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ABSTRACT As the technique that determines the position of a target device based on wireless mea-
surements, Wi-Fi localization is attracting increasing attention due to its numerous applications and the
widespread deployment of Wi-Fi infrastructure. In this paper, we propose ConFi, the first convolutional
neural network (CNN)-based Wi-Fi localization algorithm. Channel state information (CSI), which contains
more position related information than traditional received signal strength, is organized into a time-frequency
matrix that resembles image and utilized as the feature for localization. The ConFi models localization as
a classification problem and addresses it with a five layer CNN that consists of three convolutional layers
and two fully connected layers. The ConFi has a training stage and a localization stage. In the training stage,
the CSI is collected at a number of reference points (RPs) and used to train the CNN via stochastic gradient
descent algorithm. In the localization stage, the CSI of the target device is fed to the CNN and the localization
result is calculated as the weighted centroid of the RPs with high output value. Extensive experiments are
conducted to select appropriate parameters for the CNN and demonstrate the superior performance of the
ConFi over existing methods.

INDEX TERMS Wi-Fi localization, channel state information, convolutional neural network, pattern
recognition.

I. INTRODUCTION
As the task of positioning a target device in indoor envi-
ronment, indoor localization has a wide range of applica-
tions such as indoor navigation and people flow monitoring.
A number of emerging technologies, including visible light,
infrared ray and radio frequency identification (RFID), have
been applied in this field. Among them, Wi-Fi based indoor
localization stands out due to the widespread deployment
of Wi-Fi infrastructures and its potential of being deployed
in a transparent manner to users. Various Wi-Fi localiza-
tion methods are proposed, including angle of arrival based
method [1], time of arrival based method [2], and signal
propagation model based method [3]. However, fingerprint
based localization methods produce the best performance [4]
and become the focus of research.

First proposed by RADAR [5], fingerprint based local-
ization methods use certain measurement of Wi-Fi signal as

feature and try to capture the difference in the feature across
different positions. These methods generally consist of two
stages, i.e., a training stage and a localization stage. In the
training stage, features are collected at a set of reference
points (RPs) and used to train or fit a localization model.
In the localization stage, the position of the target device
is decided by feeding its feature to the localization model.
Therefore, feature utilization and the design of localization
model are the core of fingerprint based localization.

The received signal strength (RSS) was widely utilized as a
feature in localization [5]–[8], as RSS can be obtained easily
at the PHY service access point ofWi-Fi receiver. In RADAR
[5], RSS is measured at a number of RPs and localization
is conducted by measuring the similarity between the RSS
of the target device and the RPs using Euclidean distance.
However, RSS has two drawbacks. Firstly, it is sensitive to
time varying multipath fading, which results in confusion in
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localization results. More importantly, RSS finds it hard to
cope with device heterogeneity, which is the phenomenon
that different devices such as cell phone and laptop have
different transmission parameters such as maximum power
and antenna characteristics. As device heterogeneity usually
results in difference in RSS even for the same position, model
trained using one device may not perform well for another
device. To deal with these difficulties, various methods are
proposed. Instead of using raw RSS directly, an alternative is
to preprocess RSS by normalization and centralization, and
calculate statistics such as maximum value, average value,
difference between the measurements at different access
points (AP). Moreover, dimensionality reduction methods
such as PCA [6], LDA [7], and LFDA [8] are also proposed
to extract more robust feature from RSS.

Recently, some researchers propose to use channel state
information (CSI) as feature [9]–[14]. According to IEEE
802.11n, when APs and client devices work in high through-
put (HT) mode, CSI will be included in the CSI field of
management frames, which means obtaining CSI is also an
easy task. As a complex number indicating the channel con-
dition on one specific subcarrier for an antenna, CSI contains
richer information than RSS and provides the possibility for
improving localization accuracy. FILA [9] uses the CSI of
multiple subcarriers for localization, and achieves a 40%
improvement in accuracy compared to RSS based Horus
system [10]. As CSIs are complex numbers, various methods
are proposed to extract features from it. Xiao et al. use only
the amplitude of CSI [11] while Wang et al. utilize only the
phase of CSI [12]. Sen et al. utilize the CSI of a single antenna
as fingerprints [13] but Chapre et al. adopt the CSI from
multiple antennas and multiple subcarriers to construct a CSI
matrix [14].

From the perspective of the model design, most works
formulate fingerprint based localization as a classification
problem [15]–[18]. The position of the target device is usu-
ally decided as the RP with the most similar feature or the
combination of a group of RPs with similar feature. Xie et al.
adopt KNN [15], in which the Euclidean distance between the
feature of the target device and the RPs are calculated, and the
resultant position is calculated as theweighted average of RPs
with weights inversely proportional to distance. Probability
based model treats feature as a random variable and fits the
feature at every RP to a distribution. Given the feature of the
target device, the probability that the target device resides
on a RP can be calculated and localization results is given
following themaximum likelihood principle [10]. To estimate
the probability distribution of the feature accurately, meth-
ods including kernel density estimation [16] and Gaussian
process regression [17] are adopted. Decision tree model is
also used for localization and achieves higher accuracy than
pattern matching [18].

All the methods mentioned above need professional expe-
riences to tune and the selection of the feature is subjective.
Neural networks (NN) imitates the signal transition process
of neurons and can approximate arbitrary math function.

NN can also extract features from input implicitly thus
manual feature selection can be avoided. Recently, there
is a trend of using NN for fingerprint based localization.
Fang and Lin propose DANN [19], which uses a NN with a
single hidden layer to extract feature from RSS and improves
the probability of the localization error below 2.5m by 17%
over RADAR. A three-layer NN is adopted to process the
phase of CSI and the weights of the NN is utilized as feature
for localization in [12]. DeepFi is proposed in [20] with a
four-layer NN and greedy learning algorithm is used for train-
ing the model. According to the authors, DeepFi improves
accuracy by 20% over FIFS which adopts a probability based
model. Note that all existingNN basedmethods use fully con-
nected (FC) NN and the complexity is positively correlated
with the depth of the NN. So the performance of the model is
restricted.

In this paper, we propose ConFi, a convolutional
NN (CNN) based indoor Wi-Fi localization method that uses
CSI as feature. By introducing CNN, the depth of the NN
can be increased while keeping the complexity in a proper
level [23]. We organize the CSI into what we call CSI feature
image. To be more specific, CSIs for different subcarriers at
different time are arranged into a matrix, which is similar to
one of the RGB channels of an image while CSI matrixes
on different antennas are treated as different channels. The
CNN consists of three convolutional layers and two FC layers
including a softmax output layer. The network is trained using
the CSI feature images collected at a number of RPs. The
localization results is the weighted centroid of RPs with high
output value. Moreover, extensive simulation is conducted to
select appropriate parameters for ConFi and compare against
existing methods in a real indoor scenario.

The contribution of the paper can be summarized as fol-
lows. Firstly, we propose a novel representation of CSI as CSI
feature image. With CSI feature image, manual subjective
feature selection and preprocessing are avoided while the
information contained in CSI is utilized comprehensively.
Secondly, to the best of our knowledge, ConFi is the first
method that utilizes CNN for Wi-Fi localization, which cap-
tures the correlation among time, frequency and antenna
domain in CSI. Lastly, ConFi extends the depth of the NN and
improves the localization accuracy. Extensive experiments
are conducted to compare the performance of ConFi with
existing methods and explore the influence of various model
parameters.

The remainder of this paper is organized as follows. CSI
measurement in Wi-Fi and the construction of CSI feature
image are introduced in Section II. Section III presents the
structure and the training method of the CNN. Section IV
provides the experiment results while Section V concludes
the paper.

II. CSI FEATURE IMAGE
In this section, we introduce CSI related background inWi-Fi
and illustrate how to organize CSIs for multiple subcarriers,
time slots and antennas into CSI feature image.
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A. CSI MEASUREMENT IN WI-FI
Estimating CSI is a fundamental functionality in wireless
communication system, which provides support for func-
tionalities such as power control and handover. Wi-Fi uses
training sequence for CSI estimation. According to IEEE
802.11n [21], sounding PPDUs (physical layer convergence
procedure protocol data unit) are sent from the beamformee
to the beamformer to estimate the CSI during transmit beam-
forming procedure. In the time domain, the received signal
can be written as

r(t) = s(t) ∗ h(t)+ n(t), (1)

where s(t) is the transmitted signal made up of known training
sequence and n(t) is the random noise. h(t) is the chan-
nel impulse response modeling the comprehensive effects
of large scale fading, multi-path fading and shadowing. The
channel response in frequency domain can be calculated as

Ĥ = R/S, (2)

where S is the Fast Fourier Transform (FFT) of the training
sequence and R is the FFT of the received sequence. Ĥ is the
CSI between the transmitter and the receiver. The CSI is used
for beamforming procedure and can be obtained from the CSI
field of MAC management frame. For 20 MHz bandwidth,
there are 56 subcarriers in total and three grouping configu-
rations of subcarriers, which are listed in Table 1 [21]. NS is
the number of the subcarriers used for training sequence
transmission. The exact no. of the subcarriers used for CSI
extraction are shown in the last column. The Wi-Fi vendor
should choose at least one configuration to support beam-
forming.

TABLE 1. CSI Grouping Configuration in 802.11n.

Fig. 1 shows the amplitude of the CSI on 30 subcarri-
ers from 5000 measurements at a single location. The CSIs
for the three antennas are plotted with different colors. The
following observations can be made. Firstly, The CSIs on
different antennas show different patterns, whichmeans using
multiple antennas may better capture location dependent CSI
pattern and yield better performance. Secondly, CSIs on adja-
cent subcarriers are similar (we find CSIs measured at adja-
cent time slots are also similar), resembling an image inwhich
adjacent pixels usually takes similar values. This similarity
is what motivates us to propose CSI feature image. Thirdly,
the CSIs on the same antenna show different patterns over
the measurement period. For example, RX Antenna A expe-
riences roughly four patterns and the maximum difference
in amplitude reaches 35 dB. This suggests there is the need

FIGURE 1. CSI amplitude of multiple antennas for a single location.

to take the time domain changes in CSI into consideration,
which existing works fail to do.

B. CSI FEATURE IMAGE
As analyzed in [20], the phase of CSI is prone to noise
and random fading thus complicated preprocessing is needed
before using it as feature. To avoid preprocessing, we only
use the amplitude of CSI. For one antenna, we group T CSI
measurements for N subcarriers at the same RP to construct a
N ∗T matrix which we call CSI feature sub-image as follows.

|H|i =

 |H11| . . . |H1T |
...

. . .
...

|HN1| · · · |HNT |


i

(3)

where N is the number of subcarriers, T is the number of CSI
measurements in one sub-image and i is the index of antenna.
Nowadays, advanced Wi-Fi APs are usually equipped with
multiple antennas and as shown in the previous subsection,
different antennas usually have quite different CSI patterns.
Therefore, we can organize the CSI from different antennas
into separate CSI feature sub-images. This means the CSI
feature sub-image of an antenna acts like one of the RGB
channels of an actual image. The set of CSI feature sub-
images on all antennas is called CSI feature image. However,
as opposed to images, which usually have three channels,
the number of channels in ConFi is decided by the number
of antennas. CSI feature images collected at the same RP
are treated as samples from the same category when training
the CNN.

Some examples of CSI feature images are illustrated
in Fig. 2. They are collected at 4 different RPs. Three antennas
are used and we map the CSI feature sub-images from the
antennas into the RGB channels of the image. The pixel in a
column corresponds to CSI amplitude of a subcarrier from
three antennas. The elements in the row are composed by
the time samples. We can make several assertions from the
images. Firstly, the images from different RPs have different
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FIGURE 2. Examples of CSI feature images from 4 RPs.

patterns, which suggests CSI feature image is good feature for
localization. Secondly, One can tell there are several vertical
lines in the images. It implies that some features present
on every subcarriers but appear sporadically. Theses features
are quite difficult to be captured by a single-shot. Thirdly,
the colour of the image is quite different, which indicates
different features need to be extracted at different RPs.

As CNN has many parameters to tune, a large num-
ber of training samples are needed to prevent overfitting.
However, getting training sample can be expensive and trans-
lation and horizontal reflection are usually applied to the
original images to expand the training set in computer vision.
Since the pixels in CSI feature image are actual CSIs, apply-
ing translation and horizontal reflection to them may corrupt
the information contained in CSI. Instead, we use a sliding
window strategy to expand the training set. When the number
of CSImeasurements in a CSI feature image is T , we generate
a CSI feature image every T/2, which means adjacent CSI
feature images are allowed to overlap in the time domain.
The detailed performance comparison with other expanding
techniques are shown in section 4.3.

III. CNN BASED LOCALIZATION
CNN is proved as an effective technique in image classi-
fication. By using convolutional kernels, CNN is robust to
noise and can construct increasingly high level representation
of the input images at latter layers. Please refer to [22] for
detailed introduction of the CNN in image classification.
Therefore, we apply the CNN as our model and formu-
late the localization as a classification problem. The pro-
posed CNN based localization method consists of two stages,
i.e., a training stage and a localization stage. In the training
stage, multiple CSI feature images are collected at every RP
and the CNN is trained using the CSI feature images as in

FIGURE 3. Structure of the CNN.

a classical multiclass image classification problem. In the
localization stage, the CSI feature image of the target device is
fed to the trained neural network and the position is estimated
as the weighted centroid of RPswith a high value at the output
layer. In this section, we first introduce the structure of the
CNN and then present the loss function and training method.

A. STRUCTURE OF THE CNN
The structure of the CNN used in ConFi is inspired by
LeNet [23] and Alexnet [24] which produce remarkable per-
formance in image recognition. As shown in Fig. 3, the net-
work has five layers, which consists of three convolutional
layers and two FC layers. As CSI feature image is different
from actual image, our CNN is also different from conven-
tional CNN in several aspects. The first difference is that we
pad the feature image and set the stride step to one so that the
size of the input image will not be reduced by the convolu-
tional layers. This is because the size of the feature image is
already small and wewant the FC layers to have enough num-
ber of input features. The second difference is that we do not
use the pooling layers, which conducts sampling essentially
and reduces the size of the image. We believe there are fine
descriptions of location features in CSI feature image, while
the pooling process will confuse these information.

TABLE 2. Example parameter settings of CNN.

As an example, we give the specific parameters of the
CNN for 30 by 30 CSI feature image from 3 transmitting
antennas in Table 2. The inputs of the CNN are three 30 by
30 pictures. For the convolutional layers, we set the number
of the convolutional kernel to be 10. So the outputs of the
convolutional layer are 10 feature images. For the reasons
described above, we choose 5 by 5 filter size as convolutional
kernels and use padding to keep the image size unchanged.
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The stride of the convolutional filter is set to 1 so as to extract
the time-frequency information precisely. For the senond last
FC layer, we use 50% dropout [25] to avoid overfitting.

The activation function introduces nonlinearity into NN
and is an important factor for performance. We choose Rec-
tified Linear Units (ReLUs) as the activation function. It is
more plausible biologically than the sigmoid function, and
the resultant NN enjoys good sparsity which translates into
high computation speed. ReLU can be expressed as follow:

f (x) = max(0, x) (4)

The number of neurons at the output layer is equal to the
number of RPs, therefore each output neuron corresponds to
a RP. As the target device may appear at any of the RPs,
we use softmax as the activation function of output layer,
which means the outputs of all neurons in the output layer
sum to one. Therefore the output of a neuron can be inter-
preted as the probability that the target device is at the cor-
responding RP. The definition of the softmax function is as
follows:

y(j) =
ew

T
j x

(i)∑K
j=1 e

wT
j x

(i)
(5)

where y(j) is output of jth neuron in the output layer. j is the
index of output neurons while K is total number of output
neurons which is equal to the number of RPs. x(i) is the output
of second last layer andwj is the weight vector connecting the
neurons in the second last layer to the output layer. T means
transformation of a vector. Note that softmax function maps
the output in the range of [0, 1].

To train the network, we use cross-entropy [26] plus a
regularization term as the loss function.

J (w) = −
1
M


M∑
i=1

K∑
j=1

1{z(i) = j}log
ew

T
j x

(i)

K∑
l=1

ew
T
l x

(i)


+
λ

2

P∑
i=1

K∑
j=1

w2
ij (6)

where 1 {} is the indicator function, λ > 0 is the weight of the
regularizer. P is the dimension of thewj which corresponds to
the number of neurons in the second last layer. M is the size
of the training set. z(i) is the index of the RP at which the CSI
feature image is collected. The cross-entropy in loss function
enforces that if the input CSI feature image is collected at
the jth RP, the output of the jth neuron should be close to one.
The regularization term can prevent the networkweights from
taking extremely large value thus helps to avoid overfitting.
We train the network to minimize Eq. 7 and its derivative is:

∂J (w)
∂wj

= −
1
M

M∑
i=1

x(i)
1{z(i) = j} −

ew
T
j x

(i)

K∑
j=1

ew
T
j x

(i)


+ λwj

(7)

We utilize stochastic gradient descent and backpropagation
algorithm to train the network until the decease of the loss
function between adjacent iterations falls below a threshold.

B. LOCALIZATION
In the localization stage, the CSI feature image of the target
device is fed into the model. The model outputs y(j), which
can be interpreted as the probability that the target device is
located at the jth RP. For the target device may appear in any
position of interested area, we use the probability weighted
centroid method to estimate the final location, which is cal-
culated as follows:

L̂ =

∑
j∈� y

(j)Rj∑
j∈� y

(j) (8)

where Rj is the coordinate of the jth RP. � is the set of
considered RPs. In our experiments, We typically use 3 RPs
with the largest output value to calculate the centroid.

IV. EXPERIMENTS VALIDATION
A. EXPERIMENTS SETUP
We use a ThinkPad E430 laptop equipped with Intel
5300 wireless network card as the target device. TP-link
TL-WR885N wireless router which has 3 antennas is used
as the AP. A desktop PC with NIVIDA GTX1080 Graphic
Card acts as the model training server (based on the Caffe
framework [27] and CUDA Tool kit 7.5).

FIGURE 4. The schematic of indoor scenario.

We verify our model in a typical indoor scenario. As shown
in Fig. 4, the whole experiment area is about 16.3m by 17.3m
with five rooms. The walls include both concrete wall and
glazed wall. There are also reflectors such as furniture and
rack servers. The AP and the target device are set on the desk
and a cart with the height of 150 cm, respectively. In this
paper, we only focus the localization in 2D space, which
means the height of the target device is kept constant.

We choose 64 RPs with a spacing from 1.5m to 2m in
between. Therefore, the output layer of the CNN has 64 neu-
rons. In the training stage, the laptop is positioned at the RPs
and ICMP packets are collected from AP. The interval of
the packets is 0.01s and we record for 2 minutes at every
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RP. We conduct 10 independent measurements on different
days to take into account the time domain variation of CSI.
At every RP, we get 120000 time domain samples. On the
training server, these time domain samples from the same RP
are grouped into CSI feature images. We partition the entire
dataset into training sets, validation sets and test sets using a
ratio of 7:2:1.

B. ANALYSIS OF PARAMETER SETTING
In this subsection, we analyze the effect of various parameters
on performance by experiment and identify a good set of
parameter settings for comparison with existing methods.
In our experiments, we find that high classification accu-
racy usually translates into low localization error. Therefore,
we use classification accuracy as the metric for parameter
selection. As described above, the validation set is used to
determine when to stop training. After training, the test set
is used to test the performance of the trained model. Since
the test set is not used in the training process, classification
accuracy on it should be a good approximation of the gener-
alization error of the model. The learning rate is set as 0.001.
The training sets batch size is 256.

1) THE SIZE OF FEATURE MAP
In the experiments, we use 30 subcarriers, so the number of
rows of the feature image is 30. We compare the performance
of different number of columns using the same amount of CSI
samples. Note that a larger number of columns means each
CSI feature image spans a longer time but the total number of
CSI feature images will be less. The configuration of four CSI
feature image sizes and their performance are summarized
in Table 3.

TABLE 3. Comparison of feature map size.

It is obvious that 30*30 CSI feature image gets the highest
accuracy. The time span of 30*15 CSI feature image size is
too short and fails to capture the time domain correlation
between the CSI samples. 30*60 and 30*90 CSI feature
image sizes are too long, resulting in an insufficient number
of training samples.

2) DATA AUGMENTATION
We also compare different methods to expand the training set.
The baseline is the case that no training set expansion method
is used, the three considered methods are mirror, random and
sliding window.

Mirror is widely used in image classification and it reflects
an image in a left-right manner. That is, the right side half of

the image is just a copy of the left hand half but the order is
reserved. Randomly choosing samples to construct the CSI
feature image from the set of samples means the samples
in the same CSI feature image may not be adjacent in time.
Sliding window has been explained in Section II. The results
are shown in Table 4.

TABLE 4. Comparison of data augmentation methods.

In the table, we can see that mirror and random performs
worse than the baseline, and sliding window provides the best
performance. Random fails to capture the correlation of CSI
over time, which is a common problem of existing works,
as they do not consider time domain information in CSI by
using only one snap shot of CSI. Note that mirror gets the
highest training accuracy but the worst test accuracy, which
is a sign of overfitting.

3) SIZE OF CONVOLUTIONAL KERNEL
Convolutional kernel is also called receptive field, which
decides how many pixels will contribute to a feature in the
succeeding layer and can also be regarded as the window
for information acquisition. We compare different sizes of
convolutional kernel without data augmentation. In Table 5,
we can find 5*5 kernel size is the best choice. 3*3 kernel is
too small to capture time domain feature, while 7*7 kernel is
too large and introduces noise.

4) THE NUMBER OF CONVOLUTIONAL KERNELS
In CNN, different kernels extract different features from the
input and construct individual feature maps. We compare the
performance with different number of kernels in Table 6.
We can find 10 kernels work best in our model. When reduc-
ing to 5 kernels, the accuracy reduces by 4%, suggesting the
number of feature maps is insufficient. While doubling the
kernels to 20, accuracy only increases by only 0.1%. To bal-
ance between performance and computation cost, we use
10 kernels for convolutional layers.

C. COMPARISON WITH EXISTING ALGORITHMS
Different from the parameter selection part, we compare the
performance of the algorithms using 32 randomly selected
test points (TP) that are not necessarily coincident with the
RPs used for training. At each TP, we collect samples for
1 minute in 5 independent trials, which result in 960000 CSI
samples for all the TPs. Note that although the samples
at one TP are sufficient to construct many CSI feature
images, we only use one CSI feature image for localization as
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TABLE 5. Comparison of convolutional kernel size.

TABLE 6. Comparison of convolutional kernel number.

practical localization usually has a delay requirement. In fact,
we turn data collected at one TP into multiple test cases by
partitioning its CSI samples into multiple feature images.
Localization accuracy is measured by the distance between
the output of an algorithm to the ground truth. The parameters
of the compared algorithms are all tuned to give the best
performance.

1) COMPARISON WITH RSS BASED METHODS
RADAR [5] and Horus [10] are RSS fingerprint localization
methods based on KNN and probability theory, respectively.
In Table 7, we can observe that ConFi outperforms them by
a large margin, i.e., a 42.8% improvement over Horus and a
66.9% improvement over RADAR in mean localization error.

TABLE 7. The comparison of statistic error with RSS based methods.

The cumulative distribution functions (CDF) of localiza-
tion error of the three algorithms are plotted in Fig. 5. For
ConFi, 70% of the test cases have a localization error under
1.5 meters while less than 50% of the test cases have a
localization error below 1.5 meters for RADAR and Horus.
This proves again the fact made clear by existing CSI based
methods-CSI contains richer information than RSS and yields
superior performance.

2) COMPARISON WITH CSI BASED METHODS
We compare ConFi with two CSI based methods, FILA [9]
and CSI-MIMO [14]. CSI-MIMO uses complex CSI from
multiple antennas instead of only the amplitude and adopts
a probability theory based formulation while FILA utilizes
the summation of the amplitude of CSI from multiple APs.
In Table 8, FILA has the worst mean accuracy performance
as it is designed to work for the scenario where multiple APs
have line of sight measurement of the target device while
we only use a single AP. Note that ConFi can also work
with multiple APs by changing the number of input CSI
feature images. In conclusion, ConFI has a 17.8% and 31.3%

FIGURE 5. The comparison of CDF with RSS based methods.

TABLE 8. The comparison of localization error with CSI based methods.

FIGURE 6. The comparison of CDF with CSI based methods.

improvement in mean accuracy over CSI-MIMO and FILA,
respectively.

Fig. 6 shows the CDFs of localization error for ConFi,
CSI-MIMO and FILA. It can be observed that ConFi
increases the percentage of test cases having an error under
two meters by 8% and 10% over CSI-MIMO and FILA
respectively. This demonstrates CNN is the more effective
model for CSI based localization. Moreover, the superior per-
formance of CSI-MIMO over FILA suggests the correlation
between the CSI of multiple antennas helps in localization.

3) COMPARISON WITH OTHER NN BASED METHODS
We compare the mean and standard deviation error of ConFi
with DeepFi [20] and DANN [19] in Table 9. ConFi improves
the mean error by 9.2% and 21.64% over the two algo-
rithms, respectively. Note that DANN performs even worse
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TABLE 9. The comparison of localization error with neural network based
methods.

FIGURE 7. The comparison of CDF with NN based methods.

than CSI-MIMO, which can be explained by the fact DANN
uses RSS. The performance advantage of ConFi over DeepFi
and DANN indicates CNN is more suitable for localization
than fully connected NN.

In the error CDF plot for ConFi, DANN and DeepFi
in Fig. 7, we can observe that ConFi improves the percentage
of test cases having an error below 1.5 meters by 5.6% and
16% over DANN and DeepFi, respectively. Therefore we can
conclude CNN can extract feature from multi antennas more
effectively than fully connected NN.

V. CONCLUSION
In this paper, we proposed ConFi the first convolutional
neural network based indoor Wi-Fi localization system. The
CSI from multiple antennas were organized into multiple
matrixes indicating CSI over time and frequency domain
and used as the input of the convolutional neural network.
A five-layer neural network with three convolutional layers
and two fully connected layers was utilized to process the
CSI feature images. With extensive experiment, we select
appropriate parameters for the convolutional neural network
and verify that ConFi outperforms most existing methods.
Our result suggests that CNN is a powerful tool for cap-
turing the information encoded in CSI for localization, its
superior performance demonstrates the power of CNN in
pattern recognition, which may also work for problems such
as automatic modulation classification.
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