
Received July 20, 2017, accepted August 25, 2017, date of publication September 7, 2017, date of current version September 27, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2749502

Regression Testing of Database Applications
Under an Incremental Software
Development Setting
RAÚL H. ROSERO1,2, OMAR S. GÓMEZ2, AND GLEN RODRÍGUEZ1, (Member, IEEE)
1Universidad Nacional Mayor de San Marcos, Lima 4559, Peru
2Escuela Superior Politécnica de Chimborazo, Riobamba 060155, Ecuador

Corresponding author: Raúl H. Rosero (raul.rosero@unmsm.edu.pe)

ABSTRACT Software regression testing verifies previous features on a software product when it is
modified or new features are added to it. Because of the nature of regression testing it is a costly process.
Different approaches have been proposed to reduce the costs of this activity, among which are: minimization,
prioritization, and selection of test cases. Recently, soft computing techniques, such as data mining, machine
learning, and others have been used to make regression testing more efficient and effective. Currently,
in different contexts, to a greater or lesser extent, software products have access to databases (DBs). Given
this situation, it is necessary to consider regression testing also for software products such as information
systems that are usually integrated with or connected to DBs. In this paper, we present a selection regression
testing approach that utilizes a combination of unsupervised clustering with random values, unit tests, and the
DB schema to determine the test cases related to modifications or new features added to software products
connected to DBs. Our proposed approach is empirically evaluated with two database software applications
in a production context. Effectiveness metrics, such as test suite reduction, fault detection capability, recall,
precision, and the F-measure are examined. Our results suggest that the proposed approach is enough
effective with the resulting clusters of test cases.

INDEX TERMS Software regression testing, fault detection capability, test suite reduction, software
verification, software engineering.

I. INTRODUCTION
Software regression testing (RT) plays an important role in
the software development cycle [1], as it helps to verify that
faults are not injected into previous versions of a software
product when new features or existing modifications are per-
formed. Executing the total set of test cases is an expensive
and laborious endeavor, therefore determining a subset of test
cases to be executed in a software regression test is an active
topic of research. To this end, different approaches have been
studied and applied, including minimization, prioritization,
selection, and, recently, optimization of test cases [2]. Where
in this last approach, are included strategies for the determina-
tion of the group of test cases used in a regression testing [3]
such as: greedy algorithms for minimization [4], graph-based
relations for selection [5], capacity-based fault detection for
prioritization [6], and fuzzy entropy-based optimization [7],
among others.

The cost of running a regression test is related to the
size of the product to be verified and the suite of test cases

to be executed, this can cause limitations in the amount of
computational resources available for this purpose [8], [9].

If we consider iterative and incremental development envi-
ronments in which the software is developed and delivered
in short cycles, the execution of the complete suite of test
cases is an unacceptable practice given the volume of test
cases to execute (the goal of pursuing agility is lost). This
issue has raised the study of soft computing approaches [10],
in conjunction to agile approaches [11] in order to identify
test cases that guarantee an acceptable level of verification of
the software product [12].

Results of recent studies indicate that a more effective
alternative for optimizing regression tests is to cluster the
test cases according to some criterion, pattern or charac-
teristic [10], [13]–[15], such that test cases that detect the
same fault are in the same cluster. Examples of these strate-
gies include test execution profiles [16], [17], histories of
test runs [14], function calls [18], partitioning programs,
filtering partitions [19], access to databases (DBs) [20]

VOLUME 5, 2017
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

18419

R. H. Rosero et al.: RT of DB Applications Under an Incremental Software Development Setting

and sampling the most representative test cases for each clus-
ter [21]. However, the problem to solve in these approaches
is to determine the quantity and size of the clusters in
order to balance the cost and the effectiveness of the
approach.

In the field of machine learning, cluster analysis is a tech-
nique for training and organizing data according tomathemat-
ical approaches independent of the application domain [22].
Sometimes it is necessary to have additional information in
addition to the data, such as the number and sizes of the
clusters to be formed, which makes the process expensive
and sometimes limits the procedure; consequently, super-
vised clustering requires experience to manually group such
information [23]. An alternative is to use unsupervised clus-
tering, in which probabilistic approaches are used to deter-
mine the number of clusters [24].

Conventionally, regression testing (RT) techniques have
been applied from the perspective of the code, i.e., consider-
ing the software product as a finite state machine [2], keeping
the data constant, which does not take into account their
concomitant evolution [20]. However, in software products
with access to DBs, two types of states are simultaneously
observed (code states and data states); thus, RT techniques
should consider these two aspects. At one side, the state of
the code is organized as a set of labeled memory locations
at which the individual data is stored (code states). However,
at the other side, the state of a DB is organized according
to different data models, such as the relational model. More-
over, large volumes of data can be affected by a single code
instruction that can affect the behavior of other instructions
in separated components of the software product that access
a DB [25].

In this work, we present an approach to RT for software
products with DB access under an incremental software
development context. It is based on the clustering of the
DB access code along with the DB schema. Based on an
analysis of code that accesses the DB, our proposal uses an
unsupervised clustering approach with random values that
selects a set of test cases. We conduct an empirical evaluation
of our approach with two database software products running
in a production setting.

The rest of this document is organized as follows. Section II
presents the related work. Section III presents the pro-
posed approach and the corresponding algorithm. Section IV
presents the empirical evaluation of the proposal. Section V
presents the results. Section VI presents the discussions and
threats to validity. Finally, the conclusions are discussed
in section VII.

II. RELATED WORK
More than two decades have passed since
Rothermel andHarrold [3] introduced the concept of software
regression testing. Since then, different approaches to regres-
sion testing have emerged. Some of these RT approaches are
based on strategies that analyze the source code, strategies
that analyze characteristics of the test cases. Recently have

been reported combinations of the previous strategies with
soft computing techniques [2], [27].

Three well-known approaches for RT are minimization,
selection and prioritization. These approaches can be defined
as following:

Minimization. Let P be a software product and T the set
of test cases associated with P. In minimization, the problem
is to obtain a subset of test cases T ′ that does not include
redundant or obsolete test cases to verify P.

Selection. In selection, the strategy is to determine a subset
of test cases T ′ in such a manner that the modifications to the
software product P′ are tested with T ′.
Prioritization. In prioritization, the goal is to determine

an ideal permutation of sequences of test cases to improve
the performance of the RT technique.

Once described these three approaches, we briefly discuss
some relevant and recent approaches to RT reported in the
literature, and which are further detailed in [2].

Rothermel and Harrold [26] presented a strategy to analyze
and detect modification in control flow graphs of the original
and modified programs to determine the test cases related to
them. Chen et al. [28] presented a technique with regards
to the level of the code entities of functions and variables.
Leung and White [29] introduced a technique with emphasis
at the module level; this strategy determines the modified
modules along with their test cases, and it considers them
for the integration tests. The abstraction of the program into
models has also been applied in [12].

Under the approach of analyzing test cases, it has been
observed that some test cases have similar behaviors and that
they sometimes are related to the same fault. This situation
has motivated more research concerning the classification
of test cases into groups, this based on predetermined met-
rics [30]. We also have found works where software meta-
data or feature specifications are considered. For example,
Vangala et al. [16] used execution profiles and static execu-
tions to compare test cases and to apply clustering algorithms.
Orso et al. [31] used metadata in eXtensible Markup Lan-
guage (XML) format to select the test cases. Kim et al. [32]
reported a technique that combines the history of executions
with code modifications. Wikstrand et al. [33] presented
a technique that relates the results of the test cases with
the defects found and also with the previous modifications.
Ficco et al. [34] presented a technique based on the capacity
for fault detection of the test cases under the methodology of
incremental iterative development.

Because the connections between groups of test cases are
sometimes hidden [16], it is necessary to determine patterns
that relate these groups. For this purpose, recently optimiza-
tion approaches for RT have emerged. Techniques such as soft
computing [15], data mining [35], beehive networks [36], and
machine learning [27], [2] are starting to be applied in the
context of RT. As regards data mining and machine learning
techniques, a common strategy followed is the identification
of clusters. In the context of RT, clustering analysis considers
grouping a set of test cases. For example, Dickinson et al. [37]

18420 VOLUME 5, 2017

R. H. Rosero et al.: RT of DB Applications Under an Incremental Software Development Setting

TABLE 1. Summary of software regression testing of database applications using clustering analysis.

applied data mining to filter and cluster test cases based on
their execution and program profiles. Other works [38]–[41]
have also reported the application of clustering analysis for
conducting software RT.

In the context of software products with data access,
Haraty et al. [42] considered regression testing from the
perspective of stored procedures under a firewall approach.
Willmor and Embury [25] presented their technique of safe
regression testing using the white-box approach along with
graphs representing the code. Tuya et al. [45] proposed a
series of experiments to evaluate and compare the effec-
tiveness of different white-box techniques with the cover-
age of SQL (Structured Query Language) statements, with
the aim of selecting test cases associated with a database.
Rogstad et al. [46] considered the transactional aspect of a
DB, but from the perspective of black-box models using clas-
sification trees based on the similarity of the test cases. Sim-
ilarly, Rogstad and Briand [20] considered test cases related
to a database for grouping deviations from the database (dif-
ferences between database manipulations and the versions of
the program); this approach is based on an entropy criterion
to evaluate different clustering techniques [28]. Table 1 shows
a summary of the characteristics used in these works.

As shown in Table 1, we found works that propose black-
box [25], [42] and white-box approaches [20], [46], [47] of
regression testing used in database applications. Concerning
approaches that use white-box, we have not found works that
consider, under an integral approach, modifications to the
source code in conjunction with the accesses to the database
and its related test cases.

In summary, we have found some works that dis-
cuss regression testing approaches applied to database
applications, however, we have not found regression test-
ing approaches considering unsupervised clustering strate-
gies (where a probabilistic criteria is used to determine the
number of groups) of database applications developed under
an iterative and incremental settings. In addition, we have
not found regression testing approaches that consider the
database schema in an integral way, along with the database
access code and the associated test cases (derived from an
unsupervised clustering strategy).

FIGURE 1. Approach for regression testing of database applications.

III. PROPOSED RT APPROACH
In this section, we detail the proposed regression testing of
database applications approach and describe the algorithms
used.

At a glance, our proposal consists in grouping test cases
associated with data manipulation, particularly on the fields
in the tables of a DB, and then, in successive development
increments, execute the group or groups of test cases that
contain the test cases that have detected faults. The proposed
approach is shown in Fig. 1.

VOLUME 5, 2017 18421

R. H. Rosero et al.: RT of DB Applications Under an Incremental Software Development Setting

TABLE 2. Matrix of test cases accessing the DB.

Following, we describe the involved steps of the proposed
approach.

1) Test cases selection The objective of this initial step is
to analyze the code of the test cases associated with a
new feature or amodification that contains access to the
fields of the tables of a given DB. To do this, a textual
analysis of the software product code is performed. The
results are the test cases that should be added to the set
of test cases (T) that access the DB.

2) Test cases similarity matrix construction In this step,
we obtain information regarding the table(s) and
columns(s) of each test case (T). We consider func-
tionalities such as store procedures, triggers, functions
and views. With this information, a binary matrix (M)
is constructed. In this matrix, the value 1 represents
a DB access operation specified in the test case.
This access is related to the attribute(s) of a given
entity/relationship, as shown in Table 2. This process
yields an Mmxn matrix in which the rows (m) corre-
spond to test cases and the (n) columns represent the
fields of the DB tables of the software product to be
examined.

3) Test cases clusters generation In this step, we use an
unsupervised clustering algorithm under the strategy of
expectation-maximization (EM) [48], which allows the
analysis of statistical descriptors of the test cases (mean
and standard deviation). Based on this information,
we determine a probabilistic distribution function to
assign the membership of a test case to a cluster based
on the similarity matrix. The algorithm can decide how
many clusters to create based on cross-validation of
the data; this algorithm uses a finite Gaussian mixture
model [49] that assumes that all attributes are indepen-
dent random variables. After applying this algorithm,
we get one or more clusters (G).

4) Clusters selection In this step, we select the clusters
that are going to be executed for the regression test.
We determine in which clusters the new or modified
test cases (Gf) are located; we also consider the test
cases that revealed faults (Tf).

5) Clusters execution In this step, the test cases (Gf) are
executed, thus generating a list of faults related to the
test cases, if applicable.

A. ALGORITHM USED IN OUR PROPOSAL
Following, we describe the algorithms used in each step of
the proposed approach (test cases selection, test cases matrix

construction, test cases clusters generation, clusters selection,
and clusters execution). Table 3 lists and describes the iden-
tifiers used in each of the algorithms designed.

TABLE 3. Identifiers used in the algorithms.

Our approach consists in performing small regression tests
incrementally with each version of the software product, i.e.,
whenever features (fi) are added or modified in the software
product. Algorithm No. 1 presents the basic steps for this.

Algorithm 1 clusterSelectionRegression Test
Input: fi, TCi
Output: Faults List

1: clusterSelectionRegressionTest process
2: repeat
3: for each fi do //fi ∈ F
4: TestDB← selectTestDB(fi, TCi)
5: MatTestBD← buildMatrixTestDB(testDB)
6: MatClusterTestDB← clusterizationEM(MatTestBD)
7: MatClusterRegressionTestDB← (MatCluster

TestDB ∩ TestDBfailed)
8: executeClusterRegressionTestDB

(MatClusterRegressionTestDB)
9: end for
10: until @ fi
11: end clusterSelectionRegressionTest process

1) Main Algorithm For each feature (fi), a selection of
test cases that access the DB is performed, and then,
the process of construction of a similarity matrix based
on the accesses to the fields of the DB is applied.
Once the matrix is built, clustering analysis is applied.
Finally, the clusters containing test cases that have
failed are executed, and their faults are examined,
as shown in Algorithm No. 1.

18422 VOLUME 5, 2017

R. H. Rosero et al.: RT of DB Applications Under an Incremental Software Development Setting

2) Test cases selection For the implementation of this
step, we developed a software tool that analyzes
the DB schema. This tool is able to determine the
DB functions that are invoked from the test case code
of the software product. The output of this phase con-
stitutes the test cases that access the DB (TestDB),
as shown in Algorithm No. 2.

Algorithm 2 selectedTestDB
Input: fi, TCi
Output: TestDB, NumTestDB

1: selectedTestDB process
2: numTestDB← 0
3: repeat
4: if TCi access DB then
5: TestDB← TestDB ∪ TCi
6: NumTestDB++
7: end if
8: until @ TCi
9: end selectedTestDB process

3) Test cases similarity matrix construction In this phase,
as Algorithm No. 3 illustrates, the similarity matrix
is constructed iteratively, with n rows, one for each
test case that accesses the DB, and m columns, which
correspond to the attributes of each entity/relationship.
In each row, the value of 1 indicates that the test case is
related to some attribute; the value is 0 otherwise. The
developed tool is also used for this step, as shown in
Algorithm No. 3.

Algorithm 3 buildMatrixTestDB
Input: TestDB, numTestDB
Output: MatTestDB

1: buildMatrixTestDB process
2: i←1
3: while i < numTestBD do
4: MatTestDB← (MatTestDB ∪ (TestDBi))
5: end while
6: end buildMatrixTestDB process

4) Test cases clusters generation and selection For the
clustering analysis, the use of the Weka data mining
tool was considered for practical reasons [50] (owing
to its available documentation, an active discussion
forum and the existence of application programming
interfaces). This tool implements different clustering
algorithms. Among these, we selected the probabilis-
tic algorithm EM [48], which has the advantage of
determining a k number of clusters based on the infor-
mation of the test cases of the similarity matrix, see
Algorithm No. 4.

5) Clusters execution Algorithm No. 5 presents the final
phase of the approach, which executes the test cases

Algorithm 4 clusterizationEM
Input: MatTestDB
Output: MatClusterTestDB

1: clusterizationEM process
2: 2 Vector desconocido de parámetros
3: 20, 21,,2T, T criterio de convergencia
4: T←0
5: 20

←0
6: Repetir
7: Q(2, 2t)← E[log p(xg, xmI 2) I xg, 2t]
8: 2t+1

← arg max2 Q(2, 2t)
9: t← t+1
10: until convergence criterion
11: end clusterizationEM process

that belong to a certain cluster in which the test cases
related to a given feature (fi) has failed (TestDBfailed);
the result of this step is a list of detected faults.

Algorithm 5 executeClusterRegressionTestDB
Input: MatClusterRegressionTestDB
Output: FaultsList

1: executeClusterRegressionTestDB process
2: FaultsList← ∅
3: for each Tci in TestDBfailed
4: execute(MatClusterTestDB ∩ TestDBfailed)
5: FaultsList← FaultsList ∪ tci
6: end for
7: end executeClusterRegressionTestDB process

IV. EMPIRICAL EVALUATION
In this section, we evaluate the proposed approach through
an extensive empirical evaluation; for this purpose, we used
two database software products running in a production
environment.

A. INDICATORS AND METRICS
To evaluate the effectiveness of the proposed approach,
the metrics proposed in [51] were considered, such as the
ability to reduce the suite of test cases and the ability to detect
faults in regression tests. The metrics used in our evaluation
are as follows:

Percentage reduction of the suite (TR). Let T be the total
number of test cases with access to the DB and T’ the number
of test cases selected for a regression, then TR is given by
equation in (1):

TR =
T− T′

T
× 100 (1)

Precision (P). Let T’f be the set of all test cases selected
with access to the DB that reveal faults, then, P is given by

VOLUME 5, 2017 18423

R. H. Rosero et al.: RT of DB Applications Under an Incremental Software Development Setting

equation in (2):

Precision =
T′f
T′

(2)

Recall (R). Let T’f be the set of test cases that reveal faults.
Then, the metric of R is given by equation in (3):

Recall =

∣∣T′f∣∣
|Tf|

(3)

Fault detection capability.This is a metric directly related
to recall. Specifically, equation (3) is used to calculate the
fault detection capability of the selected test cases.

F-measure (F). It is a combination of two metrics widely
used in information science, precision (P) and recall (R); the
F-measure evaluates the benefit integrally and is given by
equation in (4):

F-measure =
2× Precision× Recall
Precision+ Recall

(4)

B. EXPERIMENTAL SUBJECTS
For the evaluation of our proposal, we used two database
software applications developed in Java, both of which are
employed in an academic context. The first one, called
‘‘Estafeta’’, is a software product used to manage the
planned weekly working days of professors of an Ecuadorian
university.

The second product identified as ‘‘Silabo’’, is used to
manage the contents of the courses taught by a teacher at an
Ecuadorian university.

Table 4 presents the technical characteristics of each soft-
ware product.

TABLE 4. Technical characteristics of the software products.

C. EXPERIMENTAL SUBJECTS
As previously mentioned, the clustering technique is used to
group test cases based on their similarity on the fields of the
tables of a DB. For the first product (Estafeta), five versions

were incrementally developed, each with their own set of
test cases. For the second product (Silabo), nine versions
were developed. In both cases, the methodology of incre-
mental iterative development was followed; that is, in each
cycle, new features were added, so new test cases were also
designed and implemented following the methodology and
tools for unit tests under Java for both, the code and the DB
(JUnit, DBUnit) [52].

Table 5 presents the new test cases by version for each
of the software products, and the cumulative test cases for
a given regression test.

TABLE 5. Number of test cases for rach version of the software products.

For each of the products, the respective test cases of each
of the versions were executed, after which a regression test of
the product was performed for each version. Table 6 reports
the faults (Tf) that were identified in the regression tests.

TABLE 6. Faults and test cases for each version.

To evaluate the approach, it was assumed that the cost of
the test cases is equal, considering the execution times of the
test cases, which, on average, required 30 seconds to execute,
with slight deviations, in addition to their severity and the
fault patterns of the programmers.

For the clustering phase, we used the probabilistic algo-
rithm EM [48], which is an extended version of the K-means
in which the estimation of the model parameters is optimized.
EM uses the soft assignment method for assigning elements

18424 VOLUME 5, 2017

R. H. Rosero et al.: RT of DB Applications Under an Incremental Software Development Setting

to a cluster (the element can be clustered into multiple clus-
ters), whereas other algorithms, such as K-means uses hard
assignment (an element belongs to a single cluster) [53].
EM determines the parameter k, which specifies the number
of clusters through a cross validation of the information sup-
plied (see algorithm No. 4).

Regarding the number of iterations in this work, we use
1 × 10−6 as the minimum value, the maximum number of
iterations was 10, and the standard deviation was used to
judge for the convergence, thus, following the same approach
performed in [49].

It should be noted that in order to reduce the random impact
of the random determination of the centroid (this constitutes
a weakness in the clustering algorithms), we employed the
optimization scheme described in [54] and [55]. We per-
formed a statistical analysis for each version with 10 different
seeds (1, 10, 50, 100, 150, 200, 250, 500, 750, 1000), obtain-
ing measurements for each of the variables considered in this
study, and later performed a statistical analysis (mean, vari-
ance, standard deviation) for each version of each software
product.

Tables 7 and 8 present the data obtained for the fourth
and seventh versions of the software products (Estafeta
and Silabo), respectively. Note that the parameter k was
determined using the EM algorithm of the Weka software
tool.

TABLE 7. Clustering of the 4th version of Estafeta with different seeds.

As can be observed from Table 7, for the fourth version of
the Estafeta product, a reduction rate of 79.8% was reached.
This with a maximum precision of 27% corresponding to
four clusters (with the seed set to 100). The lowest values
were obtained when the number of clusters was equal to
five (seed equals to 500), which yielded a reduction rate
of 5.5% and an accuracy of 6%. The average test reduction
rate for this version is shown in Table 9, as we see it is equals
to 20% (0.20).

In the case of the seventh version of the Silabo prod-
uct (Table 8), a reduction rate of 87.0%was reached, this with
a maximum precision of 29% corresponding to nine clus-
ters (seed set to 1 and 100). The lowest values were obtained
when the number of clusters was equal to 6 (seed equals
to 1000). The average test reduction rate for this ver-
sion of the Silabo is equals to 54% (0.54), as shown
in Table 10.

TABLE 8. Clustering of the 7th version of Silabo with different seeds.

TABLE 9. Statistics for each version of the software product Estafeta.

V. RESULTS
In this section, we present the results obtained after evaluating
the proposed approach, it in terms of the metrics previously
defined. Tables 9 and 10 present the average data for each
regression test for each version of the software products.

Note that for some metrics, high values were obtained,
however these values are balanced with others low values (for
example, compare the fourth and third versions [Table 9] in
terms of the metric TR, these values are sensitive to k and
the seed). The metric of detection capacity (R) was 100%,
and the precision was 10%. Under the same considerations,
we present the metrics of the Silabo product (Table 10).

As shown in Table 10, the values of the metrics for the
Silabo product are better than for the Estafeta product. This
considering the sensitivity of the k parameter and the seed
parameter in the clustering algorithm selected, for example,
see the seventh and third version of the Silabo product.

As a general summary, Table 11 presents the aver-
age metrics for each software product with regards to

VOLUME 5, 2017 18425

R. H. Rosero et al.: RT of DB Applications Under an Incremental Software Development Setting

TABLE 10. Statistics for each version of the software product Silabo.

the effectiveness. As shown in this table, we observe better
results for the medium-sized software product (Silabo), with
values of 40% 100%, 12% and 20% for the reduction rate of
test cases, recall, precision and F-measure, respectively.

VI. DISCUSSION
Using the proposed approach, we obtained results that were
analyzed using the following effectiveness metrics: suite
reduction capability (TR), fault detection (R), precision (P)
and F-measure. The metrics were collected for two software
products (Estafeta and Silabo).

Regarding the average reduction capacity of the suite of
test cases (TR), Table 9 list a reduction rate of 14% (0.14)
for the Estafeta product. In the case of the Silabo product,
the average reduction rate was 40% (0.40, see Table 10);
in general, the results suggest that EM clustering for the
proposed approach improves the reduction capacity of the
suite when the number of test cases is increased.

TABLE 11. Metrics by software product.

On the other hand, consider the fault detection (Recall)
metric: Tables 9 and 10 suggest that the proposed approach
managed to capture 100% of the faults in the regression test;
that is, R in the two case studies is of 100%, which had a
favorable impact on the F-measure metric.

For the precision metric (P), according to Tables 9 and 10,
on average, 12% was obtained for the Silabo product,
while 10% was obtained for the Estafeta product, mainly due
to the prioritization of the ability to capture all of the faults.

Finally, as regards to the F-measure metric, on average we
observed 17% (0.17) for the Estafeta and 20% (0.20) for the
Silabo product, which suggests improvement in the software
regression tests under the clustering approach in medium-
scale software products.

Regarding results of similar works, it can be noted that
they presented considerable differences, owing basically to
the regression testing approach used [14], [19], [20]. How-
ever, our results can serve as a reference for future similar
RT proposals; also, our results tend to be more representative
of a production setting.

A. STUDY LIMITATIONS
This section discusses the threats to validity considered in
this work, for which the threats described in [56] were
considered.

Internal threats: these are threats that can affect the validity
of the results from the point of view of the execution of the
empirical study. In this case, the design and generation of the
test cases after the development of the software product were
considered.

Regarding the clustering, a high sensitivity to the parame-
ters k (number of clusters) and seed (initial centroid) of the
Weka EM algorithm was evident; consequently, we decided
not to set the parameter k. However, there are other works that
address this issue, for example [54] and [55].

External threats: Although our results shed light on the use
of the RT approach on a small- and a medium- size software
product, it is necessary to perform studies with large-scale
software products. To reduce this threat, the test cases were
generated by the same developers, and the faults considered
were real.

Threats to the construct: such threats are related to the
metrics used in the empirical study. To reduce this threat,
metrics related to the field of investigation were used. The
metrics used for the assessment of the proposal are also used
in other works related to the RT field.

18426 VOLUME 5, 2017

R. H. Rosero et al.: RT of DB Applications Under an Incremental Software Development Setting

VII. CONCLUSIONS
In this paper, we presented an approach for conducting incre-
mental RT of database applications.

The proposed approach was validated empirically with
two small- and medium-scale software products (Silabo and
Estafeta), which can be considered as database software
applications.

According to the results presented in Tables 9, 10 and 11,
our proposed approach exhibits an improvement in the effec-
tiveness of a regression test with respect to a complete regres-
sion test. In general, on average, our proposed approach
reduced the number of test cases to 14% in product 1
(Estafeta) and 40% in product 2 (Silabo), both of them with
a fault detection capacity of 100%, and on average with a
precision of 10% and 12%, respectively.

This improvement is a result of the sensitivity of the
clustering algorithms, due to their sensitivity to the number
of clusters (k) and the initial random value (seed) of the
process. It has a strong impact on the results of the clustering
process. To reduce the impact of these parameters, we applied
manipulations to the seed parameter and let the parameter k
be random, obtaining on average values that yielded better
results.

Based on our findings, it follows that combined analysis
of unsupervised clustering techniques using unit testing tech-
niques and DB tests can be applied in software regression
tests, mainly those that are part of an iterative-incremental
software development model.

To the best of our knowledge, this is the first work that
considers a combination of the unit tests together with the
schema of relational DBs and the use of an unsupervised
clustering algorithm, in which a strong sensitivity of clus-
tering algorithm parameters is emphasized, considering the
dependence of the position (random values) in this type of
clustering algorithm.

REFERENCES
[1] S. Yoo and M. Harman, ‘‘Regression testing minimization, selection and

prioritization: A survey,’’ Softw. Test. Verification Reliab., vol. 22, no. 2,
pp. 67–120, Mar. 2012.

[2] R. H. Rosero, O. S. Gómez, and G. Rodríguez, ‘‘15 years of software
regression testing techniques—A survey,’’ Int. J. Softw. Eng. Knowl. Eng.,
vol. 26, no. 5, pp. 675–689, Jun. 2016.

[3] G. Rothermel and M. J. Harrold, ‘‘A safe, efficient algorithm for
regression test selection,’’ in Proc. Conf. Softw. Maintenance, 1993,
pp. 358–367.

[4] S. Parsa and A. Khalilian, ‘‘A bi-objective model inspired greedy algorithm
for test suiteminimization,’’ inFutureGeneration Information Technology,
Y. Lee, T. Kim, W. Fang, and D. Ślezak, Eds. Berlin, Germany: Springer,
2009, pp. 208–215.

[5] C. R. Panigrahi and R. Mall, ‘‘A hybrid regression test selection technique
for object-oriented programs,’’ Int. J. Softw. Eng. Appl., vol. 6, no. 4,
pp. 17–34, Oct. 2012.

[6] A. Pravin and S. Srinivasan, ‘‘Effective test case selection and prioritiza-
tion in regression testing,’’ J. Comput. Sci., vol. 9, no. 5, pp. 654–659,
May 2013.

[7] M. Kumar, A. Sharma, and R. Kumar, ‘‘Fuzzy entropy-based frame-
work for multi-faceted test case classification and selection: An empirical
study,’’ IET Softw., vol. 8, no. 3, pp. 103–112, Jun. 2014.

[8] H. K. N. Leung and L. White, ‘‘A cost model to compare
regression test strategies,’’ in Proc. Conf. Softw. Maintenance, 1991,
pp. 201–208.

[9] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche, ‘‘Coverage-based
regression test case selection, minimization and prioritization: A case study
on an industrial system,’’ Softw. Test. Verification Reliab., vol. 25, no. 4,
pp. 371–396, Jun. 2015.

[10] R. Mohanty, V. Ravi, and M. R. Patra, ‘‘The application of intelligent and
soft-computing techniques to software engineering problems: A review,’’
Int. J. Inf. Decis. Sci., vol. 2, no. 3, pp. 233–272, 2010.

[11] R. O. Rogers, ‘‘Scaling continuous integration,’’ in Extreme Program-
ming and Agile Processes in Software Engineering, J. Eckstein and
H. Baumeister, Eds. Springer, 2004, pp. 68–76.

[12] S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran, ‘‘A model-based
regression test selection approach for embedded applications,’’ SIGSOFT
SoftwEng Notes, vol. 34, no. 4, pp. 1–9, Jul. 2009.

[13] A. Podgurski and C. Yang, ‘‘Partition testing, stratified sampling, and
cluster analysis,’’ in Proc. 1st ACM SIGSOFT Symp. Found. Softw. Eng.,
New York, NY, USA, 1993, pp. 169–181.

[14] S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng, ‘‘Using semi-supervised
clustering to improve regression test selection techniques,’’ in Proc. IEEE
4th Int. Conf. Softw. Test., Verification Validation (ICST), Mar. 2011,
pp. 1–10.

[15] N. Gökce, F. Belli, M. Eminli, and B. T. Dinçer, ‘‘Model-based test case
prioritization using cluster analysis: A soft-computing approach,’’ Turkey
J. Elect. Eng. Comput. Sci., vol. 23, no. 3, p. 623, 2015.

[16] V. Vangala, J. Czerwonka, and P. Talluri, ‘‘Test case comparison and
clustering using program profiles and static execution,’’ in Proc. 7th Joint
Meeting Eur. Softw. Eng. Conf. ACM SIGSOFT Symp. Found. Softw. Eng.,
New York, NY, USA, 2009, pp. 293–294.

[17] C. Zhang, Z. Chen, Z. Zhao, S. Yan, J. Zhang, and B. Xu, ‘‘An improved
regression test selection technique by clustering execution profiles,’’ in
Proc. 10th Int. Conf. Quality Softw. (QSIC), 2010, pp. 171–179.

[18] B. Guo, M. Subramaniam, and P. Chundi, ‘‘Analysis of test clusters for
regression testing,’’ in Proc. IEEE 5th Int. Conf. Softw. Test., Verification
Validation (ICST), Apr. 2012, p. 736.

[19] Z. Chen, Y. Duan, Z. Zhao, B. Xu, and J. Qian, ‘‘Using program slicing to
improve the efficiency and effectiveness of cluster test selection,’’ Int. J.
Softw. Eng. Knowl. Eng., vol. 21, no. 6, pp. 759–777, Sep. 2011.

[20] E. Rogstad and L. C. Briand, ‘‘Clustering deviations for black box regres-
sion testing of database applications,’’ IEEE Trans. Rehabil., vol. 65, no. 1,
pp. 4–18, Mar. 2015.

[21] S. Yan, Z. Chen, Z. Zhao, C. Zhang, and Y. Zhou, ‘‘A dynamic test
cluster sampling strategy by leveraging execution spectra information,’’
in Proc. 3rd Int. Conf. Softw. Test., Verification Validation (ICST), 2010,
pp. 147–154.

[22] D. Zhang, Z.-H. Zhou, and S. Chen, ‘‘Semi-supervised dimensionality
reduction,’’ in Proc. SIAM Int. Conf. Data Mining, 2007, pp. 629–634.

[23] M. Bilenko, S. Basu, and R. J. Mooney, ‘‘Integrating constraints and
metric learning in semi-supervised clustering,’’ in Proc. 21st Int. Conf.
Mach. Learn., New York, NY, USA, 2004, p. 11.

[24] P. Berkhin, ‘‘A survey of clustering data mining techniques,’’ in Grouping
Multidimensional Data, J. Kogan, C. Nicholas, and M. Teboulle, Eds.
Berlin, Germany: Springer, 2006, pp. 25–71.

[25] D. Willmor and S. M. Embury, ‘‘A safe regression test selection technique
for database-driven applications,’’ in Proc. 21st IEEE Int. Conf. Softw.
Maintenance (ICSM), Sep. 2005, pp. 421–430.

[26] G. Rothermel and M. J. Harrold, ‘‘A safe, efficient regression test selection
technique,’’ ACM Trans. Softw. Eng. Methodol., vol. 6, no. 2, pp. 173–210,
1997.

[27] E. Engström, P. Runeson, and M. Skoglund, ‘‘A systematic review on
regression test selection techniques,’’ Inf. Softw. Technol., vol. 52, no. 1,
pp. 14–30, 2010.

[28] Y.-F. Chen, D. S. Rosenblum, and K.-P. Vo, ‘‘TestTube: A system
for selective regression testing,’’ in Proc. 16th Int. Conf. Softw. Eng.,
Los Alamitos, CA, USA, 1994, pp. 211–220.

[29] H. K. N. Leung and L. White, ‘‘A study of integration testing and software
regression at the integration level,’’ in Proc. Conf. Softw. Maintenance,
1990, pp. 290–301.

[30] P. E. Ammann and J. C. Knight, ‘‘Data diversity: An approach to software
fault tolerance,’’ IEEE Trans. Comput., vol. C-37, no. 4, pp. 418–425,
Apr. 1988.

[31] A. Orso, N. Shi, and M. J. Harrold, ‘‘Scaling regression testing to large
software systems,’’ in Proc. 12th ACM SIGSOFT 12th Int. Symp. Found.
Softw. Eng., New York, NY, USA, 2004, pp. 241–251.

VOLUME 5, 2017 18427

R. H. Rosero et al.: RT of DB Applications Under an Incremental Software Development Setting

[32] S. Kim, T. Zimmermann, E. J. Whitehead, Jr., and A. Zeller, ‘‘Predict-
ing faults from cached history,’’ in Proc. 29th Int. Conf. Softw. Eng.,
Washington, DC, USA, 2007, pp. 489–498.

[33] G. Wikstrand, R. Feldt, J. K. Gorantla, W. Zhe, and C. White, ‘‘Dynamic
regression test selection based on a file cache an industrial evaluation,’’ in
Proc. Int. Conf. Softw. Test. Verification Validation, 2009, pp. 299–302.

[34] M. Ficco, R. Pietrantuono, and S. Russo, ‘‘Bug localization in test-driven
development,’’ in Proc. Adv. Soft Eng., 2011, pp. 2:1–2:18.

[35] J. Anderson, S. Salem, and H. Do, ‘‘Improving the effectiveness of test
suite through mining historical data,’’ in Proc. 11th Work. Conf. Mining
Softw. Repositories, New York, NY, USA, 2014, pp. 142–151.

[36] C. L. B. Maia, R. A. F. do Carmo, F. G. de Freitas, G. A. L. de Campos, and
J. T. de Souza, ‘‘Automated test case prioritization with reactive GRASP,’’
Adv. Softw. Eng., vol. 2010, Jan. 2010, Art. no. 428521.

[37] W. Dickinson, D. Leon, and A. Podgurski, ‘‘Finding failures by cluster
analysis of execution profiles,’’ in Proc. 23rd Int. Conf. Softw. Eng.,
Washington, DC, USA, 2001, pp. 339–348.

[38] A. Podgurski et al., ‘‘Automated support for classifying software failure
reports,’’ in Proc. 25th Int. Conf. Softw. Eng., Portland, OR, USA, 2003,
pp. 465–475.

[39] S. Yoo, M. Harman, P. Tonella, and A. Susi, ‘‘Clustering test cases to
achieve effective and scalable prioritisation incorporating expert knowl-
edge,’’ in Proc. 18th Int. Symp. Softw. Test. Anal., New York, NY, USA,
2009, pp. 201–212.

[40] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, ‘‘The WEKA data mining software: An update,’’ ACM
SIGKDD Explorations Newslett., vol. 11, no. 1, pp. 10–18, 2009.

[41] E. G. Cartaxo, P. D. L. Machado, and F. G. O. Neto, ‘‘On the use of a
similarity function for test case selection in the context of model-based
testing,’’ Softw. Test. Verification Reliab., vol. 21, no. 2, pp. 75–100,
Jun. 2011.

[42] R. A. Haraty, N. Mansour, and B. Daou, ‘‘Regression testing of database
applications,’’ in Proc. ACM Symp. Appl. Comput., New York, NY, USA,
2001, pp. 285–289.

[43] K. Siau, Advanced Topics in Database Research. Calgary, AB, Canada:
Idea Group, 2004.

[44] G. Rothermel andM. J. Harrold, ‘‘Analyzing regression test selection tech-
niques,’’ IEEE Trans. Softw. Eng., vol. 22, no. 8, pp. 529–551, Aug. 1996.

[45] J. Tuya, J. Dolado, M. J. Suarez-Cabal, and C. de la Riva, ‘‘A controlled
experiment on white-box database testing,’’ SIGSOFT Softw. Eng. Notes,
vol. 33, no. 1, pp. 8:1-8:6 2008.

[46] E. Rogstad, L. Briand, and R. Torkar, ‘‘Test case selection for black-box
regression testing of database applications,’’ Inf. Softw. Technol., vol. 55,
no. 10, pp. 1781–1795, Oct. 2013.

[47] E. Rogstad, L. Briand, R. Dalberg, M. Rynning, and E. Arisholm, ‘‘Indus-
trial experiences with automated regression testing of a legacy database
application,’’ in Proc. 27th IEEE Int. Conf. Softw. Maintenance (ICSM),
Sep. 2011, pp. 362–371.

[48] G. McLachlan and T. Krishnan, The EM Algorithm and Extensions.
Hoboken, NJ, USA: Wiley, 2007.

[49] I. H.Witten and E. Frank,Data Mining: Practical Machine Learning Tools
and Techniques, 2nd ed. San Mateo, CA, USA: Morgan Kaufmann, 2005.

[50] Y. G. Jung, M. S. Kang, and J. Heo, ‘‘Clustering performance comparison
using K-means and expectation maximization algorithms,’’ Biotechnol.
Biotechnol. Equip., vol. 28, pp. S44–S48, Nov. 2014.

[51] G. Rothermel,M. J. Harrold, J. Ostrin, andC.Hong, ‘‘An empirical study of
the effects of minimization on the fault detection capabilities of test suites,’’
in Proc. Int. Conf. Softw. Maintenance, 1998, pp. 34–43.

[52] M. Fisher and S. Duskis, ‘‘Integration testing with JUnit,’’ in Spring
Persistence—A Running Start, Berkeley, CA, USA: Apress, 2009,
pp. 153–162.

[53] S. Y. Kung, Kernel Methods and Machine Learning. Cambridge, U.K.:
Cambridge Univ. Press, 2014.

[54] G. Celeux and G. Govaert, ‘‘A classification EM algorithm for clustering
and two stochastic versions,’’ Comput. Stat. Data Anal., vol. 14, no. 3,
pp. 315–332, Oct. 1992.

[55] G. Hamerly and C. Elkan, ‘‘Alternatives to the K-means algorithm that
find better clusterings,’’ in Proc. 11th Int. Conf. Inf. Knowl. Manage.,
New York, NY, USA, 2002, pp. 600–607.

[56] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Berlin, Germany:
Springer Science & Business Media, 2012.

RAÚL H. ROSERO received the Bachelor’s degree
in informatics engineering from the Central Uni-
versity of Ecuador, the Higher Diploma degree
in software development process management
from Army University, Ecuador, and the Master’s
degree in applied computer science from the Poly-
technic School of Chimborazo. He is currently pur-
suing the Ph.D. degree in system engineering with
the Universidad Nacional Mayor de San Marcos,
Peru. His current research area is the verification

and validation of software, testing software, and agile methods.

OMAR S. GÓMEZ received the Bachelor’s degree
in computer engineering from the University of
Guadalajara, Mexico, the Master’s degree in soft-
ware engineering from the Center for Research
in Mathematics, Mexico, and the Ph.D. degree
in software and systems from the Technical Uni-
versity of Madrid, Spain. He has post-doctoral
studies with the University of Oulu, Finland.
He was a SENESCYT-Prometeo Researcher (ini-
tiative of the Ecuadorian government that seeks to

strengthen research, academy, and knowledge transference) with the Techni-
cal School of Chimborazo, Ecuador. He is currently an Adjunct Associate
Professor with the Technical School of Chimborazo. His research work
focuses on experimentation in software engineering as well as on issues
related to software quality, software verification, and software design. He
was awarded with a membership to the Mexican network of researchers,
where he currently holds the entry-level position of SNI-C from the Mexican
National Council of Science and Technology.

GLEN RODRÍGUEZ (M’02) received the B.S.
degree in system engineering from the Universi-
dad Nacional de Ingenieria, Lima, Peru, in 1994,
and the M.E. degree in information and com-
puter science engineering and the Ph.D. degree in
electronic and information engineering from the
Toyohashi University of Technology, Toyohashi,
Japan, in 2001 and 2004, respectively. Since 2006,
he has been a Lecturer and later a Professor
with the Universidad Nacional de Ingenieria. From

2008 to 2013, he was involved in the Cubesat project of this university
responsible for the ground station. He teaches on the Graduate School of
Universidad NacionalMayor de SanMarcos, Lima. His research interests are
evolutionary algorithms, software testing, search-based software engineer-
ing, parallel processing, mobile communications, and information security.

18428 VOLUME 5, 2017

