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ABSTRACT In this paper, we present an approach of convolutional neural networks (CNNs) to identify
prostate cancers. Prostate tissue specimen samples were obtained from the tissue microarrays and digitized.
For each sample, epithelial nuclear seeds were identified and used to generate a nuclear seed map, i.e., only
the location information of epithelial nuclei was utilized. From the nuclear seed maps, CNNs sought to
learn the high-level feature representation of nuclear architecture and to detect cancers. Applying data
augmentation technique, CNNs were trained on the training data set including 73 benign and 89 cancer
samples and validated on the testing data set comprising 217 benign and 274 cancer samples. In detecting
cancers, CNNs achieved an AUC of 0.974 (95% CI: 0.961–0.985). In comparison with the approaches of
utilizing hand-crafted nuclear architecture features and the state of the art deep learning networks with
standard machine learning methods, CNNs were significantly superior to them (p-value < 5e-2). Moreover,
stromal nuclei were incapable of improving the cancer detection performance. The experimental results
suggest that our approach offers the ability to aid in improving prostate cancer pathology.

INDEX TERMS Computer-aided diagnosis, microscopy, artificial neural network, pattern recognition,
cancer detection.

I. INTRODUCTION
Mannually-conducted histologic assessment of a biopsied
tissue specimen by a pathologist forms the definitive diag-
nosis of prostate cancer today. The identified cancer is
assigned a histological grade between 1 (relatively benign)
and 5 (highly aggressive) according to the Gleason grading
system [1]. The Gleason grade serves as the basis for can-
cer management and treatment. However, the current prac-
tice of prostate pathology is limited in several ways. Every
year>1 million biopsies are expected in the US [2], and each
biopsy produces 10∼14 tissue specimen samples. This places
a large demand for high-throughput pathology services, but
the manual process impedes the speed. Such heavy workload
increases pathologists’ fatigue and restricts the time allocated
per case, likely decreasing the quality of the service. The
Gleason grading also suffers from inter- and intra-observer
variations [3]–[5], questioning the accuracy and reliability of
prostate pathology. Moreover, the majority of the biopsied
tissue specimens are, in fact, negative for cancer, demon-
strating the inefficiency of the current prostate pathology.
Therefore, automated, fast, and objective tools for accu-
rate, robust, and reproducible cancer detection could aid in

resolving the current issues with prostate pathology and
improving the diagnostic performance.

Digital pathology systems have been proposed to improve
the current practice of cancer pathology [6]. Tissue specimens
are digitized at a high resolution and processed to analyze and
interpret tissue characteristics. It often involves computerized
image processing, pattern recognition, and machine learn-
ing techniques. The typical procedure of digital pathology
systems is as follows: 1) Obtain digitized tissue specimen
images 2) Segment several cellular/sub-cellular components
(e.g., epithelium, stroma, nucleus, and etc.) due to their bio-
logical, chemical, and functional differences [7] 3) Quantify
tissue characteristics (appearance and microstructures) using
the segmented cellular/sub-cellular components; for exam-
ple, disruption of glandular shape and spatial distribution and
arrangement of cellular/sub-cellular components 4) Decision
making via a machine learning framework. Several meth-
ods have been developed for analyzing differing types of
tissues and disease [8], [9] such as prostate cancer [10],
breast cancer [11], [12], pancreatic cancer [13], colorectal
cancer [14], [15], and brain tumor [16], [17]. These methods
have often adopted, so called, hand-crafted image features
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to quantify tissue characteristics; for instance, color [18],
morphology [19], [20], and texture, including wavelet trans-
form [21], gray level co-occurrence matrix [22], fractal anal-
ysis [23], local binary pattern [24], and graph theory [25].
Utilizing such features, the tissue or disease status is deter-
mined by machine learning algorithms such as decision
tree [26], k-nearest neighbor [21], [23], Bayesian [27],
and support vector machine [18], [19]. Multi-scale
(or -resolution) approaches have been also applied to inte-
grate the information from differing scales [17], [27], [28].

Recently, deep learning has gained much attention for
its success in image recognition [29]. Deep learning can
be described as a structural/hierarchical learning algo-
rithm, based upon multiple layers of (nonlinear) processing
units (e.g., artificial neural networks), that is able to learn
high-level features/representations of the observational (raw)
data. Several types of deep learning approaches have been
proposed, including convolutional neural networks (CNNs),
stacked denoising autoencoders, and deep belief networks.
Contrary to the previous approaches of utilizing hand-crafted
image features (e.g., color, morphology, and texture), deep
learning approaches sought to learn image features directly
from a vast amount of (raw) datasets. With the advent of a
high-quality and large-quantity of digitized image datasets,
deep learning has also been applied to medical domains
such as prostate cancer [30], breast cancer, [30]–[33] lung
cancer [34], and brain cancer [34], [35]. Specifically, CNNs
were used for detecting prostate cancer, mitosis [31] and
invasive ductal carcinoma in breast cancer [32], and metas-
tases in lymph nodes [30] as well as segmenting neuronal
membranes [36] and epithelium and stroma of breast [33].
CNNs-driven image features were also combined with hand-
crafted features for detecting mitosis [37]. Stacked denoising
autoencoders were utilized for detecting and segmenting cells
in lung and brain cancer [34].

Herein, we propose an approach of CNNs for detecting
prostate cancers. Prostate tissue specimens are digitized and
processed to segment nuclei within tissue. Utilizing the seg-
mentation results, CNNs learn the high-level representation
of the complex nuclear architecture and determines the dis-
ease status. Employing a large set of digitized tissue specimen
images from tissue microarrays (TMAs), the performance of
the proposed approach is systematically evaluated. The rest
of this paper is organized as follows. InMethodology section,
the details of the nuclear detection and CNNs are described.
In Experiments section, the dataset and experimental setup
are presented. In Results section, the experimental results are
demonstrated. In Discussions section, the implications and
limitations of this study are discussed. Finally, we conclude
in Conclusions section.

II. METHODOLOGY
A. NUCLEAR SEED DETECTION
For each tissue specimen image (in RGB; red, green, and
blue channels), color deconvolution is performed to sepa-
rate hematoxylin and eosin stains. By Lambert-Beer’s law,

the optical density (OD) of a sample can be written as
−log I1

I0
= α · c where I0 is the intensity of light entering the

sample, I1 is the intensity of light through the sample, α is the
absorption coefficient, and c is the concentration of a stain.
Let D be the OD of red, green, and blue channels and C be
the amount of stains (hematoxylin, eosin, and background).
Define a 3× 3 unmixing matrixM where rows represent red,
green, and blue channels and columns represent hematoxylin,
eosin, and background, then D = MC . The amount of each
stain in a sample, thus, can be attained by C = M−1D. The
details of this process are described in [38].

Applying Otsu’s thresholding to the hematoxylin stain
image, any connected components (or a group of pixels) are
designated as an initial nucleus, and its size and shape are
examined: If the size of a nucleus is smaller than 5µm2 or the
ratio of the major and minor axis is greater than 5 when its
size is smaller than 25µm2, then the nucleus is considered
to be an artifact. Applying the Euclidean distance transfor-
mation and a watershed algorithm, each individual nucleus
is identified. The surrounding pixels of nuclei are examined
to discriminate epithelial nuclei from stromal nuclei (>50%
of the perimeter). We adopt a multiview boosting approach
to identify epithelial cells. The detailed description of the
approach is available in [39]. Considering only the epithelial
nuclei, the local maxima from the Euclidean distance trans-
formation are denoted as seeds (or centroids) of individual
nuclei. The procedure is described in Figure 1.

FIGURE 1. Nuclear seed map generation. (top) For an H&E tissue image,
nuclear seed are detected and a nuclear seed map is generated.
(bottom) Hematoxylin stains are extracted from an H&E image and
thresholded to compute a distance map. Local maxima are designated
as nuclear seeds.

B. DATASET CONSTRUCTION AND AUGMENTATION
For each tissue specimen image, a 2-dimensional spatial
transformation, which rescales the original image to a fixed
size of 128 × 128, is calculated. Using the spatial trans-
formation, the corresponding locations of the identified
nuclear seeds (in Section 2.2) are computed and marked in
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FIGURE 2. Structure of CNNs. Nuclear seed maps are fed into 6 layers of
artificial neurons: three convolutional layers, two full-connected layers,
and one softmax layer.

a 128× 128 blank square patch, yielding a nuclear seed map
(Figure 1).

We enlarge the dataset by performing label-preserving
transformations, mimicking plausible physical variations of
tissue specimen images, i.e., nuclear seed maps. A nuclear
seed map is randomly transformed using a scale factor s ∈
[0.5, 1.2], a rotation angle θ ∈ [0◦, 180◦], and horizon-
tal flipping with probability 0.5. If up-scaled, the central
128 × 128 patch from the transformed image is cropped.
If down-scaled, the edges of the transformed image are zero-
padded to yield a 128× 128 patch. Repeating this procedure,
a hundred variants of each nuclear seed map is produced.
This data augmentation is known to be helpful in reducing
overfitting [29].

C. CONVOLUTIONAL NEURAL NETWORKS (CNNs)
Convolutional Neural Networks (CNNs) employ 6 layers
of artificial neurons: three convolutional layers, two fully-
connected layers, and a softmax layer for the classifica-
tion (Figure 2). The rectified linear unit (ReLU) is adopted
as a neuron activation function. The convolutional layer con-
volves the input image with a filter kernel of size w×w. Each
pixel in the resultant image contains the sum of products of
the filter kernel and the local corresponding region (w×w) of
the input image. The input image from the preceding layer is
convoluted with the filter kernels with a stride of 2 pixels.
Local response-normalization is performed for improving
generalizability [29]:

yijk =
xijk(

k + α
∑

l∈U x
2
ijl

)β (1)

where xijk is the filter response at position (i, j), yijk is
the normalized filter response, and U is the neigh-
boring kernels. We set the parameters α = 10−4,
β = 0.75, k = 2. Max-pooling is also used for summa-
rizing the filter response of neighboring pixels (i.e., a max
operation). It attempts to attain spatial-invariant features.
It also reduces the spatial size of the image, leading to the
reduction of the amount of parameters and computational
complexity.

In the fully-connected layer, the neurons are con-
nected to all neurons in the preceding layer. In order to
avoid neuron co-adaptations or overfitting, the ‘‘dropout’’
technique [40] which drops (hidden) neurons with

probability 0.5, is applied to the resultant image of the fully-
connected layers.

In the softmax layer, the probability that the input image
belongs to a class c is computed as

p (y = c|x) =
exp (yc (x))∑

k∈sin{cancer,benign} exp (yk (x))
(2)

where x is the input, y is the predicted class label and yc (·) is
the predicted score that the input belongs to a class c.

The first convolutional layer contains 48 kernels of size
13×13, the second convolutional layer comprises 96 kernels
of size 5× 5× 48, and the third convolutional layer consists
of 128 kernels of size 3 × 3 × 96. For the first two convolu-
tional layers, local response-normalization is applied. Max-
pooling with a window of size 3 × 3 and a stride of 2 pixels
is applied for all three convolutional layers. The two fully-
connected layers contain 512 neurons and are followed by
dropout. The last 2-way softmax layer identifies cancer tissue
specimen images.

III. EXPERIMENTS
A. DATASET
Four tissue microarrays (TMAs) were obtained from
Tissue microarray research program at the National Insti-
tutes of Health. Tissue specimen sample cores were stained
with hematoxylin and eosin (H&E) and digitized using a
whole slide scanner (Leica Biosystems) at 40x magnifica-
tion (a spatial resolution of 0.228 µm × 0.228 µm). Each
tissue specimen sample core was evaluated by an experienced
pathologist (S.M.H) to determine its disease status according
to the Gleason grading system. These TMAs contain 162
(73 Benign and 89 Cancer; TMA A), 185 (70 Benign and
115 Cancer; TMA B), 149 (76 Benign and 73 Cancer; TMA
C), and 157 (71 Benign and 86 Cancer; TMAD) tissue speci-
men sample cores, respectively. CNNs were trained on TMA
A (‘‘training dataset’’) and validated on the remaining three
TMAs (TMA B, TMA C, and TMA D; ‘‘testing dataset’’).

B. EVALUATION OF CNNs APPROACH
We assess the ability of CNNs to learn the high-level nuclear
architectural features and to detect prostate cancers. Nuclear
seed maps are generated and fed into CNNs (Figure 2). CNNs
are trained on the training dataset (TMA A) and tested on
the validation dataset (comprising TMA B, TMA C, and
TMA D). The correct and incorrect predictions in the test
dataset are summarized into a receiver operating characteris-
tic (ROC) plot. The area under ROC curve (AUC) and a 95%
confidence interval (CI) are computed with the trapezoidal
rule. Boot-strap resampling with 2000 repetitions is adopted
to assess 95% CI of AUCs and statistical significance of the
differences between AUCs of the two ROC curves [41].

C. COMPARISON WITH CONVENTIONAL APPROACHES
We compare the performance of CNNs with the conventional
approaches of utilizing hand-crafted features. To quantify
the nuclear architectural characteristics, several hand-crafted
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features are adopted from the previous literature [19], [26].
The nuclear architectural features are:

1) Area: A number of pixels within a nucleus. The total
sum, average, standard deviation, minimum, and max-
imum are computed.

2) Nuclear Entropy: Dividing a tissue image I into
50µm × 50µm disjoint partitions, the nuclear entropy
is computed as

H (X) = −
∑n

i=1

∑n

j=1
p
(
xij
)
log p

(
xij
)

(3)

where p(·) is the probability mass function of the num-
ber of nuclei in a partition and xij ∈ X is the number of
nuclei in (i, j) partition.

3) Voronoi Diagram: Given nuclear centroids Q, Voronoi
diagram divides a tissue image I into a set of dis-
joint Voronoi cells. A non-centroid pixel p ∈ I
lies in the cell corresponding to a centroid qi ∈ Q
if and only if ‖p− qi‖ =

∥∥p− qj∥∥ where ‖·‖ is
the Euclidean distance between two points. For each
Voronoi cell, the area and perimeter are computed.
Then, their average (µ), standard deviation (σ ), dis-
order (1 − 1/ (1+ µ/σ)), and minimum to maximum
ratio are computed.

4) Delaunay Triangulation: Delaunay triangulation is a
triangulation of nuclear centroids Q such that no cen-
troid is inside the circumcircle of any triangle. The area
and perimeter of each triangle is computed, and the
average, standard deviation, disorder, and minimum to
maximum ratio of them are computed.

5) Minimum Spanning Tree: Minimum spanning tree of
nuclear centroids Q is a spanning tree that connects
all centroids with the minimal total weighting for the
edges. Edge weights are computed as the distance
between two centroids. The average, standard devia-
tion, disorder, and minimum to maximum ratio of the
edge weights are computed.

6) Nuclear Density: Drawing a circle of a radius r (r=10,
20, 30, 40 and 50 pixels) around each nuclear centroid,
the number of neighboring nuclei is counted, and the
average, standard deviation, and disorder of them are
computed. Also, for each nuclear centroid, the distance
to the nearest 3, 5, and 7 neighboring nuclei is com-
puted. Their average, standard deviation, and disorder
are computed.

In order to assess the performance of the above hand-
crafted features for detecting cancers, we employ four
standard machine learning algorithms: 1) a support vec-
tor machine (SVM) with a polynomial (SVM-POLY) and
a radial basis (SVM-RBF) kernel function 2) random
forests with random selection of

√
n features (n: number of

entire features) using 100 (RF-100) and 500 (RF-500) trees
3) k-nearest neighbor algorithmwith k=5 (kNN-5) and k=10
(kNN-10) 4) Naïve Bayes. These algorithms are separately
trained on the training dataset and validated on the testing
dataset.

D. COMPARISON WITH DEEP LEARNING APPROACHES
We compare the performance of CNNs with the state of
the art deep learning networks. Five previous (pre-trained)
networks, shown to be effective in image recognition, are
adopted: 1) Krizhevsky [29] 2) VGG-S [42] 3) VGG-VD [43]
4) GoogLeNet [44] 5) Residual Networks (ResNets) [45].
For each of these networks, the output of the preceding
layer of the softmax layer is fed to the standard machine
learning algorithms (used in the previous section). In other
words, these networks are used as a feature extractor. For each
tissue image, the original RGB image and nucleus map are
reduced to a fixed size of 224× 224 and separately provided
with the networks, generating two sets of image features.
Based on the extracted features, the above experiments are
repeated.

E. EVALUATION OF EPITHELIAL AND STROMAL NUCLEI
We investigate the efficacy of distinguishing epithelial nuclei
from stromal nuclei. Using the identical architecture of CNNs
as well as training and testing dataset, we perform two exper-
iments: 1) CNNs using stromal nuclei alone 2) CNNs using
both epithelial and stromal nuclei. The overall procedure is
identical, but the nuclear seed map generation is different;
using stromal nuclei alone and both epithelial and stromal
nuclei.

F. IMPLEMENTATION AND
EXPERIMENTAL ENVIRONMENT
Nuclear seed detection and data augmentation were coded
and executed on MATLAB R2016a. An open-source imple-
mentation of CNNs ‘‘MatConvNET’’ [46] was adopted and
used for training and validation experiments. The entire
experiment was performed on a PC with Intel(R) Core(TM)
i7 3.4 GHz processors, 24GB of RAM, and NVIDIAGeForce
GTX 750 Ti 2GB Graphical Processor Unit (GPU).

TABLE 1. Comparison with the conventional approaches.

IV. RESULTS
A. RESULTS FOR CANCER DETECTION
In detecting prostate cancers, our CNNs achieved an AUC
of 0.974 (95% CI: 0.961-0.985) (Table 1). Figure 3 shows
the process of our CNNs to determine the disease status of
tissue sample cores. CNNs first revealed local and low-level
features. In deeper layers, coarser but high-level features were
obtained and utilized to identify cancers.
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FIGURE 3. Illustration of cancer detection via CNNs. A nuclear seed map
is generated for (a) cancer and (b) benign tissue sample cores and is fed
into CNNs. The output of each convolutional layer is demonstrated.

FIGURE 4. Illustration of the filter kernels of the first convolutional layer.

We examined the filter kernels of the first convolutional
layer (Figure 4). This shows that CNNs have learned the low-
level architectural characteristics of the prostate. In benign
tissues, epithelial cells surround empty circular or elliptical
regions (lumens), i.e., epithelial nuclei line lumens. Some
of the filter kernels contain a straight or curved band of
high weight elements. This could recognize the alignment of
nuclei in benign prostate glands. In cancerous tissues, cells
grow in and out of the gland and disrupt the overall shape
and arrangement of prostate glands. This could be recognized
by the filter kernels that contain small and scattered high-
weight elements. Hence, the first convolutional layer utilizes
the local arrangement of nuclei with or without lumens.

We also assessed mispredicted tissue sample cores
(false positives and false negatives) by CNNs (Figure 5). The
filter responses by false negatives (missed cancer cores) and
false positives (missed benign cores) were similar to true neg-
atives (benign cores) and true positives (cancer cores), respec-
tively. In the output of the 2nd and 3rd convolutional layers,
several filter kernels that have relatively lower responses for
benign (Figure 3b and Figure 5a) and higher responses for
cancer (Figure 3a and Figure 5b) were observed. These are
likely to be responsive to high cellular regions in a tissue,
i.e., recognizing the overall distribution of nuclei.

FIGURE 5. False prediction by CNNs. (a) Cancer and (b) benign tissue
sample cores are classified into benign and cancer class, respectively.

B. RESULTS FOR COMPARISON EXPERIMENTS
Our CNNs outperformed the conventional cancer detection
approaches (Table 1). Using hand-crafted nuclear archi-
tectural features, SVM, random forests, kNN, and Naïve
bayes achieved ≤0.898 AUC. The performance of our CNNs
(0.974 AUC) was significantly better than that of the stan-
dard machine learning algorithms (p-value<1e-5). In addi-
tion, stromal nuclei alone could not distinguish cancers
from benign samples, obtaining an AUC of 0.555 (95% CI:
0.504-0.604). Using both epithelial and stromal nuclei,
an AUC of 0.947 (95% IC: 0.927-0.964) was achieved; how-
ever, the performance was significantly lower than that of our
CNNs using epithelial nuclei alone (p-value<1e-3).

In comparison to the state of the art deep learning
approaches, our CNNs outperformed other approaches.
Table 2 shows the performance of the five networks
(Krizhevsky, VGG-S, VGG-VD, GooLeNet, and ResNets),
combined with the standard machine learning algorithms.
ResNets with RF-500 using RGB images performed the best
among the previous deep learning approaches, obtaining an
AUC of 0.956 (95% CI: 0.936-0.973). However, our CNNs
significantly outperformed all the previous deep learning
approaches (p-value<5e-2).

C. COMPUTATIONAL COMPLEXITY
The computational performance of our approach was
assessed (Table 3). For a tissue sample image of approxi-
mately 5000 × 5000 pixels, the nuclear seed detection step
takes 547s on average due to the pixel-by-pixel process of the
epithelium classification (>90% of the nuclear seed detection
step). Training CNNs with 100 epochs requires a substantial
amount of time (9800s). In testing phase, however, it only
requires a minimal amount of time (<1s), i.e., no computa-
tional overload compared to the standard machine learning
methods.

V. DISCUSSIONS
We empirically chose the architecture of CNNs presented
in this study. The architecture of CNNs plays a pivotal
role in improving the performance. Finding the optimal
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TABLE 2. Comparison with the other deep learning approaches.

architecture (or parameters) and the theoretical justifica-
tion, however, is still an ongoing research topic. Several
strategies have been proposed; for example, hidden layer

TABLE 3. Computational performance.

supervision [47], [48], deformable pooling layer [49], resid-
ual functions [45], stretching and symmetrical [50]. Differing
training methodologies have been proposed [51]. It is infea-
sible to investigate all the strategies. Nevertheless, the addi-
tion of the proper strategies could help to improve the
performance of CNNs in detecting and characterizing
prostate cancers.

CNNs were only provided with the location information
of epithelial nuclear centroids and outperformed the con-
ventional hand-crafted features and standard machine learn-
ing methods. This demonstrates that CNNs could offer the
ability to better characterize the nuclear architecture. How-
ever, the location information of stromal nuclear centroids
alone was incompetent to detect cancers. The arrangement
and distribution of stromal nuclei may not provide sufficient
information that CNNs could utilize to determine the disease
status. Including both epithelial nuclei and stromal nuclei,
we were not able to improve the performance of CNNs. This
suggests that the epithelium detection step that distinguishes
epithelial nuclei from stromal nuclei is essential to reveal the
high-level feature representation of prostate cancers as well
as to attain the improved cancer detection performance.

Whereas our approach is based on the location information
of nuclei, many other deep learning networks as well as
hand-crafted feature extraction methods, in general, exploit
the whole histology objects (e.g., nuclei) or images. The
five state of the art deep learning networks were adopted
and used to detect cancers. Although their performance was
inferior to our CNNs, they consistently outperformed the
conventional hand-crafted features as combined with
SVM-RBF, random forests, and kNN. This supports the idea
of utilizing deep learning approach for characterizing tissues
and identifying cancers. Fine tuning the previous networks
on tissue images may improve the overall performance in
detecting cancers; however, this is beyond the scope of our
study. It is noticeable that the best performing combination
mostly uses nucleus maps, not RGB images. Provided with
nucleus maps, the networks may have been directed to focus
on nuclear characteristics. The effect of the color space of
input data (or images) on deep learning has been noted and
discussed [52]. Our results suggest that the selection of the
suitable form of input data is another crucial factor to the
performance of CNNs.

Conventional methods of utilizing color decomposi-
tion, thresholding, watershed algorithm, and boosting were
adopted to identify nuclei and segment epithelium. CNNs
have also shown to be effective in detecting nuclei and
cells [33], [53]–[56]. This may offer the potential for
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improving nuclei detection; in particular, resolving densely
clustered nuclei or inhomogeneous stains. The improvement
in detecting nuclei and cells will be beneficial to our CNNs.
Further study will be conducted to develop the full CNNs
approach for identifying nuclei and cells as well as detecting
cancers.

We employed data augmentation to enlarge the dataset and
to avoid overfitting. The strength of deep learning lies in
the ability to explore a huge amount of data and to extract
relevant features. Despite of the relatively small size of the
dataset, our CNNs were capable of detecting cancers with
high accuracy, i.e., the size of the dataset was not a limiting
factor in this study. Nonetheless, an extended validation study
could further ensure the utility and reliability of our approach.

VI. CONCLUSIONS
We have presented an approach of CNNs for identifying
prostate cancers. CNNs were only fed with the location
information of nuclear centroids and able to learn complex
and complicated nuclear architecture characteristics. Our
approach was significantly superior to the conventional hand-
crafted features and standard machine learning methods. The
experimental results are promising to justify further investi-
gation of our approach for other applications. We will apply
our approach to other types of cancers and disease.
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