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ABSTRACT Dynamic principal component analysis (DPCA) is generally employed in monitoring dynamic
processes and typically incorporates all measured variables. However, for a large-scale process, the inclusion
of variables without fault-relevant information may cause redundancy and degrade monitoring performance.
In this paper, the influence of variable and time-lagged variable selection on the DPCA monitoring perfor-
mance is analyzed. Then, a fault-relevant performance-driven distributed monitoring scheme is proposed
to achieve efficient fault detection and diagnosis. First, performance-driven process decomposition is
performed, and the optimal subset of variables and time-lagged variables for each fault are selected through
a stochastic optimization algorithm. Second, local DPCA models are established to characterize the process
dynamics and generate fault signature evidence. Finally, a Bayesian diagnosis system with the most efficient
evidence sources is established to identify the process status. Case studies on a numerical example and the
Tennessee Eastman benchmark process demonstrate the efficiency of the proposed monitoring scheme.

INDEX TERMS Distributed monitoring, large-scale dynamic process, dynamic principal component
analysis, Bayesian fault diagnosis.

I. INTRODUCTION
Multivariate statistical process monitoring (MSPM) is gain-
ing increasing attention because of the increasing demands
in plant safety and product quality [1]–[5]. Among the
MSPM methods, principal component analysis (PCA) gen-
erally serves as one of the most fundamental techniques.
A static PCA efficiently handles the cross-correlation among
variables. However, practical processes can be characterized
by dynamics, and some degree of auto-correlation exists
among variables. To address the dynamic behaviors, several
dynamic methods using the ‘‘time lag shift’’ strategy such
as dynamic PCA (DPCA) has been developed [6]–[9]. Effi-
ciency has been demonstrated by numerous applications, but
direct application of these methods on a large-scale dynamic
process is not appropriate because of the large number of
measured variables and the complex correlations (cross-
correlation and auto-correlation).

To address the monitoring issues for large-scale processes,
multiblock or distributed methods are generally employed,
in which the process decomposition is one of the key
steps [10]–[14]. Recently, several data-driven distributed
monitoring schemes, which decompose the process relying
totally on data analysis, have been developed [15]–[18].
However, without considering the fault information, opti-
mal monitoring performance cannot be guaranteed. Taking
fault information into account, the performance-driven
distributed monitoring scheme has been developed [19].
However, the influence of variable and time-lagged variable
selection on the DPCA monitoring performance has not yet
been discussed.

Another issue in monitoring a large-scale process is fault
diagnosis, which aims to assign the current sample to the
most related historical fault class [1], [20]. As an efficient
decision-making technique, Bayesian method is superior in
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fault diagnosis, and numerous studies on Bayesian fault diag-
nosis have been conducted [21]–[23]. Recently, an optimal
Bayesian diagnosis system for PCA-based process monitor-
ing was developed [20]. However, inclusion of the Bayesian
diagnosis system into the distributed monitoring of a large-
scale dynamic process has not been performed.

The main contributions of the current work can be
summarized as follows. (i) The influence of process decom-
position on the DPCA monitoring performance is theoret-
ically analyzed, which will enhance the dynamic process
monitoring theory basics. (ii) A performance-driven process
decomposition method, which selects the optimal subset of
variables and time-lagged variables to achieve the best pos-
sible monitoring performance, is proposed. (iii) An efficient
Bayesian diagnosis system with optimal evidence sources is
established, which identifies the process status of a dynamic
process. The remainder of the paper is structured as fol-
lows. Section 2 reviews the basics of DPCA monitoring
and Bayesian diagnosis. The influence of process decom-
position on the DPCA monitoring performance is also ana-
lyzed. Section 3 presents in detail the performance-driven
distributed DPCA monitoring scheme. Section 4 provides
application results on a numerical example and the Tennessee
Eastman (TE) benchmark process. Finally, Sections 5 draws
the conclusions.

II. PRELIMINARIES
A. DPCA PROCESS MONITORING
PCA establishes a correlation-concerned model for pro-
cess monitoring. Given a normalized data matrix X =

[x1, . . . , xm] ∈ RN×m with N denoting the number of
observations and m denoting the number of measured vari-
ables, the PCA transformation matrix U can be obtained
by performing eigenvalue decomposition on the covariance
matrix 6. Given a new sample x ∈ Rm×1, the i-th principal
component (PC) score ti can be calculated as follows [20]:

ti =
xT pi
√
λi
, (1)

where λi is the i-th eigenvalue corresponding to the i-th PC,
and pi ∈ Rm×1 is the i-th eigenvector in the transformation
matrix U . Two statistics named T 2 and Q are constructed for
fault detection as follows [1]:

T 2
= tT t =

r∑
i=1

t2i ≤ T
2
lim, (2)

Q =
(
x− x̂

)T (x− x̂) = xT
(
I − UrUT

r

)
x ≤ Qlim, (3)

where r is the number of retained PCs, T 2
lim denotes the

confidence limit of T 2, x̂ = U r t is the recovered data, Ur is
the loading matrix with r retained projecting vectors, and
Qlim is the confidence limit of the Q statistic.

The above equation represents the static PCA moni-
toring model, which efficiently characterizes the cross-
correlation among variables. For a dynamic process,

auto-correlation also exists and the current values of vari-
ables depend on the past values. The auto-correlation or at
least the relationship between the current sample and
previous sample should be captured. DPCA takes auto-
correlation into account by using the ‘‘time lag shift’’
method [7], [9]. In DPCA, the training data set becomes
Z = [X (k) ,X (k − 1) , . . . ,X (k − l)] ∈ RN×(lm+m). Here,
we take the first-order model, i.e., Z = [X (k) ,X (k − 1)],
as an example. A new sample at time k then becomes
z = [x1(k), . . . , xm(k), x1(k − 1), . . . , xm(k − 1)]T .

B. INFLUENCE OF VARIABLE SELECTION ON DPCA
MONITORING PERFORMANCE
In monitoring a large-scale process, a distributed monitor-
ing scheme can be employed to reduce the redundancy,
in which the process decomposition is the key step and
will significantly affect the monitoring performance. In the
present study, we analyze the influence of variable selection
on DPCA monitoring performance by considering cross-
correlation and auto-correlation.

Let a numerical example with two variables x1 and x2 be

x1 (k) = φx1 (k − 1)+ ε1(k)

x2(k) = θx1(k)+ ε2(k), (4)

where integer k denotes the time index and ε1(k) and ε2(k) are
the serial and joint independent zero-mean Gaussian random
variables with variances 1−φ2 and σ 2, respectively. The auto-
correlation and cross-correlation are determined by parame-
ters φ and θ , respectively. The fault model can be constructed
as follows:

x1(k) = x1,N (k)+ β1f

x1(k − 1) = x1,N (k − 1)+ β2f

x2(k) = x2,N (k)+ β3f , (5)

where x1,N (k), x1,N (k − 1) and x2,N (k) represent the stan-
dardized data under normal status data and f denotes the
fault specified by parameters β1, β2, and β3. The fol-
lowing cases are considered in this study: (i) without
auto-correlation or cross-correlation; and (ii) with auto-
correlation or cross-correlation.

1) WITHOUT AUTO-CORRELATION OR
CROSS-CORRELATION
If φ = 0 and θ = 0, then x1 (k), x1 (k − 1)
and x2 (k) are uncorrelated. Let z = [z1, z2, z3]T =

[x1(k), x1(k − 1), x2(k)]T denote a measurement, and the
covariance matrix of a full DPCA with all the three variables
involved can be obtained as

6 =

 1 0 0
0 1 0
0 0 1

. (6)

The full DPCA can be obtained as

t1 = z1, t2 = z2, t3 = z3, (7)
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which indicates that the three PCs (t1, t2, and t3) are exactly
the same as the three variables (z1, z2, and z3). The T 2 statistic
of a DPCA model can be constructed as

T 2
=

3∑
j=1

t2j = z21 + z
2
2 + z

2
3 ≤ χ

2
α (3) . (8)

A fault F can lead to a ramp change in the measured
variables. Thus, the time required for the T 2 statistic to
reach the threshold, i.e., the detection delay (defined in [24]),

is Jf =
√

χ2
α(3)

β21+β
2
2+β

2
3
. The Q statistic is not used because all

PCs are retained in the dominant subspace. If a reduced PCA
model built on only two variables (the three variables are
uncorrelated, without loss of generality, using z1 and z2), then
the T 2 statistic with two variables (PCs) can be expressed as

T 2
r2 = z21 + z

2
2 ≤ χ

2
α (2) , (9)

and the detection delay is J2 =
√

χ2
α(2)

β21+β
2
2
. Next, the PCA

model with only one variable (without loss of generality,
using z1) is considered. The T 2 statistic can be expressed as
follows:

T 2
r1 = z21 ≤ χ

2
α (1) . (10)

Then, the detection delay is J1 =
√
χ2
α(1)
β21

. The detec-

tion delay J reflects the difficulty of a statistic indicating a
fault. A larger delay indicates that the fault is more difficult
to detect, whereas a smaller delay indicates better moni-
toring performance with lower non-detection rate. In this
section, the detection delays of using the full DPCA model,
the reduced two-variable DPCA model, and the reduced one-
variable DPCA model are discussed.

First, if we assume that β3 = 0, which means that the fault
does not cause change on the third variable, then J2 < Jf
because χ2

α (2) < χ2
α (3). Under this condition, the reduced

two-variable DPCA monitoring model performs better than
that of a full DPCAmodel with all the three variables. Second,
the monitoring performance of two-variable DPCA model
and one-variable DPCA model is geometrically explained,
as presented in Fig. 1(a). In Fig. 1(a), the dashed blue circle
denotes the control limit for the DPCAmonitoring with x1 (k)
and x2 (k) (or x1 (k − 1)), and the dashed red lines denote the
control limits used for monitoring each variable individually.
Various faults can be generated by the fault parameters β1, β2,
and β3. When a fault occurs along the F1 direction (yellow
area), the DPCA model with only one variable x1 (k) will
perform better because χ2

α (1) < χ2
α (2). Thus, the inclusion

of the variable x2 (k) or the time-lagged variable x1(k − 1) in
the DPCA model is unnecessary. When a fault occurs along
the F2 direction (green area), the DPCA model with only
x2 (k) or x1(k − 1) will perform better. Thus, the inclusion of
x1 (k) in the model is unnecessary. When a fault occurs along
the F3 direction (gray area), the PCA model with x1 (k) and
x2 (k) will provide good monitoring performance.

FIGURE 1. DPCA monitoring: (a) uncorrelated case, (b) correlated case.

2) WITH AUTO-CORRELATION OR CROSS-CORRELATION
If φ 6= 0 but θ = 0, then the process has auto-correlation
but no cross-correlation. Assume that z1 and z2 are correlated
with a covariance a12 and z3 is not correlated with the other
two variables, i.e.,

a12 = a21 = cov(z1, z2)

a13 = a31 = cov(z1, z3) = 0

a23 = a32 = cov(z2, z3) = 0. (11)

The covariance matrix of the DPCA can be expressed as

6 =

 1 a12 a13
a21 1 a23
a31 a32 1

 =
 1 a12 0
a21 1 0
0 0 1

. (12)

After PCA transformation, PC scores can be obtained as

t1 =
1
√
2
z1 +

1
√
2
z2

t2 = z3

t3 =
1
√
2
z1 −

1
√
2
z2. (13)

The T 2 statistic of the DPCA model with three variables
can be obtained as

T 2
f =

z21 + z
2
2 − 2a12z1z2
1− a212

+ z23 ≤ χ
2
α (3) . (14)

The detection delay of the full DPCA model is

Jf =

√
(1−a212)χ

2
α(3)

β21+β
2
2−2a12β1β2

. The T 2 statistic of a reduced DPCA

using z1 and z2 can be given as

T 2
r2 =

z21 + z
2
2 − 2a12z1z2(
1− a212

) ≤ χ2
α (2) , (15)

and the detection delay is J2 =

√
(1−a212)χ

2
α(2)

β21+β
2
2−2a12β1β2

. χ2
α (2) <

χ2
α (3), and in this situation, J2 will be generally smaller

than Jf , and the reduced DPCA model will provide better
performance if we assume that β3 = 0.
Then, the monitoring performance of two-variable DPCA

model and one-variable DPCA model is geometrically
explained. The first PC will be used to generate T 2 statistic,
whereas the second PC will be left in the residual space.
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The Q statistic is constructed to monitor the variations in
the residual subspace. The monitoring chart using T 2 and
Q in DPCA monitoring is presented in Fig. 1(b), which
geometrically illustrates the DPCA monitoring. In Fig. 1(b),
the dashed blue ellipse denotes the control limit of T 2 with
x1 (k) and x2 (k) (or x1 (k − 1)), the parallel lines C1D1 and
C2D2 denote the control limit of Q, the parallel lines A1B1
and A2B2 denote the control limit of T 2 with only one PC
retained, and the dashed red lines denote the control limits
used for monitoring each variable individually. Various faults
can be generated by the fault parameters β1, β2, and β3.When
the fault occurs along the F1 direction (yellow area), the
PCA model with only x1 (k) will perform better because the
confidence limit of x1 (k)will be reached earlier.When a fault
occurs along the F2 direction (green area), the PCA model
with only x2 (k) or x1(k − 1) will perform better. When the
fault occurs along theF3 direction (gray area), themonitoring
model with x1 (k) and x2 (k) will provide better monitoring
performance. The gray area is the largest among the three
areas, indicating that the inclusion of the two variables in one
DPCA model is important.

In some situations, φ 6= 0 and θ 6= 0, which means
that all variables are correlated with one another. In this
situation, no fault irrelevant variable usually exists because
the correlation between the variables will provide useful
information to detect a fault influencing any of the vari-
ables. Based on the above analysis, the existence of irrelevant
variables may cause redundancy in the monitoring and may
degrade the monitoring performance, which requests that a
reduced monitoring model should be established. Determin-
ing a fault irrelevant variable through mathematical analysis
is difficult because the process model is usually unavailable.
In the current work, a stochastic optimization-based method
is employed. This method eliminates the fault irrelevant vari-
ables based on totally processed data.

C. BAYESIAN FAULT DIAGNOSIS
Bayesian diagnosis identifies the underlying process status
based on the currently obtained evidence ec and historical
data D. According to Bayes rule, the posterior probability of
each possible process status can be calculated as follows [20]:

p(F |ec,D) =
p(ec|F,D)p(F |D)∑
F p(ec|F,D)p(F |D)

, (16)

where p(ec|F,D) is the likelihood of evidence ec under pro-
cess status F obtained from historical data and p(F |D) is the
prior probability of fault status F . The process status with the
largest posterior probability can be determined as the underly-
ing process status based on the maximum a posteriori (MAP)
principle. To obtain the likelihood from the process history, a
marginalization-based solution that involves prior knowledge
is provided as follows [22], [23]:

p(ei|Fj,D) =
n(ei|DFj )+ α

(
ei|DFj

)∑K
h=1 n(eh|DFj )+

∑K
h=1 α(eh|DFj )

, (17)

where n(ei|DFj ) is the number of evidence ei under fault status
Fj and α

(
ei|DFJ

)
is the number of prior samples assigned

to ei under fault status Fj. The likelihood accounts prior
and historical samples and will converge to the relative
frequency determined by the historical data as the num-
ber of historical samples increases [23]. Meanwhile, due
to the existence of the prior sample term, the calculation
amount can significantly increase with the number of evi-
dence sources [20], [19]. Then, the main task in using the
Bayesian diagnosis system falls on how to generate efficient
fault signature evidence.

III. FAULT-RELEVANT PERFORMANCE-DRIVEN
DISTRIBUTED MONITORING SCHEME
A. FAULT-RELEVANT PERFORMANCE-DRIVEN
PROCESS DECOMPOSITION
The objective of process decomposition is to decompose
a process into sub-blocks to reduce the redundancy while
the detectability should not be destroyed. When accurate
process model and fault model are available, the decom-
position can be conducted through mathematical analysis.
However, in practice, the analysis may be difficult because
(i) the process model or fault model is usually unavailable
and (ii) the analysis will be complex when the number of pro-
cess variables and fault parameters is large [19]. In practical
applications, some faults occur constantly or periodically, and
these fault data can be collected from process history. Given
these reasons, the current study uses a stochastic optimization
approach, i.e., the genetic algorithm (GA), to achieve optimal
process decomposition.

In using GA, the first step is to establish the fitness
function. Assume that process data of G faults, denoted
as F = {F1,F2, . . . ,FG}, can be obtained from pro-
cess history. Let the measurement in DPCA monitoring be
z = [z1, . . . , z2m]T = [x1(k), . . . , xm(k), x1(k − 1), . . .,
xm(k − 1)]T . In performance-driven process decomposition,
the sub-blocks are constructed by selecting a subset of vari-
ables for each fault. These variables provide the best descrip-
tion of the fault, and the DPCA monitoring model built on
these variables achieves the best possible fault detection per-
formance (defined by non-detection rate, NDR). Meanwhile,
the false alarm rate (FAR) should be retained at an acceptable
level that can be specified according to practical application
requirements. For a specific fault Fi, the fitness function is
established as follows [19]:

min
zj

NDR =
NF,N
NF
× 100%

s.t. FAR =
NN ,F
NN
× 100% ≤ CL, (18)

where NF,N and NF denote the number of non-detected
fault points and the number of fault points, respectively;
NN ,F and NN denote the number of false alarm points
and the number of normal samples, respectively; and
CL is the specified maximum FAR allowed in practical
application.
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FIGURE 2. Chromosome design for fault-relevant performance-driven
process decomposition.

After constructing the fitness function, the chromosome in
GA is designed, as illustrated in Fig. 2. In the chromosome,
each gene (element) is designed to encode a variable. For
instance, a ‘‘1’’ indicates that the corresponding variable
should be selected, whereas a ‘‘0’’ indicates that the corre-
sponding variable should be removed. Using the temporarily
selected variables, a DPCA model can be established. Based
on the validation data, the fitness function value can be calcu-
lated. The GA continues until the best possible performance
is achieved or a stop rule is reached.

B. FAULT-RELEVANT PERFORMANCE-DRIVEN OPTIMAL
DESIGN OF BAYESIAN DIAGNOSIS SYSTEM
In using Bayesian diagnosis, the first step is to generate
fault signature evidence. For the b-th sub-block, assuming

that mb variables are present in zb =
[
zb,1, zb,2 . . . , zb,mb

]T ,
the DPCA model can be established in the sub-block. The
fault signature evidence can be generated by examining the
status of each principal component and the DPCA residual.
The scaled i-th component score can be obtained as follows:

tb,i =
zTb pb,i√
λb,i

, (19)

and the corresponding T 2 statistic of this component T 2
b,i can

be calculated as follows:

T 2
b,i = t2b,i ∼ χ

2 (1) . (20)

The evidence eb = [πb,1, πb,2, . . . , πb,rb , πb,rb+1] can be
generated by discretizing the statistics as follows:

πb,i =

{
0, if T 2

b,i ≤ χ
2
β (1)

1, if T 2
b,i > χ2

β (1)
(i = 1, 2 . . . , rb), (21)

πb,rb+1 =

{
0, if Qb ≤ QCL,b
1, if Qb > QCL,b,

(22)

where rb denotes the number of retained PCs in the b-th sub-
block, Qb is the Q statistic in the b-th sub-block, and QCL,b
is the control limit of Qb. Then, for all B sub-blocks, s =
B∑
b=1

rb+B bits of evidence sources will be generated, and the

total number of possible evidence values will be K = 2s.
The calculation amount can significantly increase with the

number of evidence sources, which can eventually exceed the
computer capacity. By contrast, the evidence sources have
distinct importance in discriminating a fault and the existence
of irrelevant evidence sources may degrade the monitoring
performance [19]. Determining an appropriate number of the
most efficient evidence sources to serve as the input of the
Bayesian diagnosis system is thus important. Here, the GA

FIGURE 3. Chromosome design for fault-relevant performance-driven
evidence source selection.

is employed. For fault diagnosis problem, the main index is
misclassification rate (MCR), and then the fitness function
can be constructed as follows [20]:

min
πi

MCR =
NMC
N
× 100%

s.t. s ≤ smax, (23)

where NMC and N denote the number of wrongly classified
points and the number of all considered points, respectively.
smax is the acceptable maximum number of retained evi-
dence sources, which is specified according to computation
capacity. The chromosome is designed to include all evidence
sources, and the existences of the sources are encoded by
the values of the elements in the chromosome, as illustrated
in Fig. 3.

The procedures of the proposed monitoring scheme consist
of offline modeling and online monitoring as follows:

1) OFFLINE MODELING
1) Collect historical training data under different process

statuses;
2) Construct new measurements using the ‘time lag shift’

method;
3) Perform GA-based process decomposition;
4) Establish distributed DPCA monitoring models and

generate fault signature evidence;
5) Establish Bayesian fault diagnosis system.

2) ONLINE MONITORING
1) Construct new measurement using the ‘time lag shift’

method;
2) Divide the newmeasurement as the previously obtained

sub-blocks;
3) Transform the measurement into fault signature evi-

dence;
4) Make decision using the Bayesian diagnosis system.

IV. CASE STUDIES
A. CASE STUDY ON A NUMERICAL EXAMPLE
A numerical AR(1) process modified from [7] is employed to
illustrate the performance of the proposed distributed moni-
toring scheme, which is as follows:

u1 (k) = A1u1 (k − 1)+ A2w1 (k − 1)

h1(k) = A3h1(k − 1)+ A4u1(k − 1)

u2 (k) = A1u2 (k − 1)+ A2w2 (k − 1)

h2(k) = A3h2(k − 1)+ A4u2(k − 1)

y(k) = h1(k)+ h2(k)+ v(k), (24)
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TABLE 1. Monitoring results for faults in the numerical example.

FIGURE 4. Variable selection results for (a) Fault 1, (b) Fault 2, and
(c) Fault 3.

where A1 =

[
0.811 −0.226
0.477 0.415

]
, A2 =

[
0.193 0.689
−0.320 −0.749

]
,

A3 =

[
0.118 −0.191
0.847 0.264

]
, and A4 =

[
1 2
3 −4

]
; input

wi (i = 1, 2) is the random noise with zero mean and
variance 1; and output v is the random noise with zero
mean and variance 0.1. The measurement in DPCA
model consists of 12 variables as z = [z1, . . . , z12]T =[
uT1 (k)u

T
1 (k − 1)uT2 (k)u

T
2 (k − 1) yT (k) yT (k − 1)

]T ,
where ui =

[
ui,1, ui,2

]T and yi =
[
yi,1, yi,2

]T . Three different
faults are introduced to the process from the 50 samples
listed in Table 1. Together with the normal operating sta-
tus, a total of four process statuses exist. For each process
status, 100 samples are collected to establish the distributed
monitoring model. A testing dataset with 200 samples is also
generated as F0, F1, F2, and F3, with each status consisting
of 50 samples.

The GA variable selection results for the three faults are
presented in Fig. 4, the full DPCA monitoring results using
all variables are presented in Fig. 5, and the reduced DPCA
monitoring results using selected variables are presented
in Fig. 6. By comparing Fig. 5 and Fig. 6, the reduced
DPCA indicates a fault earlier than that of a full DPCA

FIGURE 5. Full DPCA fault detection results for (a) Fault 1, (b) Fault 2,
and (c) Fault 3.

FIGURE 6. Reduced DPCA fault detection results for (a) Fault 1,
(b) Fault 2, and (c) Fault 3.

FIGURE 7. (a) Evidence source selection results, (b) diagnosis results
using all evidence sources, and (c) diagnosis results using the selected
evidence sources.

model (pointed out by the arrows). The performance has
been significantly improved as the process decomposition has
reduced the redundancy in the monitoring. The NDR for the
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TABLE 2. Considered faults in the TE process (NDR).

FIGURE 8. GA-based variable selection results for (a) Fault 5, (b) Fault 10,
and (c) Fault 20.

three faults using the reduced DPCA and the full DPCA are
provided in Table I. For establishing the Bayesian diagnosis
system, 21 bits of evidence sources are generated. To reduce
the calculation amount, GA-based evidence source selection
is performed, and the number of evidence sources is reduced
to six, as presented in Fig. 7(a). The diagnosis results using
all the 21 evidence sources and the selected six evidence
sources are presented in Fig. 7(b) and 7(c), respectively. The
monitoring performance (MCR) is not destroyed by reducing
the sources. However, the calculation amount in Bayesian
diagnosis has been reduced from 221 to 26, which is important
for practical application.

B. CASE STUDY ON THE TE PROCESS
The TE process is a benchmark case designed for testing
the process monitoring performance [1], [25]. In the current
study, 33 variables and five typical faults are considered [20].

FIGURE 9. Full DPCA fault detection results for (a) Fault 5, (b) Fault 10,
and (c) Fault 20.

Together with the normal operating condition, a total of six
process statuses are used, which are presented in Table 2.
The results of Fault 5, Fault 10, and Fault 20 are presented
in detail. First, the GA-based variable selection results are
presented in Fig. 8, which indicate that the GA optimization
converges within 50 generations.

The fault detection results of the full DPCA and
the reduced DPCA for the three faults are presented
in Fig. 9 and Fig. 10, respectively. Fig. 9(a) shows the full
DPCAmonitoring results for fault 5, and Fig. 10(a) shows the
reduced DPCA monitoring results for fault 5. The NDR has
been significantly reduced and the monitoring performance
has been significantly improved. The full DPCA and the
reduced DPCA monitoring results for fault 10 are presented
in Fig. 9(b) and Fig. 10(b), respectively. As shown in the
figures, the NDR is also reduced in the reduced DPCA mon-
itoring. Similar results are evident for fault 20, as shown
in Fig. 9(c) and Fig. 10(c). The monitoring results (NDR)
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FIGURE 10. Reduced DPCA fault detection results for (a) Fault 5,
(b) Fault 10, and (c) Fault 20.

FIGURE 11. (a) GA evidence source selection results, (b) diagnosis results
using all evidence sources, and (c) diagnosis results using the selected
evidence sources.

of some state-of-the-art methods on the considered faults are
presented in the Table 2. The reduced DPCA method gener-
ally provides the best monitoring results for the considered
five types of faults.

To establish the Bayesian diagnosis system, 65 bits of
evidence sources are generated, which will cause significant
calculation amount (265). The GA-based evidence source
selection results are presented in Fig. 11(a), in which the
maximum number is limited by 12. The fault diagnosis
results for the TE training data and testing data are presented
in Fig. 11(b) and Fig. 11(c), respectively. Some misclassified
points for Fault 20 (marked by the ellipse) are also observed,

which are due to the small fault amplitude at the beginning
of the fault. The fault can be detected by a DPCA model
after approximately 50 points, which is evident in Fig. 10(c)
(indicated by the arrow). Most points have been correctly
classified, and the diagnosis performance is satisfactory.

V. CONCLUSIONS
In this work, the influence of variable and time-lagged vari-
able selection on the DPCA monitoring performance is ana-
lyzed, and a fault-relevant performance-driven distributed
DPCA monitoring scheme for large-scale dynamic processes
is developed. First, the GA-based fault-relevant variable
selection is performed to decompose a large-scale process
into several local units and achieve the best possible fault
detection performance for each fault. Second, in each unit,
a DPCA monitoring model is established to deal with the
process dynamics. Then, fault signature evidence is gener-
ated, and the Bayesian diagnosis system is established to
identify the running-on process status. The proposed moni-
toring scheme is applied on a numerical example and the TE
benchmark process, and the efficiency is demonstrated.
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