
However, during the data acquisition process of MRI, patients’ translational motion usually leads to phase
changes of the observed data; moreover, the amplitudes of the observed data are usually contaminated
by noises. In this paper, we assume that the phase and amplitude noises, respectively, cause the phase
and amplitude changes of the observed data. Therefore, how to reconstruct high-quality magnetic reso-
nance (MR) images via highly undersampled K-space data with noises is a challenge. To address this issue,
a novel MR image reconstruction model, named the adaptive tight frame and total variation MR image
reconstruction model (TFTV-MRI), is proposed based on the compressed sensing (CS) theory. TFTV-MRI
fuses the adaptive tight frame (ATF) learning and total variation (TV) into the image reconstruction model.
The sparse representations of MR images in tight frame domain can adapt to the MR image by itself,
simultaneously, the advantage of TV is better edge preserving property and MR images are sparse in
gradient domain. Differing from the l0-norm or l1-norm utilized in traditional AFT learning, we exploit
the logarithm penalty term to measure the sparsity of MR images in TFTV-MRI. The alternating iterative
minimization algorithm is utilized to tackle the optimization problem of TFTV-MRI, including ATF learning
step and MR image reconstruction step. In MR image reconstruction step, the inertial proximal algorithm
for nonconvex optimization is employed. The experiments verified that the proposed model achieved the
superior performance for dislodging the phase noises caused by the translational motion and removing
the amplitude noises of the observed data, and reconstructed MR images nicely in different sampling
schemes. Compared with the existing methods, the proposed approach can achieve higher accurate image
reconstruction quality, faster convergence speed, and better robustness to noises.

INDEX TERMS MRI, image reconstruction, sparse representation, adaptive tight frame, TV regularization.

I. INTRODUCTION
With the rapid development of medical image processing
technology, MRI has been widely used in medical clini-
cal examination, becoming an important means of medical
diagnosis [1]. However, in practical medical applications,
high-quality MR images obtained by conventional methods
require large amounts of sampling data. The process of
acquiring data needs more time during which the patient is
susceptible to have slight translational motion (especially for

children, stroke, and Parkinson patients) or the organ itself
may have motion (such as pulse), which will lead to motion
artifacts owing to phase changes of the sampling data [2]–[4].
The phase changes are regarded as phases of the sampling
data disturbed by noises (called phase noises) in this paper.
Meanwhile, the longer the data acquisition time is, the greater
the probability of the system to produce noises will be. It will
lead to amplitudes of the sampling data contaminated by
noises (called amplitude noises in this paper). Phase and
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amplitude noises make the MR image blurred and limit the
MR image for medical applications, which has become a
key factor to restrict the further improvement of MR imag-
ing quality at present. Therefore, how to establish an excel-
lent reconstruction model which can achieve MR images
with high-quality reconstruction form highly undersampled
K-space data is a challenge.

The problems of amplitude noise removal and phase cor-
rection of motion artifacts in MR images have been an active
research field. The main methods to solve these problems
are to acquire more K-space data, to use the special sam-
pling sequence for acquiring samples, and to exploit the
advanced algorithm for carrying on the post-processing of
the image. Researchers have proposed lots of algorithms to
suppress amplitude and phase noises in succession. The early
algorithm is to assume that the region of interest (ROI) is
a prior known [2], [3], and to correct phase of motion artifacts
employing the idea of phase retrieval [4]. This algorithm
contributes to phase correction when oversampling the fre-
quency domain of the image in a relatively small ROI. Sub-
sequently, navigator-based echo technique (NBET) [5], [6]
is developed for phase correction of motion artifacts. This
technique can detect motion phases between the ‘‘navigator’’
and a reference point without phase change, and then resolve
an ill-posed problem by acquiring extra ‘‘navigator’’. In [7],
the phase denoising of motion artifacts for MR images is
attained by the genetic algorithm, and the translational phase
noises ofmotion artifacts are dislodged in global optimization
of the translational motion. In [8], the phase of the MR
image is estimated by exploiting the correlations between a
small number of adjacent readout lines of the motion. This
method requires data oversampling in the phase encoding
direction in order to satisfy existences of the correlations
between adjacent readout lines. In [9], an improved region
growing algorithm is proposed for phase denoising of Dixon
water and fat MR images. In this algorithm, a spatial angular
continuity vector is selected from the two candidate vectors
of each pixel, and the direction of the output vector map is
spatially smooth. However, the algorithm requires that the
phase differences of two candidate vectors for each pixel must
be known or can be calculated.

In 2006, the CS theory [10], [11] proposed by
Donoho and Candes et al. showed that the original signal
can be reconstructed from a few examples of undersampled
data based on the assumption that the signal is compress-
ible or sparse in a certain transform domain. Since medical
MR images are sparse in some transform domain, the CS
has been widely developed in many biomedical imaging
systems [12]–[14], such as CT imaging, ultrasound medical
imaging and so on. At present, CS has been applied to
MR rapid imaging [15], [16]. CS-based MR imaging can
reconstruct high-quality images with highly undersampled
data in K-space, shorten MRI scan time significantly for
patients, and speed up the image processing. Therefore, how
to reconstructMR images from highly undersampledK-space
data employing the sparse regularizations is of great interest

to researchers. Lusting et al. first applied the CS theory toMR
image reconstruction, in which the problem of undersampled
image reconstruction was expressed as an l1-norm minimiza-
tion problem [17]. In order to improve the speed and precision
of image reconstruction, TV regularization is proposed to the
reconstructionmodel to enhance the sparsity of theMR image
for ensuring high-quality image reconstruction. Barral et al.
proposed a phase denoisingmethod for motion artifacts based
on the fusion of CS and NBET [18]. This method is only
used for phase denoising in the condition that the phase
can turn back to the original position after motion. As it
is difficult for the object to return to the initial position
after motion, so the method has limitations in practical
application. In the above algorithms, sparse approximations
of MR images are nonadaptive; the transform or dictionary
is designed in advance, whose adaptability to MR image is
usually not optimal. Hence, these algorithms are generally
limited for MR image reconstruction when undersampled
measurements get much fewer [19]. For the sake of enhancing
the self-adaptability of the dictionary, the dictionary learning
algorithm is exploited for the MR image reconstruction.
Saiprasad et al. proposed an adaptive synthesis dictionary
learning framework (DLMRI) based on the K-SVD algo-
rithm [19]. DLMRI is an MR image reconstruction frame-
work combining CS with synthesis dictionary learning, and
DLMRI can achieve significantly superior image reconstruc-
tions. However, DLMRI involves synthesis sparse coding step
that is computationally expensive. In [20], transform learning
MR image reconstruction model (TLMRI) is proposed for
simultaneously adaptive sparsifying transform learning and
image reconstruction, which achieves better reconstruction
quality and much faster reconstruction speed than those of
DLMRI. In [21], the phase denoising of motion artifacts is
performed by employing the sparsity of the l1-norm regular-
ization. Assume that the K-space data of the image have a
little motion on a single readout line, and the method regards
the little motion as an unknown system parameter, then
the unknown system parameter is estimated by employing
the redundant information of all K-space sampled data, and
combining with image reconstruction process. In [22], the
data-driven tight frame magnetic image reconstruction
(DDTF-MRI) method is proposed to reconstruct the under-
sampledMR image by using the adaptive tight frame learning
with the l1-norm regularization. The DDTF-MRI further
improves the image reconstruction accuracy and reduces the
complexity of the algorithm. In [23], another phase denois-
ing method of motion artifacts is proposed with navigator
echo combined with CS. This method fuses the conventional
gradient echo sequence with the navigator echo technique, is
employed to monitor the motion information, and acquires
the data by a specific phase encoding sequence. Then,
the MR image is reconstructed with the unaffected data by
the CS method.

All the above algorithms have made some progresses in
removing the phase noises of motion artifacts or MR image
amplitude noises. However, how to further improve the
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MR image reconstruction quality from more highly under-
sampled measurements by exploiting more prior knowledge
of the image is still a crucial issue. To address this issue, MR
images are reconstructed from highly undersampled K-space
data of CS based on the sparsity of images in ATF and
gradient domain in this paper. Compared with the traditional
algorithms, ATF learning method can achieve better sparse
representations of images, more nicely image reconstruction
quality, and faster image reconstruction speed with much
fewer sampling data. Simultaneously, TV with gradient pre-
serving property can be applied to the image reconstruction
model. Hence, MR images can be accurately reconstructed
from the highly undersampled measurements by utilizing
ATF learning and TV regularization together so as to elim-
inate phase and amplitude noises of images in this paper.

The rest of this paper is organized as follows: Section II
presents the preliminary and prior work in TV regulariza-
tion and ATF learning for MR images; Section III elabo-
rates our proposed problem formulation of the MR image
reconstruction based on ATF learning and TV; Section IV
demonstrates the proposed model has the ability for improv-
ing MR image reconstruction quality by employing different
sampling schemes and noise levels; and Section V concludes
with topics and future works are given for the end.

II. BACKGROUND
In this section, we introduce some CS theoretical models
for MR image reconstruction. The following notational con-
ventions are utilized throughout the full text. Let x ∈ RN

represent an underlying MR image, Fu ∈ RM×N denote
an undersampled Fourier coding matrix, y ∈ RM represent
undersampled K-space measurements, and λ > 0 is a penalty
parameter.

One of the key problems for CS theory is the choice of spar-
sitying regularization which can make the underlying image
have a perfectly sparse approximation under a certain system.
In general, the sparse approximation can be implemented in
several ways, which may be a transform, a frame or a general
dictionary, such as sparsifying transform, wavelet tight frame.
In this paper, TV-based sparse representation and adaptive
tight frame learning are studied.

A. TV REGULARIZATION
The sparse representation in gradient domain is a commonly
form of the MR image sparse representations, in which the
gradient sparsity of the image is regarded as prior knowledge.
If the MR image satisfies the gradient sparsity, the desired
image x is reconstructed from the undersampled measure-
ments y by the following formulation [17]:

min
x

1
2
‖Fux− y‖22 + λ ‖x‖TV , (1)

where ‖x‖TV = ‖∇x‖1 denotes the anisotropic formulation
of TV semi-norm, and∇ = [∇1,∇2] represents the difference
operators in the horizontal and vertical directions. The term
‖Fux− y‖22 is a data fidelity in K-space. The model has much

better ability to preserve the edge property of the MR image.
However, many MR images are not obvious piecewise con-
stant, so the model in Eq. (1) is limited in practical applica-
tion. In [24], RecPF was proposed, in which the fast variable
splitting and alternating direction methods were employed
to tackle the following unconstrained optimization model as
Eq. (2):

min
x

1
2
‖Fux− y‖22 + λ1 ‖x‖TV + λ2 ‖ψx‖1 . (2)

Here, ψ is a wavelet transform; λ1 and λ2 are positive
parameters for adjusting data fidelity term and the regular-
ization terms. Eq. (2) is gained by adding a wavelet trans-
form regularization term in Eq. (1) in order to improve the
drawback of Eq. (1), and promote the reconstruction quality
of MR images. In [25], the gradients of MR images are
reconstructed by synthesis dictionary learning, and the model
learns gradient dictionaries in gradient domain. The gradients
with the dictionary learning are much sparser than the gradi-
ents of the image itself for sparse representation. The cost
function of the model is Eq. (3) as follows:

min
x,D(i),0(i)

2∑
i=1

∑
l

∥∥∥D(i)α
(i)
l − Rl(∇(i)x)

∥∥∥2
2
+
λ

2
‖Fux− y‖22

s.t.
∥∥∥α(i)l ∥∥∥0 ≤ T0, ∀l, i, (3)

whereRl(·) indicates the operator that extracts the lth gradient
patch from theMR image, and αl is the synthesis sparse coef-
ficient for the lth gradient patch of the image with sparsity T0.

In Eq. (3), the term
2∑
i=1

∑
l

∥∥∥D(i)α
(i)
l − Rl(∇(i)x)

∥∥∥2
2
can capture

the sparse prior of gradient image patches by synthesis dictio-
nary learning [25]. This model has the superiority in terms of
reconstruction accuracy and convergence for the MR image
reconstruction. However, this model also has a drawback
which is computationally expensive when synthesis sparse
coefficients are solved by using orthogonal matching pursuit
method.

B. ADAPTIVE TIGHT FRAME LEARNING
A tight frame is a kind of sparsity-based regularizations, and
can be employed for a sparse representation of an image. Due
to flexible properties of the tight frame, it has been widely
applied in the image processing filed, such as MR image
reconstruction by ATF learning [22], natural image denoising
and so on. More recently, data-driven tight frame (DDTF) has
attracted more attention because of its prominent capabilities,
such as adaptive for the image, better sparse approximation to
the image, and faster computationally speed under the support
of CS.

In [26], DDTF-based construction method was proposed,
and was developed for natural image denoising. DDTF with
low computation cost performs better than wavelet tight
frames in image denoising. The optimization model for con-
structing DDTF directly from the input image is the following
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minimization problem [26]:

min
W ,v
‖v−Wx‖22 + λ ‖v‖0 s.t.WTW = I. (4)

Here, W is an adaptive tight frame, which can be generated
by the filter bank; v is a sparse coefficient vector for attaining
DDTF. The term ‖v−Wx‖22 in Eq. (4) is used to ensure
that the sparse coefficient vector v is close to the canonical
coefficient vector of the image x under the analysis ofW; the
term ‖v‖0 is used to guarantee the sparsity of v; the constraint
term WTW = I is to make sure that W is a tight frame.
In [26], v and W of Eq. (4) are respectively solved with
alternating iterative minimization method. The alternating
minimization involves a solving v step and an updating W
step. In the solving v step, Eq. (4) is tackled with fixedW as

min
v
‖v−Wx‖22 + λ ‖v‖0 . (5)

The solution to Eq. (5) can be acquired exactly by the hard
thresholdmethod. In the updatingW step, Eq. (4) is expressed
with fixed v as

min
W
‖v−Wx‖22 s.t.WTW = I. (6)

The solution to Eq. (6) can be found using the singular value
decomposition (SVD)method in virtue of the filter bank [26].

Recently, ATF has been employed for theMR image recon-
struction owing to its significant advantages. A DDTF-based
MR image reconstruction model (DDTF-MRI) is proposed
in [22]. The model is devoted to effectively enhance sparsity
using DDTF learning in the form of l1-norm under the frame
domain, and then reconstructs the MR image. The objective
function of the DDTF-MRI model is

min
x,W
‖Wx‖1 s.t. ‖y− Fux‖22 ≤ σ

2, WTW = I. (7)

Where, σ is the noise standard deviation. In [22], the
two-level Bregman iterative algorithm is developed to solve
Eq. (7), and encouraging performances in MR image
reconstruction are achieved. Other fast approaches, such
as the orthogonal and multiclass dictionary learning [27]
also can construct a tight frame for sparse MRI, and the
approaches can further improve the image reconstruction
quality.

III. THE PROPOSED TFTV-MRI MODEL
A. PROBLEM FORMULATION
In order to further improve the reconstruction quality of the
MR image, this paper focuses on exploiting more sparse
priors. In CS theory, gradients of an MR image are sparse
using TV regularization that has some desirable properties
such as simplicity, convexity, and ability to preserve edges;
ATF learning can obtain the ATF that is a sparse repre-
sentation scheme of the image in transform domain, and
the sparsity of an MR image can be scaled by the ATF.
In this paper, a novel TFTV-MRI model which fuses the
logarithm norm [28]ATF (LATF) learning and TV regulariza-
tion is proposed. The double sparse TFTV-MRI is applied to

MR image reconstruction with phase and amplitude noises
based on making good use of the two sparse priors. The
proposed TFTV-MRI model can be described as

min
W ,x

∑
i

ln(1+ (Wx)2i )+ ηTV(x)

s.t.WTW = I, x ∈ C, ∀i, (8)

where C = {x |||y| − |Fux|| ≤ ε, |6 y− 6 Fux| ≤ δ}.
Define ‖Wx‖log =

∑
i
ln(1+ (Wx)2i ) as the logarithm

norm [28] in this paper. The logarithm operation is simple,
derivable and calculable; the LATF can measure the sparsity
of MR images in transform domain, and capture features of
MR images effectively. According to the definition of the
logarithm norm, Eq. (8) can be expressed as following:

min
W ,x
‖Wx‖log + ηTV(x) s.t.WTW = I, x ∈ C, ∀i.

(9)

In Eq. (9), the term ‖Wx‖log denotes the LATF sparsity
regularization for the MR image x, which can make sure
that x is sparse under the analysis of W, and the term can
be used to learn W. The term TV(x) denotes the isotropic
discretization formulation of the total variation for x, and its
formula is TV(x) =

∑
i

√
(D1x)2i + (D2x)2i , where D1 and D2

respectively represent difference operators in the horizontal
and vertical directions. TV(x) indicates the sparsity regu-
larization of x in gradient domain, and it can be used to
preserve edges of the images. η > 0 is a penalty param-
eter. The set C designates the data fidelity relation for the
amplitudes and phases, which is employed to guarantee the
image reconstruction accuracy from highly undersampled
K-space data. The term ||y| − |Fux|| ≤ ε is the amplitude
errors between MR image measurements and undersampled
K-space data of the reconstructed image (ε is the amplitude
noise error). If there is no noise, ε is equal to 0, namely
|y| = |Fux|. If the image measurements have noises, ε lies
in the span [2σ ,3σ ] (σ is the Gaussian noise standard devia-
tion). The term |6 y− 6 Fux| ≤ δ represents the phase errors
between measurements and undersampled K-space data of
the reconstructed MR image (‘‘ 6 ’’ represents the phase, and
δ represents the phase error). If there is no phase error, δ
equals 0, then the phase does not change, namely 6 y = 6 Fux.
If the image measurements have motion artifacts, the two
phases meet |6 y− 6 Fux| ≤ δ. Eq. (9) is sparse represen-
tation for MR images by exploiting sparse knowledge with
LATF and TV in order to ensure the image reconstruction
error minimum, and achieve better performances of the image
reconstruction.

B. THE PROPOSED ALGORITHM
An alternating iterative minimization algorithm is developed
to deal with the proposed model. The alternating minimiza-
tion involves a learningW step and a solving x step.
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1) ADAPTIVE TIGHT FRAME LEARNING
In the learning W step, we deal with the following problem
with fixed x in Eq. (9):

min
W
‖Wx‖log s.t.WTW = I. (10)

For the nth iteration, optimizing Eq. (10) with fixed xn−1 is
implemented by the half-quadratic splitting algorithm. With
introduction of a variable v, and assume v=Wx, we get the
constrained version of Eq. (10) as

{vn,Wn
} = argmin

v,W
{

∥∥∥v−Wxn−1
∥∥∥2
2
+ τ ‖v‖log}

s.t.WTW = I. (11)

In order to attack Eq. (11), Eq. (11) is divided into two sub-
problems. The first sub-problem is to solve sparse coefficient
vn with fixedWn−1 as

vn = argmin
v
{

∥∥∥v−Wn−1xn−1
∥∥∥2
2
+ τ ‖v‖log}, (12)

where τ > 0 is a penalty parameter. Eq. (12) is a logarithm
norm convex optimization problem, and the closed-form
solution can be obtained exactly. The derivative of Eq. (12)
can be simplified as the following equation:

v3 − (Wn−1xn−1)v2 + (1+ τ )v− (Wn−1xn−1) = 0. (13)

Here, the operator for v is element-wise. Eq. (13) can be
solved in the form of the cubic equation root, that is Cardano
formula (or use the method in [29]). However, the drawback
of solving the cubic equation is that it takes more time.
Therefore, one can borrow the LUT approach [30] to update
v.

The second sub-problem is to update Wn according to vn

obtained by Eq. (12), and the expression is acquired as

Wn
= argmin

W

∥∥∥vn −Wxn−1
∥∥∥2
2

s.t.WTW = I. (14)

We employ the same method as Eq. (6) for this sub-problem.
That is, we utilize SVD to derive the corresponding filters
{ai} [26].

2) MR IMAGE RECONSTRUCTION
In the solving x step, Eq. (9) is solved with fixedW as

min
x
‖Wx‖log + ηTV(x) s.t. x ∈ C. (15)

For the nth iteration,minimizing Eq.(15)with fixedW n can
be achieved. In this step, we solve Eq. (15) by the following
problem

xn = argmin
x
{
∥∥Wnx

∥∥
log + ηTV(x)} s.t. x ∈ C. (16)

In this paper, we exploit the iPiano algorithm [31] to solve the
Eq. (16).

In the process of attacking Eq. (16), we first let
f (x) =

∥∥Wnx
∥∥
log + ηTV(x), and obtain its derivative

FIGURE 1. Shaded area is projection area of C.

∇f (x) = 2(Wn)T

1+(Wnx)2 + η
∂TV(x)
∂x . Then, we can formulate the

following Eq.(17) by employing the iPiano algorithm:

xn−1/2 = xn−1 − γ∇f (xn−1)+ β(xn−1 − xn−2). (17)

Where, γ and β are the step size parameters. Project the
intermediate variable xn−1/2 onto the set C, and acquire the
projection expression as following:

xn = PC (xn−1/2) = F−1(
∣∣Gn∣∣ ejθn ). (18)

Here, PC (·) represents the projection operator, and F−1(·)
denotes the inverse Fourier transform operator.

∣∣Gn∣∣ and θn
indicate the projection magnitude and projection phase of
xn−1/2 respectively when xn−1/2 is projected onto C. The set
C expressed in polar coordinates is shown in Fig.1, where

∣∣yi∣∣
and 6 yi are the amplitude and phase of the ith measurement
respectively. In Fig.1, the shaded area is the projection area
of C, which is the possible area for projecting the ith value of
xn−1/2 onto it.

The expression of
∣∣Gni ∣∣ in Eq. (18) is described as

following:

∣∣Gni ∣∣ =

∣∣∣Fuxn−1/2i

∣∣∣ , ∣∣∣∣∣∣Fuxn−1/2i

∣∣∣− ∣∣yi∣∣∣∣∣ ≤ ε∣∣yi∣∣+ ε, ∣∣∣Fuxn−1/2i

∣∣∣− ∣∣yi∣∣ > ε∣∣yi∣∣− ε, ∣∣∣Fuxn−1/2i

∣∣∣− ∣∣yi∣∣ < −ε.
(19)

Eq. (19) is the magnitude projection for the undersampled
K-space measurement of the MR image. We do not consider
the K-space data that are not taken sample because only the
undersampled K-space data are updated in our algorithm.
Similar to Eq. (19), Eq. (20) describes the phase projection
for the undersampled measurement in K-space

θni =


6 Fux

n−1/2
i ,

∣∣∣ 6 Fuxn−1/2i − 6 yi
∣∣∣ ≤ δ

6 yi + δ, 6 Fux
n−1/2
i − 6 yi > δ

6 yi − δ, 6 Fux
n−1/2
i − 6 yi < −δ.

(20)

The implementing process of the TFTV-MRI model is
as follows: first, we can obtain a general tight frame W0
by learning lots of MR images, and generate an initial MR
image x0 by solving FHu y. Second, with fixed x0, the adaptive
tight frame W is updated n times. Then, with fixed Wn,
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TABLE 1. The entire solving process of TFTV-MRI model.

the MR image is updated m times by using iPiano method.
Third, the adaptive tight frame Wn is updated n times again
by the updated image xm. With fixed W2n, and the MR
image xm is updated m times again by using iPiano method.
Then, W2n is updated n times by the updated image x2m,
. . . , the above updating process is repeated until the stop
criterion is met. The entire process for solving the proposed
TFTV-MRI model is summarized in Table 1 as described.

IV. EXPERIMENTS AND DISCUSSION
A. EXPERIMENTAL SETUP
In order to verify the effectiveness of TFTV-MRI for
reconstructing the image with phase noise or phase and
amplitude noises, four standard test MR images with the
same size of 512×512 are employed as the experimental
images in this paper, as shown in Fig. 2. The experimen-
tal images are available in http://www3.americanradiology.
com/pls/web1/wwimggal.vmg. In our experiments, the algo-
rithm of TFTV-MRI was executed with 50 iterations to
appraise its performance. We selected with the MR image
block size of 9×9 and maximum patch overlap r = 1.
We worked with m = 1 iterations to update the MR image.
We selected with W block size of 81×81. We employed
12800 patches for LATF W learning, which was executed
for 30 iterations. Zero-mean Gaussian noise of the standard
deviation σ for the amplitude and random uniform distribu-
tion noise δ for the phase were added in MR image K-space
respectively, and the amplitude noise error ε was selected
as 3σ . The quality of the MR image reconstruction was
evaluated by employing two metrics, PSNR and HFEN [19].

FIGURE 2. MR test images. (a) BMR2; (b) Brain; (c) t2axialbrain;
(d) foot-012.

HFEN is utilized to describe the quality of MR image recon-
struction of fine features and edges. The smaller the HFEN
is, the better the edges and fine features of images are.

In order to check the image reconstruction performance of
TFTV-MRI under different sampling schemes, 2D variable
density random sampling (sampling rate R equals 12.5%)
and pseudo radial sampling (the number of sampling line l
equals 110) were performed on images to do reconstruction
experiments. When reconstructing the MR image, along with
phase noises produced by the translational motion of the
patient, there is additive noise of the image amplitude in
practical applications. Therefore, the simulation experiments
in this paper included two parts: the ideal case with phase
noise only, and the practical application case with phase
and amplitude noises. The PSNR values of these two part
experiment results were compared with those of Zero-filled,
TLMRI, and TF-MRI, respectively. The TLMRI proposed
in [14] is a blind CS MR image reconstruction model based
on adaptive sparsifying transform learning. TLMRI is a better
reconstruction model of CS kingdom in recent years. The TF-
MRI model which only employs LATF learning is applied to
MR image reconstruction with phase and amplitude noises.
TF-MRI based on making use of the sparse priors of the
MR image via ATF learning. That is to say, the TF-MRI that
is proposed in this paper is special form of Eq. (8) where
the penalty parameter η is equal to 0. The TF-MRI model
is sparse representation for MR images by exploiting sparse
knowledge with LATF only, excluding TV regularization.

B. EXPERIMENTAL RESULTS AND DISCUSSION
In order to verify the image reconstruction quality and anti-
noise performance of TFTV-MRI with the phase noise only,
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TABLE 2. Comparisons of MR image reconstruction PSNR values (dB) with phase noises only.

the experiments were carried out for MR test images. In this
case, the amplitude noise error ε = 0, and the phase error
δ is respectively selected as π /24, π /18 and π /12 in the set
C of Eq. (8). A large number of experiments affirm that the
better image reconstruction results can be achieved when the
values of various parameters are set as τ 0 = 0.5, η = 0.8,
γ = 0.001, β = 0.002 in TFTV-MRI, τ = 0.7, γ = 0.001
in TF-MRI and s = 0.065 (Other parameters are the same as
in [14]) in TLMRI for 2D variable density random sampling;
meanwhile τ 0 = 0.5, η = 1.5, γ = 0.001, β = 0.015 in
TFTV-MRI, τ = 0.6, γ = 0.001 in TF-MRI and s = 0.035
(Other parameters are the same as in [14]) in TLMRI for
pseudo radial sampling. The experimental results of three
different phase noises in TFTV-MRI are compared with the
each contrast model respectively, as shown in Table 2. From
the data in Table 2, it can be observed that the average
PSNR values of the reconstructed each image by using TFTV-
MRI are larger than each of the contrast models. In Table 2,
the BMR2 image is taken as an example. The average PSNR
values of the reconstructed image using TFTV-MRI increase
by 1.42dB and 5.92dB respectively compared with TF-MRI
and TLMRI under three different phase noises by employ-
ing 2D variable density random sampling, and increase by
3.29dB and 4.76dB respectively compared with TF-MRI and
TLMRI in three different phase noises by employing pseudo
radial sampling. Hence, TFTV-MRI can achieve the better
reconstruction quality of the MR image, and can effectively
remove the phase noises of motion artifacts. The proposed
model can perform reconstruction effectiveness, better anti-
noise and robustness performance to achieve phase denoising
of MR images.

In order to investigate the image reconstruction quality and
anti-noise performance of TFTV-MRI with the phase noise
and amplitude noise simultaneous, the experiments were exe-
cuted. In this case, the phase error δ = π /24, the noise stan-
dard deviation σ is respectively selected as 15, 20 and 25, and
the amplitude noise error ε = 3σ in the set C of Eq. (8). The
experimental results of TFTV-MRI with different amplitude
noises and the unique phase noise were compared with the
each contrast model respectively, as shown in Table 3. From
Table 3, we can see that the average PSNR value of the recon-
structed each image by employing TFTV-MRI is superior to
the each contrast model in the two sampling schemes when
the amplitude noise and phase noise are included. In Table 3,
Brain image is taken as an example. The average PSNR
values of the reconstructed image of TFTV-MRI increase
by 1.75dB and 5.20dB respectively compared with TF-MRI
and TLMRI under three different amplitude noise deviations
by employing 2D variable density random sampling, and
increase by 1.33dB and 3.85dB respectively compared with
TF-MRI and TLMRI by employing pseudo radial sampling.
TFTV-MRI can also improve the quality of the MR image
reconstruction, and can effectively remove the phase and
amplitude noises simultaneously, with better anti-noise and
robustness performances.

In order to illustrate the convergence and superiority prop-
erties of TFTV-MRI, Fig.3 shows the PSNR curves of the
reconstructed BMR2 image changing with the iteration num-
ber. In Fig.3, the PSNR curve of TFTV-MRI compares with
the three contrast models in 2D variable density random
sampling scheme (the amplitude noise standard deviation
σ = 20, and the phase error δ = π /24). With the same
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TABLE 3. Comparisons of MR image reconstruction PSNR values (dB) with amplitude and phase noises.

FIGURE 3. PSNR curves of BMR2 image along with iterations.

condition as in Fig.3, Fig.4 displays the HFEN curves of
the four models changing with the iteration number. It can
be seen from Fig.3 that the convergence speed of TFTV-
MRI is fastest. TFTV-MRI has a faster convergence speed
and the larger PSNR value, which is obviously superior to
TF-MRI and TLMRI. Fig.4 exhibits that TFTV-MRI has the
smaller HFEN value which reveals the better edge structure
of the reconstructed image, compared to those of TF-MRI and
TLMRI.

However, PSNR and HFEN cannot represent perceptual
visual quality, which can only be accurately evaluated by
human visual observer studies [19]. In order to further
demonstrate the superiority of TFTV-MRI, image reconstruc-
tion qualities were evaluated from visual inspection. For a
visual comparison, Fig.5 and Fig.6 illustrate the reconstructed
results of the image ‘‘Brain’’ with the phase noise (δ = π /24)
and the amplitude noise (σ = 20) via 2D variable density

FIGURE 4. HFEN curves of BMR2 image along with iterations.

random sampling. Fig.6 exhibits reconstructed results of the
magnified region for the Brain image. As can be seen from
Fig.5, there are serious partial losses in the reconstructed
image details by using TLMRI and TF-MRI. While TFTV-
MRI can better reconstruct the original image, there are
more details in the reconstructed image such as the textures
and contours with respect to the brain. It also can be seen
from Fig.6 that compared with the three contrast models,
TFTV-MRI has been obviously improved the quality of the
reconstructed image, preservedmore image details, and better
removed phase and amplitude noises. For a close-up compari-
son in Fig.6, we enlarged the part of Brain image, from which
we can judge that TFTV-MRI provides clearer details.

In conclusion, the quality of the reconstructed MR image
by employing Zero-filled is the worst of the four models.
Reconstructed MR images lost lots of detail information, and
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FIGURE 5. Reconstruction results and error magnitudes of Brain image
with 2D variable density random sampling (a) Sampling in the K-space;
(b) Original image; (c), (d), (e) and (f) are reconstruction results for
Zero-filled, TLMRI, TF-MRI and TFTV-MRI; (g), (h), (i) and (j) are
reconstruction error magnitudes for Zero-filled, TLMRI, TF-MRI and
TFTV-MRI, respectively.

blur the parts of smoothness and edges. The quality of the
reconstructed image by using TLMRI is better than that of
Zero-filled, but it still loses some detail information caused by

FIGURE 6. Reconstruction results of the local Brain image (a) Original
image; (b) Zero-filled; (c) TLMRI; (d) TF-MRI; (e) TFTV-MRI.

excessive smoothness of the image and fuzziness of the edge
contour structure. The image reconstruction quality of the
TF-MRI is better than that of TLMRI, but it still loses some
detail information with further clearness of edge contour
structure. TFTV-MRI can more accurately reconstruct detail
information and edge contour structure, and can remove the
phase and amplitude noises.

The above experimental results demonstrate that the MR
image reconstruction of TFTV-MRI improves remarkably
compared with TF-MRI and TLMRI. This is because that
TFTV-MRI exploits the sparse prior knowledge of the MR
image in virtue of LATF learning and TV regularization,
TF-MRI exploits the sparse prior knowledge of the image
in virtue of LATF learning only, and TLMRI exploits
the sparse prior knowledge under the adaptive sparsity-
ing transform learning only. In TFTV-MRI, LATF learn-
ing is applied to the image reconstruction model. Then,
according to the cooperation between the LAFT regular-
ization and TV regularization, the quality of the recon-
structed MR image is further improved. Moreover, more
detail and edge contour structure information is obtained.

VOLUME 5, 2017 19319



F. Xiaoyu et al.: CS MRI With Phase Noise Disturbance Based on ATF and TV

Hence, TFTV-MRI becomes more effective and more
applicable.

V. CONCLUSIONS
A novel TFTV-MRI model has been proposed to effectively
reconstruct MR image from highly undersampled K-space
data in this paper. This model combines LATF learning
with TV regularization which can preserve edges of the MR
image. The two kinds of sparse priors are applied to the
TFTV-MRI model simultaneously, whose advantage is that
it exploits the sparse prior knowledge both in the frame
domain and in the gradient domain. Furthermore, we employ
the alternating iterative minimization algorithm to solve the
TFTV-MRI effectively, in whichwe bring the LUT algorithm,
SVD and the iPiano algorithm. Various experiment results
demonstrate that the proposed TFTV-MRI achieves the supe-
rior performance for MR image reconstruction in artifacts
suppression, detail clarity, and edge preservation with both
phase noises and amplitude noises. The proposed model also
illustrates highly accurate MR image reconstruction over the
other two models including TF-MRI and TLMRI, due to the
TFTV-MRI utilizes many advantages, for example, the MR
image and its gradient can be represented much sparser by
using LATF learning and TV regularization respectively.
TFTV-MRI has better robustness, and faster convergence
speed than those of TF-MRI and TLMRI. TFTV-MRI will
contribute to the clinical application of MR images. How
to exploit more sparse priors for the MR image reconstruc-
tion, how to further improve the image reconstruction per-
formance, and how to farther implement fast and accurately
image reconstruction with lower sampling rate are all the
future research aspects.
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