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ABSTRACT Video compression has become more and more important nowadays along with the increasing
application of video sequences and rapidly growing resolution of them. H.264 is a widely applied video
coding standard for academic and commercial purposes. And fractal theory is one of the most active branches
in modern mathematics, which has shown a great potential in compression. In this paper, this study proposes
an improved inter prediction algorithm for video coding based on fractal theory and H.264. This study
take the same approach to make intra predictions as H.264 and this study adopt the fractal theory to make
inter predictions. Some improvements are introduced in this algorithm. First, luminance and chrominance
components are coded separately and the partitions are no longer associated as in H.264. Second, the partition
mode for chrominance components has been changed and the block size now rages from 16× 16 to 4× 4,
which is the same as luminance components. Third, this study introduced adaptive quantization parameter
offset, changing the offset for every frame in the quantization process to acquire better reconstructed image.
Comparison between the improved algorithm, the original fractal compress algorithm and JM19.0 (The latest
H.264/AVC reference software) confirms a slightly increase in Peak Signal-to-Noise Ratio, a significant
decrease in bitrate while the time consumed for compression remains less than 60% of that using JM19.0.

INDEX TERMS Video compression, fractal theory, H.264/AVC, inter-frame prediction.

I. INTRODUCTION
H.264 is a digital video coding standard developed by
JVT, and it was officially released in March, 2003 [1], [2].
H.264 relies on 4×4 integral discrete cosine transform (DCT)
and variable-length code (VLC), and it is more effective
in motion estimation than other standards. The bitrate of
H.264 coded videos is merely half of that of H.263, given
the same quality of video [3]. Due to its remarkable com-
pression efficiency and adaptability to network conditions,
H.264 is widely used for multimedia applications. However,
H.264 is too computationally intensive and time consuming
to be directly applied on real-time systems. According to
Acharjee et al. [4], motion estimation involves the most
computation as compared to other processes in the entire
video compression process. Hence, the coding time can be
greatly shortened by reducing the computational complexity
of motion estimation.

Fractal image coding provides a scheme to code image
based on the similarity between different parts of an
image or the similarity between different images. It features
high compression ratio, short coding time but the quality of
coded image is not satisfying [5]–[8]. Beaumont pioneered
to apply Jacquin’s image compression theory on video com-
pression. Although the compression ratio was high, the qual-
ity of the image was poor and the blocking effect was
obvious [9]. Zhu et al. [10] combined the object-based video
coding and fractal coding algorithms, dividing each frame of
the video into foreground and background for separate com-
pression. After combining the advantages of several methods,
Farkade et al. [11] proposed a fast-search fractal algorithm
based on block matching to reduce time consumption for
block matching. Chaudhari and Dhok proposed a novel full-
search algorithm for motion estimation [12]. In their method,
cross-correlated cyclic FFT is used as the condition for
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full-search block matching. In addition to performance
gains in terms of compression ratio and quality, the speed
was almost 10 times faster than the traditional full-
search compression scheme. Kamble et al. used a modi-
fied three-step search algorithm for block-matching motion
estimation to reduce computational cost [13]. And some
recent studies focus on reduce coding time by propose new
algorithm involving quad-tree scheme et al [14]–[18], or uti-
lizing more powerful hardware like GPUs, FPGAs or cloud
computing [17]–[20].

H.264 and fractal image coding both have their own pros
and cons. H.264 is computationally intensive but the quality
of the image is great. The reverse is true for fractal image
coding. Hence, striking a balance between image qualities
and coding speed by using H.264 for intra prediction and
using fractal coding for inter prediction may produce some
satisfying results. Based on this idea, this study proposes a
new video coding algorithm to improve image quality and
reduce bitrate.

The rest of this paper is organized as follows. Section II
focuses on the intra coding process of H.264. Section III
describes the mathematical fundamentals of fractal coding
and the detailed process of the fractal coding algorithm
adopted in this paper. Section IV discusses improvements
made to the fractal coding algorithm. Section V compares
the performance of the original fractal coding algorithm,
the improved algorithm and JM19.0 [21], [22], the latest
reference software of H.264/AVC.

II. OVERVIEW OF INTRA CODING IN H.264/AVC
Three types of frames are defined in H.264. They are the
I frame, the P frame and the B frame.

The frame that makes prediction based on the current frame
itself is called the I frame. The I frame can be decoded
independently without the use of a reference. The first frame
of a video sequence is always an I-frame, and its defect lies
in the need to occupy a large number of bits.

The P frame is coded based on previous I or P frames.
It usually consumes fewer bits than I frame, but it is prone
to error during transmission, due to its heavy dependence on
the previous reference frame.

The B frame jointly refers the previous and subsequent
frames. Its difference with the P frame is that the B frame
can refer both the previous and following I and P frames.

The coding process of the I frame is called the intra-
frame coding. Macroblock in the luminance component
is either 16×16 or 4×4 for intra-frame prediction. The
size of macroblock is only 8×8 for the chrominance
component [21], [22].

A. 4×4 LUMINANCE PREDICTION MODE
In the case of macroblock that has complicated contents,
the error produced by predicting via 4×4 prediction is smaller
than that via 16×16 prediction. During the prediction, 9 pre-
diction modes are traversed and their rate-distortion costs are
computed, respectively. The mode with the lowest cost is

FIGURE 1. Prediction mode for 4×4 luminance components.

FIGURE 2. Prediction mode for 16×16 luminance components.

regarded as the final mode for prediction. The 9 prediction
modes are shown in Fig. 1.

B. 16×16 LUMINANCE PREDICTION MODE AND
8×8 CHROMINANCE PREDICTION MODE
Adopting the 16×16 prediction mode for the luminance
macroblock that has few contents can reduce bitrate while
guaranteeing relatively small errors. And the 8×8 prediction
mode is adopted by all chrominance macroblocks. Four pre-
diction modes need to be traversed in those two macroblock
prediction modes. The one with the smallest value of RDcost
will be regarded as the final mode. The four prediction modes
are shown in Fig. 2.

H.264 provides a broad variety of prediction modes, and
it is thus of great importance to determine how to choose
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the optimal mode. The Lagrange strategy for rate-distortion
optimization (RDO) is used in H.264 to choose the optimal
coding mode:

1) INTRA 4×4 PREDICTION
In the case of intra-frame 4×4 prediction, the cost of coding
with one specific mode is calculated using (1), and the mode
with the minimal cost is the optimal mode.

J (s, c, IMODE|QP, λMODE )

= SSD (s, c, IMODE|QP)+ λMODER (s, c, IMODE|QP)

(1)

Where c denotes the macroblock reconstructed after pre-
diction, DCT, quantization, IDCT and inverse quantization;
s denotes the original macroblock; SSD denotes the square
sum of the difference between s and c; R denotes the number
of bits needed to code the macroblock with IMODE and
quantization parameter(QP); IMODE denotes the 9 intra pre-
diction modes in Fig. 1.

2) INTRA 16×16 PREDICTION
In the case of intra-frame 16×16 prediction, themode that can
minimize SATDof s and c is chosen, where SATDdenotes the
transformed sum of errors. It can indicate the level of both
distortion and the bitrate.

J (s, c, IMODE|QP, λMODE ) = SATD (s, c, IMODE|QP)

(2)

Because the predicted value of the pixel is close to the
original value, it suffices to only transmit the error between
them. And it can be computed as (3) shows:

en = fn − f ′n (3)

The residuals are mostly small, thus the original data are
compressed.

III. MATHEMATICAL BACKGROUND OF FRACTAL
COMPRESSION AND FRACTAL VIDEO
COMPRESSION ALGORITHM
A. MATHEMATICAL BACKGROUND OF FRACTAL
COMPRESSION
1) COMPLETE METRIC SPACE
A metric space (X, d) consists a space or an non-empty
set X and a real-valued function d : X× X→ R. For any
x, y, z ∈ X, it has the following properties:
• d (x, y) ≥ 0;
• d (x, y) = 0, if and only if x = y;
• d (x, y) = d (y, x) ;
• d (x + y)+ d (y, z) ≥ d (x, z).
In these Equations, d is the metric defined in this space,

and it is also called distance function or simply distance.
Generally, if it can be inferred from the context that the metric
is used, then d is usually omitted and X is regarded as the
metric space.

If all Cauchy sequences in the metric space (X, d) are
convergent, or if each Cauchy sequence converges to X,
then (X, d) is called a complete metric space or Cauchy space.

2) CONTRACTION MAPPING
Let (X, d) denote the metric space, and w denote the map-
ping X→X. If there exists a positive real number s which
satisfies (4) for any x, y ∈ X, then this mapping is Lipschitz
continuous on s.

d(ω (x) , ω (y)) ≤s · d(x, y) (4)

If the Lipschitz constant s<1, ω is called the contraction
mapping on s.

3) FIXED POINT OF CONTRACTION MAPPING
If X is a complete metric space and ω : X → X is a
contraction mapping, there exists one single point xω ∈ X
which satisfies (5) for any x ∈ X.

xω = f (xω) = limn→∞ f n(x) (5)

This point is called the fixed point or the attractor of the
mapping f. If a mapping brings points close to each other,
this mapping is contracted. For example, if the mapping
f (x) = x/2 is contracted, given a random original value x,
the computed results of f(x), f(f(x)), f3(x), . . . will converge
to the fixed point 0.

4) GENERALIZED COLLAGE THEOREM
If f is convergent to the exponent n, there exists only one fixed
point xω ∈ X, which can satisfy (6) for any x ∈ X.

xω = f (xω) = limn→∞ f n(x) (6)

In this case, we have:

d(x, xω) ≤
1

1− s
1− δn

1− δ
d(x, f (x)) (7)

where s is the contraction factor of fn, and the Lipschitz
factor of f.

Suppose X is a complete metric space, and the contraction
mapping ωi : X→ X(i = 1, 2, . . . , n) constitutes an iterative
function system (IFS). From the contraction mapping theory
on fixed point, it is known that IFS is the set that defines the
sole attractor for themapping. Because the attractor is unique,
it is absolutely dependent on the mapping ω and its original
value.

Fractal image coding is quite an opposite process of the
discussion above, where an IFS that takes the full image as
an attractor needs to be found. However, there is no general
solution to this problem nowadays, because a normal image
has local autocorrelation only. Hence, IFS is extended to PIFS
(Partitioned IFS), which consists of the contraction mapping
ωi : Di → X(i = 1, . . . , n), where Di ∈ X(i = 1, . . . , n).
Thanks to the properties of PIFS, more generic and non-auto-
correlated sets can be coded through collage coding, so that
each part in a region can always find other parts that resemble
to it.

VOLUME 5, 2017 18717



S. Zhu et al.: Improved Inter-Frame Prediction Algorithm for Video Coding Based on Fractal and H.264

TABLE 1. Affine transform matrix.

5) AFFINE TRANSFORM
The general form of an affine transform for the 2-D Euclidean
space is:

W (x) = W
[
x1
x2

]
=

[
a b
c d

] [
x1
x2

]
+

[
e
f

]
(8)

where the matrix
[
a b
c d

]
is equal to

[
r1cosθ1 −r2sinθ2
r1sinθ1 r2cosθ2

]
.

So, (8) can be written as:

W (x) = W
[
x1
x2

]
=

[
r1cosθ1 −r2sinθ2
r1sinθ1 r2cosθ2

] [
x1
x2

]
+

[
e
f

]
(9)

The affine transform can be performed to skew, extrude,
rotate and converge the input image or change the scale of
the input image.

B. FRACTAL VIDEO COMPRESSION
1) OVERVIEW
There might be local similarity between different partitions
in a normal image. Hence, one partition can be collaged into
another one through affine transform [23].

Consider an m×m grey level image. Assume that all n×n
macroblocks that do not overlap one another constitute the
range pool, and an image has (m/n)2 macroblocks at most.
In order to conform to the contraction mapping theory on
fixed point, the size of the domain block is at least twice that
of the range pool. Therefore, the domain pool D consists of
all 2n×2n macroblocks. The macroblocks can be overlapped
with one another, and thus there are at most (m− 2n+ 1)2

macroblocks in the domain pool. Let R denote the range
pool and v denote the macroblock in range pool. The affine
transform is constructed by searching D for a domain block
that is the most similar to the range block being coded.
Several parameters that represent the affine transform will be
calculated and will be part of the fractal coding result of a
macroblock.

In order to measure the correlation between R blocks and
D blocks, the D blocks must be resampled to 8×8 blocks
to ensure they have the same size as R blocks. The resized
D blocks will be called u here. The correlation of two n×n
macroblocks can be quantified by calculating their MSE.

Definition of MSE is given in (10).

MSE =

 1
MN

M−1∑
x=0

N−1∑
y=0

(f ′ (x, y)− f (x, y))2

1/2

(10)

In fractal affine transform, there are 8 transforms Tk : k =
0, 1, . . . , 7 that can be applied to a domain block, as shown
in Table I.

The constant scale factor p and the offset q can be taken into
account in the fractal affine transform. Therefore, the fractal
affine transform ϕ of u(x, y) can be written as:

ϕ

 x
y

u (x, y)

 =
 a11 a12 0
a21 a22 0
0 0 p

 x
y

u (x, y)

+
 txty
q


(11)

where the matrix
[
a11 a12
a21 a22

]
denotes one of the transform

matrixes in Table 1, (tx, ty) denotes the coordinate of the
domain block. The similarity is quantified by calculating d =
‖p · uk + q− v‖. Then, p and q can be directly computed as:

p =
[N 〈uk , v〉 − 〈uk , 1̂〉〈v, 1̂〉]

[N 〈uk , uk 〉 − 〈uk , 1̂〉2]
(12)

q =
1
N
[〈v, 1̂〉 − p〈uk , 1̂〉] (13)

where N is the number of pixels in the range block, and
1̂ = [11 . . . 1]T.
Finally, after u traverses the entire domain pool, the set of

parameters (tx, ty), p, q and k will be obtained, which provide
the information needed to perform fractal affine transform on
the macroblock v. The coding process is completed after v
traverses the entire range pool [24], [25].

FIGURE 3. The structure of the proposed fractal coding system.

2) ALGORITHM
The structure of the fractal coding system is shown in Fig. 3.

The I frame in the proposed system adopts the same coding
method for I frame in H.264 to improve the quality of the
image, and the P frame adopts the fractal coding algorithm
to accelerate the coding speed. In H.264, intra-frame and
inter-frame coding are both available for macroblocks in a
P frame. But in this paper, macroblocks in a P frame can
only make inter-frame predictions. The coding process is
presented in Fig. 4.
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FIGURE 4. Block diagram of the proposed encoder system.

Firstly the first I frame will be coded using H.264, and use
the reconstructed image as the reference frame of the subse-
quent P frame. As for the coding of the P frame, the range
block is located in the current frame and the domain block is
within the reference frame. SearchD for the optimalmatching
block of the current block R.

Both I frame and P frame can be the reference of a P frame.
The best partitioning method will be determined by calculat-
ing the sum of squared residuals between the original image
and the reconstructed image.

Details of the process for P frame coding are shown
in Fig. 4.

(a) If the current frame is an I frame (the first frame of
each video sequence is definitely an I frame), make prediction
using H.264, record the prediction mode and residuals.

(b) If the current frame is a P frame, take the previous frame
as a reference frame to perform fractal coding, record the
fractal parameters.

(c) Transform and quantify the residuals, then write the
residuals and fractal parameters to bit stream after entropy
coding.

(d) Reconstruct the frame (or macroblock) using trans-
formed and quantified residuals and fractal parameters.
In intra-frame coding, the reconstructed macroblock will be
used as the reference of other macroblocks directly while
in inter-frame coding the reconstructed frame will first be
deblocking filtered and then used as a reference.

Fractal affine transform constructs every macroblock v
in R by searching the domain block within ±7 pixels near

the R macroblock. Note that the searched region can be
enlarged or narrowed, and the setting of ±7 pixels is an
optimal value determined in our experiment. If the minimum
RMS (Root Mean Square) between the macroblock v and the
domain block is less than T_16 (a threshold), then the current
domain block is regarded as a best match and proceed to the
next macroblock. RMS is defined as:

RMS =
1
N


N∑
i=1

r2i + s
(
s
N∑
i=1

d2i − 2
N∑
i=1

ridi+2o
N∑
i=1

di

)
+o(N · o− 2

N∑
i=1

ri)


(14)

where the parameters s and o are defined as:

s =

N
N∑
i=1

ridi −
N∑
i=1

ri
N∑
i=1

di

N
N∑
i=1

d2i − (
N∑
i=1

di)
2 (15)

o =
1
N

[
N∑
i=1

ri − s
N∑
i=1

di

]
(16)

In these equations, N denotes the number of pixels in the
macroblock, ri denotes the values of pixels in the range block,
di denotes the values of pixels in the domain block. The
process to derive the fractal coefficients s and o are available
in the Appendix. Finally, the reconstructed pixel value R’ is:

R′ = s · D+ o (17)

If RMS is larger than T_16, the macroblock v will be par-
titioned into two 16×8 sub-macroblocks, each of which will
be predicted separately. And their RMS will be computed,
respectively. If both of their RMS values are less than T_16,
then the optimal match is found and the program will proceed
to the next macroblock.

If the requirements are not satisfied, the macroblock will
be partitioned into two 8×16 sub-macroblocks, compute
their RMS and compare them with the threshold. If the
requirements are met, the program will proceed to the next
macroblock; otherwise, the macroblock v will be partitioned
into four 8×8 sub-macroblocks. At this time, the thresh-
old changes to T_8. The same process above is repeated
to check whether the requirement is met. If the 8×8 block
satisfies the requirement, the programwill proceed to the next
macroblock. Otherwise, it will be partitioned into the
8×4 blocks and repeat the process.
Throughout the process, the macroblock has 7 partition

modes that ranges from 16×16 to 4×4. When one mode
does not satisfy the requirement, the program will proceed to
partition the macroblock downwards to the next mode until
it reaches 4×4. In the case of 4×4, the match which has
the minimal RMS will be regarded as the optimal match and
indicates the program can proceed to the next macroblock.

A prediction frame will be generated after all macroblocks
are predicted. The difference between the prediction frame
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and the current frame is called the residuals frame. The
transformed and quantified residuals are written into the bit
stream. The quantified data is then subjected to inverse quan-
tization and inverse transform, and added to the prediction
frame to form the reconstruction frame, which will be stored
for prediction of subsequent frames.

IV. IMPROVEMENT TO THE ORIGINAL ALGORITHM
A. CHROMINANCE MACROBLOCK RESIZING
In H.264, the 8×8-2×2 block partitioning mode is adopted
for both intra-frame and inter-frame coding for chromi-
nance components. Because the number of pixels in the
chrominance component is one fourth that of the luminance
component, each 8×8 chrominance block corresponds to a
16×16 luminance block, sharing the same motion vector and
macroblock partitioning. In normal video sequences, the con-
tents of chrominance components are often closely related to
that of luminance components, so they share the same motion
vector and partition mode with the corresponding luminance
component instead of being predicted separately. This is a
highly effective method to reduce the bitrate and coding time
in H.264.

While making predictions, the fractal coding scheme
should not merely consider the motion vector by finding
the exactly identical or most similar blocks. Instead, frac-
tal matching between blocks, which probably involve frac-
tal affine transforms, should also be taken into account.
Hence, it is very possible that the luminance block and the
chrominance block do not share the same motion vector and
fractal partition mode, underscoring the need to code them
separately.

The chrominance and luminance components have their
own fractal parameters, motion vectors and fractal modes
when they are separately coded. If the 8×8-2×2 partition
mode is applied, the number of motion vectors will be at least
twice that of H.264. At the same time, bitrate will continue
to increase due to the fractal parameters. Therefore, the par-
titioning mode of the chrominance component is switched
to 16×16-4×4, the same as the luminance components. Then
the chrominance component can share the same coding pro-
cess as the luminance component because they have exact the
same size.

Adopting the new partition mode reduces the number of
macroblocks of the chrominance component by 3/4. Our
experimental results show that the coding time is reduced by
over 40% while maintaining almost the same Peak Signal-to-
Noise Ratio (PSNR) for chrominance components. Details of
the experimental results are given in Section V.

B. SELF-ADAPTIVE QP OFFSET
Quantization provides an extremely effective tool to reduce
the bitrate of a video. It needs a lot of bits to represent a
numerical value that has a large dynamic range. But after
quantization, each value can be represented with fewer bits,
for the data in a certain range is mapped to a same word

based on a rule. The quantization process of a uniform scalar
quantizer can be written as:

Z = floor(|W | /1) · sgn(W ) (18)

where1 denotes the quantization step length, the function
floor() denotes the operation to round down a number to the
nearest integer, sgn() denotes the sign function that extract the
sign of a real number.

Accordingly, the inverse quantization equation is:

W ′ = 1 · Z (19)

It can be seen that the quantization step length is an impor-
tant parameter to determine the accuracy and bitrate of an
image. A larger step length means that fewer bits are needed
for coding a numerical value and that more information about
the video is lost.

The values in the range of 0-1 will be mapped to 0 after
quantization, causing inevitable quantization errors. Hence,
H.264 defines a concept of quantization offset f. After adding
the offset to Equation (18), the quantization equation is:

Z = floor(
|W | + f
1

) · sgn(W ) (20)

The inverse quantization equation remains the same. After
improving the quantizer, the deadband of quantization can be
controlled by changing the value of f. If W is in the range
(−1+ f,1− f), the quantized value is zero. The deadband
of quantization decreases with f. Note that the size of the
deadband influences the subjective quality of the image. If the
deadband is too large, many small-value pixels will be quan-
tized to 0, causing the loss of many minutiae of the image.
Based on statistical results, H.264 defines f = 1/3 for intra-
frame prediction and f = 1/6 for inter-frame prediction.

However, setting the value of f like this relies on statistical
results, and it is not the optimal quantization offset for the
coding of each frame. It is learned from our experiment that
the quantization offset has a great influence on the PSNR of
an image. Taken in to consideration the fact that the offset is
not written into the bit stream, the quality of image can be
optimized by adjusting the quantization offset for each frame
without influencing the size of the bit stream. Motivated
by this idea, this study proposes a self-adaptive QP offset
algorithm. Details are as follows.
Step 1: After fractal prediction, compute the residuals and

then proceed to choose the QP offset.
Step 2: Empirically pre-set the range of the QP offset, and

ensure that this range can be narrowed according to statistical
results. QP offset is not set up directly. Instead, it is related to
the value of QP, and it can be computed as (21):

Qstep = Q(QP%6)·2QP/6 (21)

f = Qstep/denom (22)

where Q(QP%6) refers to the Qstep that corresponds to
QP = 1 − 6, and it can be retrieved quickly using the
preset data array; denom denotes the factor used to set the
quantization offset f, and it is also an important parameter to
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TABLE 2. Configuration.

control the offset. Setting the range of offset is equivalent to
setting the range of denom.
Step 3: Perform transform and quantization on the resid-

uals after changing denom. Consider 4×4 integral DCT and
quantization. This process is the same as the transform and
quantization process in H.264.

(a) Transform

Y = Cf XCT
f (23)

(b) Quantization

Zij = (Yij · Q (QP%6,i, j)+ f )� (15+ QP/6) (24)

(c) Inverse quantization

Y ′ij =


(
Zij · R (QP%6,i, j)

)
�

(
QP
6 − 4

)
,QP≥ 24(

Zij · R (QP%6,i, j)+ 23−
QP
6

)
�

(
4− QP

6

)
,QP < 24

(25)

(d) Inverse transform and normalization

X ′ = CiY ′CT
i (26)

xij = (x ′ij + 25)� 6 (27)

Step 4: Follow (28) to compute the PSNR of the frame
given the current quantization offset. If the current PSNR is
better than the previous best value, store the current offset
factor denom and the value of PSNR.

PSNR = 10log10
(2n − 1)
MSE

(28)

Step 5: Traverse all pre-set denom to obtain the optimal
offset within this range.

The experimental results are available in Section V.

V. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, this study compare the performance of
the proposed algorithm, which adopts chrominance mac-
roblock resizing and self-adaptive QP offset, with the original

FIGURE 5. Frames from different partition modes: (a) Original video;
(b) 8×8-2×2 partitioning; (c) 16×16-4×4 partitioning.

TABLE 3. PSNR variation after changing partition mode.

TABLE 4. Coding time variation after changing partition mode.

fractal algorithm. Then, this study compares the performance
of the improved fractal algorithm with the state-of-the-art
reference software JM19.0 ofH.264/AVC. The algorithms are
implemented on a computer with Intel Xeon E5-1620 v3 CPU
and 32G memory. Some parameters of the program’s config-
uration file are given in Table 2.

A. CHROMINANCE MACROBLOCK RESIZING
Firstly, this study compares the performance of the algo-
rithm after the chrominance macroblock resizing. Generally,
altering the chrominance block size causes slight decrease
in the PSNR of U and V components, but the decrease is
hardly discernable, as shown in Fig. 5. When QP=0, PSNR
decreases by the largest margin of 0.1∼0.2db. In other cases,
the decrease is less than 0.05db. Hence, it can be said that
there is little degradation in the quality of image. Table 3
provides the variation of PSNR for U and V components in
each test video, given QP=0.
The bitrate remains almost the same after the resizing. Only

11 of the 72 tests witness a variation of the bitrate by over 1%,
and the variation is upper bounded by ±5% across all tests.
However, the experimental results indicate that the coding
time is shortened significantly. Table 4 shows the variation
of the coding time for each video given QP=28.
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TABLE 5. Coding time and PSNR variation after applying self-adaptive QP
offset.

It can be observed that resizing the chrominance block
substantially reduces the coding time without compromise of
image quality and bitrate.

B. SELF-ADAPTIVE QP OFFSET
After resizing the chrominance block, this study introduces
the self-adaptive QP offset algorithm. Experimental results
indicate that the searching for the optimal QP offset results
in an increase in the coding time, but the PSNR of the
coded image is enhanced. In order to reduce the influence of
optimal QP searching on time consuming, the proposed self-
adaptive algorithm is only applied to the coding process of the
luminance component. Another reason for this is that human
is more sensitive to luminance change than to chrominance
change [26]. Increasing PSNR of the luminance component
promises more performance gains.

PSNR of the luminance component increases by the largest
margin of about 4dB when QP=0. It can increase by about
1.4dB when QP=4 and by 0.9∼1dB when QP=8, 20,
28 and 36. Table 5 presents the variation of coding time and
PSNR of the Y component for each video given QP=28.

C. PERFORMANCE COMPARISON WITH JM19.0
JM19.0 is the latest reference software of H.264/AVC.
A comparison is made between the proposed algorithm and
JM19.0 to demonstrate the performance of our algorithm.
We evaluate the subjective quality first and then a comparison
is made under the followingmetrics: PSNRs of the Y, U andV
components, coding time and bitrate.

We choose 19th frame of the ‘mobile’, ‘paris’, and ‘bus’
when QP=14. Note that the 19th frame is the last P frame
before the next I frame appears. The original frame, the recon-
structed frame from JM19.0 and the reconstructed frame from
the proposed algorithm are shown in Fig. 6.

It can be found that the reconstructed frames from the
proposed algorithm have almost the same quality as that from
the original video and JM19.0.

When encoding with a low QP, PSNR of the Y com-
ponent in the proposed algorithm is smaller than that in
the JM19.0 algorithm by 2dB at most. Due to the use of
larger blocks, PSNRs of the U and V components decrease
by a larger margin than that of the Y component, and
are smaller than those of JM19.0 by about 8dB at most.
But when encoding with a high QP, the value of PSNR

FIGURE 6. Reconstructed frames from: (a) Proposed algorithm;
(b) JM19.0; (c) Original video.

TABLE 6. Coding time comparison of proposed algorithm and JM19.0.

in the proposed algorithm is higher than that in JM19.0.
Human is more sensitive to luminance change than to chromi-
nance change, so the PSNR decrease in chrominance com-
ponents is acceptable. The bitrate – PSNR curve of the
test video ‘football’ for Y, U and V component is shown
in Fig. 7.

From those figures, it can be observed that the proposed
algorithm can make better use of the bitrate because its
PSNR is higher than that of JM19.0 given a high bitrate.
But the proposed algorithm is inferior to JM19.0 when
the bitrate is low. A possible reason is that the proposed
algorithm does not skip the macroblocks whose residuals
are all zeros. Meanwhile, the fractal parameters transmitted
occupy some bits and thus limit the scope for the bitrate to
decrease.

The proposed algorithm achieves enormous superiority in
terms of the coding time. Performance results of the algo-
rithms are given in Table 6.

It can be seen that the proposed algorithm shortens the cod-
ing time by about 50% when compared with JM19.0 because
of its low computation complexity. The coding time is much
shorter than that of JM19.0 even after applying self-adaptive
QP offset algorithm, which may increase the coding time by
10%-50%.
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FIGURE 7. Bitrate-PSNR curve: (a) football(Y); (b) football(U);
(c) football(V).

VI. CONCLUSION
In this paper, this study proposes an improved fractal
video compression algorithm, which combines the intra-
frame coding algorithm of H.264 and the fractal inter-frame

coding algorithm. Given the same quantization parameters,
the proposed algorithm can reduce the bitrate by more than
50% and shorten the coding time by over 45% in most cases,
while guaranteeing that PSNR of the video is comparable
to JM19.0. Performance comparison with JM19.0 indicates
that the proposed algorithm is efficient and effective in mod-
erate and high bitrate applications.

APPENDIX
The process to derive the fractal coefficients s and o:

The differences between the current frame and the refer-
ence frame is calculated through (29)

SSD =
N∑
i=1

|ri − (s · di + o)|2 (29)

where N denotes the number of pixels in the macroblock,
ri denotes the values of pixels in the range block, di denotes
the values of pixels in the domain block. To minimize SSD,
find the partial derivative of the square of SSD with respect
to s and o:

∂SSD(s, o)
∂s

=

N∑
i=1

2(sdi + o− ri)·di = 0 (30)

∂SSD(s, o)
∂o

=

N∑
i=1

2(sdi + o− ri) = 0 (31)

Then we have:

o =
1

N∑
i=1

di

(
N∑
i=1

rid i − s
N∑
i=1

d2i ) (32)

s
N∑
i=1

di =
N∑
i=1

ri − N · o (33)

Furthermore, from Equation (32) and (33) we can finally
find the equation to calculate s and o:

s =

N
N∑
i=1

ridi −
N∑
i=1

ri
N∑
i=1

di

N
N∑
i=1

d2i − (
N∑
i=1

di)
2

o =
1
N

[
N∑
i=1

ri − s
N∑
i=1

di

] (34)
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