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ABSTRACT In this paper, a framework for inverse synthetic aperture radars (ISAR) imaging with wideband
V-FM waveforms is investigated, where the dual-channel compressed-sensing-based dechirping (CS-D)
algorithms are applied to achieve high-resolution range profiles (HRRPs) of moving targets. The final
HRRPs are reconstructed via the synthesis of the two HRRPs recovered from the two independent channels
with CS-D. The ISAR formation is achieved from the Fourier transform-based azimuth compressionmethods
being applied to the rearranged 2-D array of HRRPs. Simulated trials of targets modeled as point scatterers
are conducted and the final well-focused images demonstrate the effectiveness of the proposed dual-channel
CS-D algorithm in ISAR imaging with wideband V-FM waveforms.

INDEX TERMS Inverse synthetic aperture radars (ISAR), V-FM waveforms, dual-channel,
compressed-sensing-based dechirping (CS-D).

I. INTRODUCTION
Profiting from the wideband signals via intra-pulse or
inter-pulse frequency modulation and the synthetic aperture
due to the relative motion of a target and radar, modern
inverse synthetic aperture radar (ISAR) can achieve high-
resolution images both in the down-range and cross-range
domain [1]–[3]. The signals utilized in modern imaging
radars are usually called large time and band product signals,
such as the chirp, and frequency-stepped signals [4]–[9]. The
radar detecting range can be improved by increasing the time
duration while high range resolution can be achieved by pulse
compression techniques. Chirp signals are one of most com-
mon large time and band product signals and have an advan-
tage of being non-sensitive to Doppler shift in the returned
radar signals. The pulse compression of chirp signals usu-
ally is accomplished using a matching filter (MF). However,
due to the special characteristics of chirp signals and the
small imaging scene of ISAR, the dechirping method can
also finish the pulse compression, which intrinsically uilizes
a long processing time to reduce the sampling rate. Scatter-
ing centers of targets in different down-range bins can be
distinguished from each other when using a lower sampling
rate via dechirping in contrast to using MF-based methods,
where the wideband waveforms are mixed with a reference
signal with the same chirp rate as the transmitted chirp

signal [10], [11]. After the dechirping process, signals
from the scattering centers in different down-range bins
are referred to corresponding single frequencies and can be
resolved by a Fourier transform (FT). However, inevitable
ambiguity appears in the range and velocity when chirp sig-
nals are utilized since the ambiguity function of chirp signals
is the ‘‘ridge’’ type.

Due to the ‘‘thumbtack’’ ambiguity function as depicted in
reference [12], V-FM signals can mitigate the ambiguity that
appear in range and velocity while achieving high resolution
range profiles (HRRPs). V-FM signals can be seen as the
synthesis of two chirp signals with opposite slopes; thus, the
pulse compression can be achieved by a dual-channel MF.
A signal can be recovered exactly from samples uniformly
sampled by an analog-to-digital converter (ADC) whose sam-
pling frequency must be at least twice that of the maximum
frequency of the signal, according to the Nyquist sampling
theorem. Thus, a high-speed ADC is essential to reconstruct
the wideband V-FM signals, which may become practically
infeasible. How to reduce the sampling rate or cut down the
number of samples in V-FM waveforms is an open question
that this paper seeks to address.

Recently, there has been a growing interest in reconstruct-
ing unknown sparse signals from very limited samples via
compressed sensing (CS) [13]–[15]. Instead of observing
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the entire signals in all coordinates, reconstruction of sig-
nals expressed in the sparse bases can be achieved by solv-
ing an optimization problem with a high probability. For
radar imaging, the advantages of CS are primarily associ-
ated with the capability of obtaining high-resolution images
from a limited number of measurements thus reducing the
amount of data to be stored and processed [6], [16]–[20].
Dual-channel dechirping methods used to accomplish pulse
compression of V-FM signals are addressed first. Then,
inspired by CS and dual-channel dechirping, HRRPs of
V-FM waveforms are reconstructed using the dual-channel
CS-based dechirping (CS-D) method. The novelty of this
paper is that the pulse compression of V-FM waveforms is
achieved by the proposed dual-channel CS-D and the poten-
tial of V-FM waveforms in ISAR imaging is also validated.

The rest of the paper is organized as follows. The signal
model of V-FM waveforms and pulse compression via dual-
channel dechirping are explored in Section II. In section III,
pulse compression of V-FM waveforms via the proposed dal-
channel CS-D is addressed in detail and simulation trials are
conducted in Section IV to demonstrate the effectiveness of
the method. Finally, the most relevant conclusions are given
in Section V.

II. SIGNAL MODEL OF V-FM WAVEFORMS
The signal model of V-FM waveforms and the corresponding
HRRPs reconstruction via dual-channel dechirping are inves-
tigated in the following.

FIGURE 1. Sketch map of V-FM waveforms.

A. SIGNAL MODELING OF V-FM ECHOES
As shown in Fig. 1, suppose that the V-FM waveforms are
composed of two chirp signals with opposite slopes and can
be expressed as
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γ is the chirp rate, TP is the pulse width and t̂ represents the
fast time.

The transmitted V-FM waveform can be expressed as
follows
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where f0 is the frequency of carrier wave, tm is the slow time, t
is the full time and t̂ = t−tm. Suppose that the pulse repetition
interval (PRI) of radar is TPRI, then tm = mTPRI.

FIGURE 2. Geometry of ISAR imaging.

Without loss of generality, the local coordinate system xoy
is on the moving target and the point o of the moving target
is chosen as the origin, as seen in the ISAR imaging model
in Fig. 2. The radar line of sight (LOS) is set as the x axis.
The moving target has the circular motion with a rotation
rate of ω rad/s and the vector from ISAR to o is denoted
as R0.
Consider a scattering center i (x, y) on the moving target

with σi as the scattering coefficient. Assume that the target is
at the far field of the radar and modeled as if it contains K
strongest scattering centers, the echo of the scattering center
i can be written as
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where |·| is the Euclidean norm, Ri = R0 + ri is the vector
from ISAR to the scattering center i, ri is the vector from o to
the scattering center i and c is the speed of the electromagnetic
wave.

B. PULSE COMPRESSION VIA DUAL-CHANNEL
DECHIRPING
The reference signals of the two channels can be expressed
respectively as
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where Rref is the reference range, Tref is the reference pulse
duration and Tref = 2Rref/c.

The time-domain compressed signals of the two channels
after dechirping are given as follows
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where R1 = |Ri| − Rref.
The first exponentials of sif−1

(
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)
and sif−2
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)
in (8) and (9) are the range items which produce beat fre-
quencies 2γR1/c and −2γR1/c, respectively. The second
exponentials of sif−1
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)
and sif−2
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in (8) and (9) are

the residual video phases (RVPs) and the third exponentials
account for Doppler shift. After taking the FT of (8) and (9)
in terms of t and multiplying by a constant conversion coef-
ficient 2γ /c, the corresponding HRRPs of the two channels

in the down-range domain are obtained as follows
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where r represents the down-range domain.
It can be seen that the two HRRPs from the dual-channel

dechirping have the same amplitude but are symmetrical
about zero in the down-range domain. After the two HRRPs
are achieved and the RVPs are removed, the final synthesized
HRRPs can be obtained as
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where fliplrr (•) represents flipping the left part of the
HRRPs to the right part.

From (10), (11) and (12), it can be concluded that
before the final synthesized HRRPs can be achieved,
the RVPs of HRRPs of each channel should first be
removed.

III. PULSE COMPRESSION VIA DUAL-CHANNEL CS-D
Only considering the peak values of the HRRPs from
the two channels, the derivation of (10) and (11) can be
rewritten as
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where ai = TPσi/2 exp (−j4π f0R1/c) and δ (•) is the delta
function. From (13) and (14), it can be seen that the two
HRRPs are sparse since there are only a few peak values with
a nonzero amplitude. The sparsity of the two HRRPs via the
dual-channel dechirping paves a way for pulse compression
via CS-D as addressed in the following.

Assume that the ISAR imaging region along the down-
range is from r0 to r1 which means that R1 ∈ [r0, r1] and
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ρr is the down-range resolution, then the number of range
bins can be calculated as Q = (r1 − r0)/ρr . The dense
dictionary of CS-D of the two channels can be constructed as
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a1, a2, . . . , aq, . . . , aQ

]
1×Q
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2

exp
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where σq is the backscattering coefficient of the q-th range
bin (i.e., 1rq) and 1rq = r0 + qρr , q ∈ [0,Q− 1]. If there
is no scattering center in the q-th range bin, then σq = 0 (i.e.,
aq = 0). Taking noise into account, (8) can be cast into the
CS-D framework as
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is the 1×Q sparse weighting coefficient vector of channel one
with K (K � Q) nonzero elements and largest coefficients
undergoing a power decay law, which is also the recovered
HRRPs via CS-D range compression and n is the additive
complex white Gaussian noise.

Similarly, (9) can be cast into the CS framework as
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is the 1 × Q sparse weighting coefficient vector of channel
two.

Thus, sif−1 and 21, and sif−2 and 22 are equivalent rep-
resentations of the same signals, with sif−1 and sif−2 in the
original domainčand 21 and 22 in the 9 domain. Under
certain sufficient conditions, the sparse solution to the linear

inverse problem can be uniquely determined via the following
convex optimization problem

min (‖21‖1) , s.t. ‖8sif-1 −8921‖2 ≤ ε

min (‖22‖1) , s.t. ‖8sif-2 −8922‖2 ≤ ε (21)

wheremin (•) is the minimization, ‖•‖p is the `p norm, 8 is
the measurement matrix with M × Q elements, and ε is the
noise level.

Since the range compression via CS with far fewer mea-
surements means that M < Q, the recovery of 21 from
the measurements 8sif−1 and the recovery of 22 from the
measurements8sif−2 are usually unsuccessful. Thanks to21
and 22 being sparse with K nonzero elements or the largest
coefficients, when the matrix 89 has the restricted isometry
property (RIP), it is probable that one is able to reconstruct the
K nonzero elements or largest coefficients from a similarly
sized set of M = O(K log(Q)) measurements 8sif−1 and
8sif−2 by solving a convex `1 optimization problem. Then,
the finally reconstructed HRRPs can be obtained by the sum
of 21 and 22 after each of the RVPs are removed, which can
be represented as

2T
=
[
2∗1 +2∗2

]
= 2

[
a1, a2, . . . , aq, . . . , aQ

]
1×Q (22)

where 2∗1 and 2∗2 represent 21 and 22, respectively, after
the RVPs are removed.

FIGURE 3. Flow chart of ISAR imaging with wideband V-FM waveforms
via dual-channel CS-D.

After the HRRPs are reconstructed from the dual-channel
CS-D and rearranged in to a two-dimensional (2D) array, the
motion compensation methods (such as envelope correlation)
and the azimuth compression algorithms (such as FT) can be
applied on the 2D array to achieve the final ISAR image.
The flow chart of HRRPs reconstruction and ISAR image
formation with wideband V-FM waveforms via dual-channel
CS-D are shown in Fig. 3.

IV. SIMULATIONS
To verify the performance of dual-channel CS-D in V-FM
ISAR imaging, targets modeled as point scatterers are utilized
in the following, as shown in Fig. 4. The V-FM ISARworks at
the X-bandwith a carrier frequency of 10GHz and bandwidth
of 300 MHz. The pulse-width is 100 µs and the pulse repeti-
tion frequency is 1 kHz. The number of down-range samples
of each channel is 32, thus the total number of down-range
samples is 64 (selected evenly) , which is significantly fewer
than that of conventional pulse compression algorithms under
the Nyquist sampling theorem, such as MF.
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FIGURE 4. The point scatterers modeling of target.

FIGURE 5. Pulse compression and ISAR imaging via dual-channel
dechirping. (a) HRRPs of channel 1. (b) HRRPs of channel 2. (c)
Synthesized HRRPs. (d) ISAR imaging.

A. PULSE COMPRESSION VIA DUAL-CHANNEL
DECHIRPING AND DUAL-CHANNEL CS-D
In total, 128 pulses with a time duration of TM =0.128 s
are transmitted and collected to yield the 2D ISAR image
formation. The signal-to-noise ratio (SNR) is set to be 20 dB.
The pulse compression signals of channel one and chan-
nel two after motion compensation are shown in Fig. 5(a)
and Fig. 5(b), respectively. The synthesized HRRPs of dual-
channel dechirping are shown in Fig. 5(c) and the ISAR
image of the target via dual-channel dechirping is shown
in Fig. 5(d).

To compare the effect of pulse compression via dual-
channel dechirping with pulse compression via dual-channel
CS-D, we first set the number of range bins in dual-channel
CS-D to beQ = 64 and SNR = 20 dB. The recoveredHRRPs
of channel one and channel two after motion compensation
are shown in Fig. 6(a) and Fig. 6(b), respectively. After RVPs
are removed, the synthesized HRRPs via the sum of the two
aboveHRRPs are shown in Fig. 6(c). Finally, the resolution of
the lower half of the ISAR image generated via dual-channel
CS-D, shown in Fig. 6(d), is enhanced compared with that via
dual-channel dechirping shown in Fig. 5(d).

B. DUAL-CHANNEL CS-D WITH VARIOUS RANGE BINS
The influence of the range bins of CS-D is analyzed in
the following. There are 128 range bins, and the recov-

FIGURE 6. Pulse compression and ISAR imaging via dual-channel
CS-D(Q = 64). (a) HRRPs of channel 1. (b) HRRPs of channel 2. (c)
Synthesized HRRPs. (d) ISAR imaging.

FIGURE 7. Pulse compression and ISAR imaging via dual-channel CS-D
(Q = 128). (a) HRRPs of channel 1. (b) HRRPs of channel 2. (c)
Synthesized HRRPs. (d) ISAR imaging.

ered HRRPs of the two channels after motion compensa-
tion are shown in Fig. 7(a) and Fig. 7(b). The synthesized
HRRPs are shown in Fig. 7(c) and the ISAR image via dual-
channel CS-D with 128 range bins is shown in Fig. 7(d),
which is more focused than that with 64 range bins shown
in Fig. 6(d).

In order to reveal the influence between the number of
range bins and the resolution, more comparisons with differ-
ent number of range bins (Q = 70, 80, and 90) are added in
the simulations.

The synthesized ISAR images via dual-channel CS-D
with 70, 80, and 90 range bins are shown in Fig. 8(a)–(c).
Form the synthesized images, it can be seen that the
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FIGURE 8. ISAR imaging via dual-channel CS-D with various Q. (a) Q = 70.
(b) Q = 80. (c) Q = 90.

FIGURE 9. ISAR imaging via dual-channel dechirping and dual-channel
CS-D under various SNRs(Q = 128). (a) ISAR imaging via dual-channel
dechirping under various SNRs. (b) ISAR imaging via dual-channel CS-D
under various SNRs.

performance of pulse compression via the dual-channel CS-D
improves with the number of range bins.

C. PERFORMANCE UNDER VARIOUS SNRs
To prove the robustness of the proposed dual-channel
CS-D methods in a more realistic scenario, simulations with
Gaussian distributed complex noise with the three SNRs of
−5 dB, −7 dB and −8 dB added into the simulated V-FM
signals were performed.

The ISAR imaging results via dual-channel dechirping
under the three SNRs are shown in Fig. 9(a) and the ISAR
imaging results via dual-channel CS-D under the three SNRs
are shown in Fig. 9(b). The experiment’s results show that the
dual-channel CS-D can get rid of much more noise than the
dual-channel dechirping method does.

D. PERFORMANCE COMPARISON WITH LFM
WAVEFORMS
In order to compare the performance of V-FM waveforms
with other common waveforms in radars, LFM waveforms
with the same chirp rate as the above V-FM waveforms are
adopted in the following simulation. The bandwidth of LFM
waveforms is also set to be 300MHz and SNR = −5 dB. The
reconstructed HRRPs of LFM waveforms via CS-D is shown
in Fig. 10(a), and the reconstructed HRRPs of V-FM from
channel one is shown in Fig. 10(b), the HRRPs from channel
two is shown in Fig. 10(c), and the synthesized one is shown
in Fig. 10(d).

From the color-bars of reconstructed HRRPs in Fig. 9, it
can be seen that the SNR of the HRRPs of LFMwaveforms is

FIGURE 10. Reconstructed HRRPs of LFM Waveforms and V-FM
waveforms via CS-D. (a) LFM waveforms. (b) HRRPs of V-FM waveforms
(channel 1). (c) HRRPs of V-FM waveforms (channel 2). (d) Synthesized
HRRPs of V-FM.

FIGURE 11. ISAR imaging of LFM Waveforms and V-FM waveforms via
CS-D. (a) LFM waveforms. (b) V-FM waveforms.

similar with that of HRRPs of V-FMwaveforms from channel
one or two. However, the SNR of the synthesized HRRPs
of V-FM waveforms is improved, which is also demon-
strated by the ISAR imaging results as shown in Fig. 11(a)
and Fig. 11(b).

V. CONCLUSIONS
This paper demonstrates the usefulness of the proposed dual-
channel CS-D in pulse compression of V-FM waveforms.
The ISAR image quality usually improves with the incre-
ment of Q, the number of range bins in dual-channel CS-D.
From the analytical results, it is shown that the synthesized
HRRPs and the final ISAR images via dual-channel CS-D are
more robust and focused than those obtained via dual-channel
dechirping under the same SNR.
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