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ABSTRACT Physical-layer network coding holds the great potential of improving the power efficiency
and the spectral efficiency for the two-stage transmission scheme. The first stage is the multiple access
stage, where two source nodes (SN1 and SN2) simultaneously transmit to the relay node (RN). The second
stage is the Broadcast stage, where the RN broadcasts to the two destination nodes (DN1 and DN2), after a
denoising-and-mapping operation. In this paper, we investigate the joint network-codedmodulation design of
the two stages. A universal modulation framework is built, referred to as analog network-coded modulation
strategy, which is more general than the former modulation design mechanism. More explicitly, we propose
a joint design criterion to guarantee the forwarding reliability at the RN. The criterion ensures that the
neighboring constellation points superposed at the RN are mapped to an identical constellation point for
broadcasting if their Euclidean distance (ED) is less than a given threshold. This yields a non-convex
polynomial optimization problem by minimizing the average transmission power and constraining the ED
among the constellation points. By solving the problem, we propose two joint modulation design algorithms,
termed as the Enhanced Semidefinite Relaxation Algorithm and the Fast-Relaxation Algorithm, respectively.
The two algorithms can achieve the tradeoff between the communication performance and the computation
resources. As for the Fast-Relaxation Algorithm, the theoretical performance boundary is derived in detail.
Simulation results demonstrate the effectiveness of both the proposed algorithms by comparing symbol error
rate performance with the existing modulation design methods.

INDEX TERMS Two-way relaying, network coding,modulation coding, physical layer, constellation design,
optimization methods, relaxation methods, semidefinite programming, Gaussian randomization.

I. INTRODUCTION
Network coding has emerged as a promising and power-
ful solution to future communication networks for its huge
potential of improving the power efficiency and the spectral
efficiency. The underlying core idea behind network coding
is the linear combination and compression of various traffic
flows with the aid of network coding mapping operation such
as XOR at RN . At their intended destination nodes, these
network coded flows can be decoded by using some prior
information.

In the past decades, the promise of huge gains of net-
work coding has attracted extensive investigations [1]–[6].

Of particular practical interest is the application in the two-
way relay-aided sub-network topology. Various network cod-
ing schemes for the two-way relay-aided topology have been
proposed, as discussed in [7]–[14]. One typical scheme is the
three stage Decode-and-Forward two-way relaying, where
RN can decode each symbol transmitted in different stages
and then combine the symbols by applying a network coding
operation such as XOR for broadcasting in the third stage.
Besides, the appearance of the two-stage two-way relaying
further promotes the research on the network coding. One
two-stage scheme is Amplify-and-Forward, where two source
nodes simultaneously transmits to RN , and subsequently,
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RN broadcasts the received superposed signal after direct
amplification, without denoising operation [6], [12]. Another
two-stage scheme is Joint Decode-and-Forward, where RN is
able to jointly decode both symbols simultaneously transmit-
ted from the two source nodes. This scheme requires a limita-
tion on the data rates of the two source nodes [11]. Moreover,
a two-stage scheme equipped with PNC represents a radical
departure from the conventional wireless design [13], [14]
for its particular denoising-and-mapping operation at RN .
The two-way relaying equipped with PNC scheme consists
of two stages, namely MA stage and BC stage. At the MA
stage, SN1 and SN2 simultaneously transmit signals to RN .
The simultaneously arrived signals superpose at RN and RN
can map them to its constellation by performing a denoising-
and-mapping operation, rather than jointly decoding. Then
at the BC stage, RN broadcasts the network-coded signals
to both two destination nodes. The destination nodes can
decode the messages by using their local prior information
because they also act as source nodes. By allowing SN1 and
SN2 to transmit simultaneously to RN and not treating the
simultaneously arrived signal as interference, this scheme can
boost the system throughput by 100% [14].

As for the PNC scheme, an underlying core problem that
remains to be addressed is the constellation and network
coding mapping design. Traditionally, the design of the net-
work coding mapping is independent of the constellation
design. In [15], the network coding mapping method based
on closest-neighbor clustering is proposed, where the con-
ventional quadrature phase-shift keying (QPSK) modulation
is used at the MA stage. After the network coding design,
the constellation is designed for the BC stage by using sphere
packing, matched with the designed network coding map-
ping. In [16], the method of using Latin Squares is intro-
duced to design the network coding mapping, where the
same modulation order is assumed at the two source nodes.
As for the constellation design, theM -ary phase-shift keying
(M -PSK) modulation is used at both the MA stage and the
BC stage. In [17], the network codingmapping is investigated
for the special linear PNC scheme. The mapping method is
designed by optimizing the coefficients of the linear combi-
nations of two uplink messages, where the pulse amplitude
modulation (PAM) is used. In [18], two constellation design
methods are investigated for multiple-input multiple-output
systems by respectively minimizing the upper boundary on
the average bit error probability and maximizing the cutoff
rate under an average transmit power constraint. In [19],
a constellation design method is investigated for the relay
channel model with orthogonal receive components. The
method is presented by maximizing the mutual information
between the transmitted signals and the received signals at
the destination nodes.

In contrast to the existingworkswhich use the conventional
constellations, we jointly design the network coding mapping
and the constellations at all the three nodes. We build a
unifiedmodulation framework for PNC, referred to as Analog
Network-coded Modulation Strategy, which is more general

than the mechanism in [15]–[17]. A simpler version of the
framework is introduced in [20]. In the proposed framework,
an analog mapping criterion is presented. According to the
mapping criterion, RN is stipulated to map the neighboring
received superposed constellation points, among which the
ED is less than a given threshold, to an identical constellation
point. This unifies the up-link and down-link modulation and
simultaneously guarantees the mapping reliability at RN . The
built framework holds with no restriction on the constella-
tions of both the MA stage and the BC stage such that the
potentially huge gains of PNC are ensured. Based on this
framework, the network coding mapping and constellations
of all the three nodes can be jointly designed by formulating
an optimization problem. The problem is formulated by set-
ting the constellations of SN1, SN2, and RN as variables and
minimizing the total average transmission power while guar-
anteeing a target SER and transmission rate. Solving the opti-
mization problem can directly provide the jointly designed
constellations and network coding mapping for PNC. The
problem is shown to be NP-hard. Two suboptimal algo-
rithms with polynomial-complexity, respectively referred to
as Enhanced-SDR Algorithm and Fast-relaxation Algorithm,
are proposed. The Enhanced-SDR algorithm can achieve
better approximate performance while the Fast-relaxation
Algorithm has lower complexity. Hence the two algorithms
achieve the tradeoff between communication performance
and computation requirements. The theoretical boundaries
are provided for both the algorithms. Especially, for the Fast-
relaxation Algorithm, the theoretical boundary is derived
in detail in this paper. The Monte-Carlo simulation results
demonstrate the effectiveness of both the two proposed algo-
rithms. It is shown that both the algorithms can obtain a
significant SER gain over a traditional one-to-one mapping
scheme as well as can outperform the modulation design
method in [15].

The notations used in this paper are summarized in Table 1.
The remainder of this paper is organized as follows. Section II
describes the system model. In Section III, the unified mod-
ulation framework for PNC and the problem formulation
are proposed. The Enhanced-SDR algorithm is described in
Section IV. In Section V, the Fast-relaxation Algorithm and
its approximation boundary analysis are investigated in detail.
In Section VI, we discuss some practical issues for the pro-
posed modulation framework. At last, simulation results and
conclusions are presented in Section VII and Section VIII,
respectively.

II. SYSTEM DESCRIPTION
Consider a bi-directional relaying, where two nodes com-
municate with each other through a relay node (RN ) such
that the two nodes act as both source nodes and destination
nodes, as shown in FIGURE 1. We denote the two nodes
by SN1(DN1) and SN2(DN2) respectively. PNC is considered
here for its huge throughput gains. The two-way relaying
equipped with PNC consists of two stages. The first stage is
the MA stage, where SN1 and SN2 simultaneously transmit
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TABLE 1. Main notations.

FIGURE 1. System Model. RN performs a denosing-and-mapping
operation before broadcasting to DN1 and DN2.

signals to RN . The simultaneous arriving signals have addi-
tive nature at RN . Instead of decoding every arriving signal
from SN1 and SN2, RN directly maps the superposed signal

into a new constellation for broadcasting at the second stage.
The second stage is the BC stage, where RN broadcasts the
mapped signal to both DN1 and DN2. Both destination nodes
can decode the intended messages by using their local signal
as prior knowledge.

Let us denote the constellations used at SN1 and SN2 to be
A = {a1, . . . , aM } and B = {b1, . . . , bN } respectively, where
ai, bj ∈ C, i = 1, . . . ,M , j = 1, . . . ,N , and M , N denote
the orders of respective constellations. Then at the MA stage,
the signal received at RN is superposed and written as

yR = h1x1 + h2x2 + nR, x1 ∈ A, x2 ∈ B, (1)

where h1 and h2 are the corresponding channel coefficients
from SN1 and SN2 respectively and nR is the Additive White
Gaussian Noise (AWGN) with zero mean and a variance
of σ 2. We use x1 and x2 to denote the signals respectively
transmitted from SN1 and SN2. Their values are respectively
from the sets A and B. After receiving the superposed sig-
nal yR, RN will perform a network coding mapper C to map
it to the constellation used at RN for broadcasting at the BC
stage.

We denote the constellation used at RN to be S = {sij|i =
1, . . . ,M , j = 1, . . . ,N }. When SN1 and SN2 transmit ai
and bj respectively, RN will broadcast sij correspondingly,
i.e., sij = C(ai, bj). In the mapping process, only denoising
detection is performed, rather than joint decoding. The sig-
nals received at DN1 and DN2 can be respectively written as

y1 = h1xR + n1, xR ∈ S (2)

y2 = h2xR + n2, xR ∈ S, (3)

where xR denotes the signal transmitted from RN , n1 and n2
are AWGNwith zero mean and a variance of σ 2. By utilizing
their own prior information, DN1 and DN2 can decode the
intended signal respectively from y1 and y2. Given the above
system model, we shall present a novel Analog Network-
coded Modulation Strategy. This modulation strategy can
guarantee the mapping reliability at RN and achieve the joint
design of the network coding mapping and the constellations
A, B, and S.

III. ANALOG NETWORK-CODED
MODULATION STRATEGY
In this section, we firstly build a unified modulation frame-
work, namely the Analog Network-coded Modulation Strat-
egy, to unify the modulation design of both the up-link and
down-link transmissions. Then based on this strategy, an opti-
mization problem is formulated to achieve the joint design of
themappingmethod and the constellations for all three nodes.

In theAnalogNetwork-codedModulation Strategy, an ana-
log mapping criterion is presented, which guarantees the
mapping reliability at RN . As shown in FIGURE 2, at RN ,
the neighboring received constellation points, among which
ED is less than a given threshold, are stipulated to be
mapped to an identical constellation for broadcasting. We set
a squared ED constraint εR at RN to quantize the ‘‘neigh-
borhood.’’ That is, if ED between two arbitrary received
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FIGURE 2. Analog Mapping Criterion at RN . The neighboring received
constellation points, among which the ED is less than a given threshold,
are stipulated to be mapped to an identical constellation point for
broadcasting as depicted by Eq. (4)

superposed constellation points h1ai + h2bj and h1ap + h2bq
is less than

√
εR, RN will forward the two points by an

identical constellation point (i.e., |sij−spq| = 0). Conversely,
if two received points are mapped to different broadcasted
constellation points, their ED is required to be larger than
√
εR to ensure the mapping reliability. These relations can be

exactly described by the following formulation:[∣∣(h1ai + h2bj)− (h1ap + h2bq)
∣∣2 − εR] ∣∣sij − spq∣∣2 ≥ 0.

(4)

From Eq. (4), we can observe that the analog mapping crite-
rion unifies the constellation design of both the up-link and
down-link transmission. Meanwhile, by adjusting εR, we can
limit the probability of failing forwarding at RN .
Besides the proposed analog mapping criterion, the neces-

sary condition for DN1 and DN2 to successfully decode the
intended signal is that:

C(ai, bj) 6= C(ai, bk ), ∀bj 6= bk ∈ B, ai ∈ A (5)

C(aj, bi) 6= C(ak , bi), ∀aj 6= ak ∈ A, bi ∈ B, (6)

which is referred to as Exclusive law in this paper. We set
two ED constraints εA and εB on the constellation S to limit
the decoding reliability at DN1 and DN2, respectively. Then
by using εA and εB, the necessary Exclusive law can be
transformed into the following formulations:∣∣sij − sik ∣∣2 ≥ εA, sij 6= sik ∈ S (7)∣∣sji − ski∣∣2 ≥ εB, sji 6= ski ∈ S. (8)

At the MA stage, to detect the received superposed signal
yR at RN , the minimum distance criterion [21] is adopted as
follows:

(a′i, b
′
j) = arg min

(ai,bj)∈A×B
|yR − (h1ai + h2bj)|, (9)

where (a′i, b
′
j) denotes the obtained estimate of yR. Note

that the minimum distance criterion detection at RN is only
used for quantize the received superposed signal rather than
joint decoding. After the denoising detection, the designed
network coding mapper C is performed to map the mini-
mum distance estimate to constellation S for broadcasting.

According to the proposed analog mapping criterion,
the detection errors among the neighboring received points
can be avoided so that the mapping reliability is guaranteed.

At the BC stage, by using its own prior knowledge ai,
DN1 can successfully detect the desired signal through the
the minimum distance criterion detection as follows:

b̂′j = arg min
bj∈B

|y1 − h1C(ai, bj)|, (10)

assuming the successful mapping at RN , i.e., C(a′i, b
′
j) =

C(ai, bj). From Eq. (10), we can observe that by using the
prior knowledge ai, DN1 only needs to operate the searching
of N alternative constellation points in each communication
round, no matter what order the constellation broadcasted by
RN is. In the same way, DN2 can detect the desired signal by
using its own information bj as follows:

â′j = arg min
aj∈A

|y2 − h2C(ai, bj)|. (11)

DN2 only needs to search M alternative constellation
points when performing the signal detection. This com-
pletes one round of communication between the two source
nodes SN1 and SN2.

Based on the above modulation strategy, we formulate
a unified optimization problem to jointly design the con-
stellations and network coding mapper, aiming at achieving
the optimal modulation design for PNC. The constraints in
Eq. (4) and Eqs. (7-8) give the sufficient conditions for
the modulation design to complete the overall communica-
tion between SN1 and SN2. Meanwhile, the ED constraints
{εA, εB, εR} can limit the error rate of signal detection at
DN1 and DN2, as well as RN . It is well known that for a
relay system, less average transmission power implies better
constellation design when the modulation orders and the min-
imum ED of the constellations are both given. Following this
rule, we are led to define the merit function f : A,B,S → R
by the average transmission power:

f (A,B, S) =
1
M
AHA+

1
N
BHB+

1
MN

∑
i

∑
j

∣∣sij∣∣2, (12)

where we define A ∈ CM
= [. . . , ai, . . .]ai∈A, B ∈ CN

=

[. . . , bj, . . .]bj∈B, and S ∈ CM×N
= [sij]sij∈S . Then the

problem to design the optimal constellations {A, B, S} is
turned into solving the novel optimization problem

(A∗,B∗, S∗) = arg min
A∈CM , B∈CN ,
S∈CM×N

f (A,B, S), (13)

under constraints in Eq. (4) and Eqs. (7-8). Solving the
problem can provide the optimal constellation design for
the two-way relaying equipped with PNC, which minimizes
transmission power whereas achieving the target SER and
transmission rate.

Next, we focus on solving the formulated optimization
problem. Observe that parts of the fourth order constraints
in Eq. (4) are redundant when we simultaneously consider
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the constraints in Eqs. (7-8), where the exclusive law indi-
cates that sij 6= sik for the same i, i = 1, . . . ,M and
ski 6= sji for the same i = 1, . . . ,N . Based on this
observation, the redundant fourth order constraints can be
transformed into equivalent quadratic constraints. By this
equivalent transformation, the original optimization problem
is rewritten as

min
A,B,S

1
M
AHA+

1
N
BHB+

1
MN

∑
i

∑
j

∣∣sij∣∣2
s.t.

∣∣sij − sik ∣∣2 ≥ εA, ∀sij, sik ∈ S∣∣sji − ski∣∣2 ≥ εB, ∀sji, ski ∈ S∣∣h1(aj − ak )∣∣2 ≥ εR, ∀aj, ak ∈ A∣∣h2(bj − bk )∣∣2 ≥ εR, ∀bj, bk ∈ B[∣∣(h1ai + h2bj)−(h1ap + h2bq)∣∣2−εR] ∣∣sij−spq∣∣2 ≥ 0

ai, ap ∈ A, bj, bq ∈ B, sij, spq ∈ S, i 6= p, j 6= q.

(14)

It can be observed from problem (14) that the first two
groups of constraints only limit constellations S, likely,
the third and the fourth groups only limit A and B respec-
tively, and the last group jointly constrains A, B, and S.
Furthermore, we can observe from the last group of con-
straints that only such points sij and spq that simultaneously
satisfy i 6= p and j 6= q can be merged as one point
(i.e., sij = spq). Otherwise, huge failing decoding will happen
at DN1 and DN2 because of violating the Exclusive law.
Those will be helpful in developing the related Gaussian
randomization approximation method for the proposed algo-
rithms later.

Problem (14) is non-convex since all the constraints are
nonconvex. In the subsequent two sections, for achieving
the tradeoff between communication performance and com-
putation resources, two different approximation algorithms
are developed, referred to as Enhanced-SDR Algorithm and
Fast-relaxation Algorithm respectively. Both two algorithms
are with polynomial complexity. The Enhanced-SDR Algo-
rithm can achieve better approximation performance while
the Fast-relaxation Algorithm has lower complexity. The
detailed comparison of the performance will be shown
in Section VII.

IV. JOINT CONSTELLATION DESIGN BY THE
ENHANCED-SDR ALGORITHM
In this section, the Enhanced-SDR Algorithm is developed
to jointly design the mapping method and constellations
used at all three nodes. This algorithm firstly relaxes the
original problem into a semidefinite programming problem.
Then a Gaussian randomization procedure is developed to
extract approximate solutions to the original problem from
the solutions of the relaxed semidefinite programming prob-
lem. At last, the constellations and network coding map-
ping method can be directly derived from the approximate
solution.

For the sake of clarity, by defining

zT1 = [
1
√
M
AT

1
√
N
BT ] ∈ CM+N

zT2 =
1
√
MN

[s11 s12 . . . sMN ] ∈ C1×MN , (15)

problem (14) can be rewritten as

min
z1,z2

zH1 z1 + z
H
2 z2

s.t. zH1 H1iz1 ≥ 1, i = 1, 2, . . . ,m1

zH2 H2iz2 ≥ 1, i = 1, 2, . . . ,m2

(zH1 Diz1 − 1)(zH2 Eiz2) ≥ 0, i = 1, 2, . . . ,m3, (16)

where m1, m2, and m3 denote the respective number of con-
straints, {H1i}

m1
i=1, {H2i}

m2
i=1, {Di}

m3
i=1, and {Ei}

m3
i=1 denote the

corresponding coefficient matrices. It can be verified that all
the coefficient matrices are rank-one positive semidefinite,
and

m1 = C2
M + C

2
N

m2 = MC2
N + NC

2
M

m3 = 2C2
MC

2
N . (17)

A. ENHANCED-SDR RELAXATION
In this subsection, Enhanced-SDR relaxation is developed to
relax problem (16) into a solvable semidefinite programming
problem. Solving the semidefinite programming problem can
give us a lower boundray on the average transmission power,
and also a group of matrix solutions, from which the constel-
lations and network codingmappingmethod can be extracted.
Proposition 1: Problem (16) can be relaxed into the

following semidefinite programming problem:

min
Z1,Z2,Z3,z3

tr(Z1)+ tr(Z2)

s.t. tr(H1iZ1) ≥ 1, i = 1, 2, . . . ,m1

tr(H2iZ2) ≥ 1, i = 1, 2, . . . ,m2

tr(DjZ1)− cjz3 = 1, tr(EjZ2)− djz3 = 0

tr(FjZ3) ≥ 0, j = 1, 2, . . . ,m3

Z1 � 0, Z2 � 0[
1 zH3
z3 Z3

]
� 0. (18)

Proof: The main idea of the proof is to transform
problem (16) into a quadratically constrained quadratic pro-
gramming problem by introducing new variables and then
apply the basic idea of SDR.

Firstly, by defining new variables

pj = zH1 Djz1 − 1 (19)

qj = zH2 Ejz2, (20)
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problem (16) can be equivalently rewritten as

min
z1,z2,z3

zH1 z1 + z
H
2 z2

s.t. zH1 H1iz1 ≥ 1, i = 1, 2, . . . ,m1

zH2 H2iz2 ≥ 1, i = 1, 2, . . . ,m2

zH1 Djz1 − cTj z3 = 1, zH2 Ejz2 − d
T
j z3 = 0

z3TFjz3 ≥ 0, j = 1, 2, . . . ,m3, (21)

where we define z3 ∈ R2m3 = [p1 . . . pm3 q1 . . . qm3 ].
By the introduction of series of new variables, the original
problem (16) is transformed equivalently into a quadrati-
cally constrained quadratic programming problem so that
semidefinite relaxation (SDR) can be applied. Problem (21)
is nonconvex and NP-hard [22]. Hence we can conclude that
the equivalent problem (16) is also NP-hard.

Observe that for arbitrary vector x and coefficient
matrix H, we have

xHHx = tr(xHHx) = tr(HxxH ). (22)

Note that xxH is equivalent to a rank-one hermitian posi-
tive semidefinite matrix. Thus, by introducing new variables
{Zi = zizHi }

3
i=1, problem (21) can be transformed into the

following equivalent formulation:

min
Z1,Z2,Z3,z3

tr(Z1)+ tr(Z2)

s.t. tr(H1iZ1) ≥ 1, i = 1, 2, . . . ,m1

tr(H2iZ2) ≥ 1, i = 1, 2, . . . ,m2

tr(DjZ1)− cjz3 = 1, tr(EjZ2)− djz3 = 0

tr(FjZ3) ≥ 0, j = 1, 2, . . . ,m3

Z1 � 0, Z2 � 0

Z3 = z3zH3
rank(Z1) = 1, rank(Z2) = 1. (23)

By applying SDR, we relax the nonconvex rank constraints
rank(Z1) = 1 and rank(Z2) = 1, and relax Z3 = z3zH3 into
a convex positive semidefinite constraint Z3 � z3zH3 . Noting
that Z3 � z3zH3 is equivalent (Schur complement) to[

1 zH3
z3 Z3

]
� 0, (24)

we obtain the relaxed version of problem (16) as
problem (18). This completes the proof.

Problem (18) consists of one linear objective function,
m1 + m2 + 3m3 linear inequality constraints, and three
semidefinite positive constraints. Hence it is a standard
semidefinite programming problem. Semidefinite program-
ming problem can now be solved efficiently and reliably to
any arbitrary accuracy with polynomial complexity [22]. The
max-size of the three matrix variables in the semidefinite
programming problem is 2m3 × 2m3, and the number of the
linear inequality constraints is m1 +m2 + 3m3. As discussed
in [23], interior point methods will take O(

√
m3log(1/ε))

iterations, each requiring at most O(m3
6) arithmetic oper-

ations. In contrast, the complexity of exhaustive search
isO(22(M+N+MN )). The proposed algorithm reduces the com-
putational complexity significantly.

B. RANDOMIZATION APPROXIMATION
This subsection develops a Gaussian randomization method
for the Enhanced-SDR Algorithm to achieve the joint
design of the constellations and network coding mapping
method by utilizing the three matrix solutions obtained from
Proposition 1. The Gaussian randomization method is
described in detail in Algorithm 1.

When we obtain the solutions z̃1, z̃2 from Algorithm 1,
the optimized constellations can be derived by

A = {ai|ai =
√
Mz̃1(i)}Mi=1 (27)

B = {bj|bj =
√
Nz̃1(j)}

M+N
j=M+1 (28)

S = {sij|sij =
√
MNz̃2((i− 1)N + j)}M ,Ni=1,j=1. (29)

Correspondingly, the network coding mapper can be
extracted from the constellations as

sij = C(ai, bj). (30)

That is when SN1 and SN2 transmit ai, bj respectively, RN
will broadcast sij.

As shown in [24], a complex-valued SDR can achieve an
approximation boundary of 8m, where m denotes the number
of quadratic constraints. By a similar procedure, a bound of
γ̃ = 4(M2N 2

+M2
+ N 2

−MN −M − N ) can be obtained
for the Enhanced-SDR algorithm, where we plug the values
of m1, m2, and m3 in Eq. (17).
Taking the computation requirements and the delay of the

communication into consideration, we shall propose another
novel algorithm, which has much lower computation com-
plexity, to achieve the tradeoff between the communication
performance and computation resource in the next section.
Detailed performance boundary analysis will be presented for
the algorithm.

V. JOINT CONSTELLATION DESIGN BY THE
FAST-RELAXATION ALGORITHM
In this section, the Fast-relaxation Algorithm is proposed,
which has much lower complexity and can also achieve
the joint design of the constellations for the physical-layer
network-coded two-way relaying. This algorithm has the
solving process similar to the Enhanced-SDR Algorithm.
The difference is that the Fast-relaxation Algorithm directly
relaxes the original problem, unlike the Enhanced-
SDR introducing some new variables before relaxing.
Meanwhile, the Fast-relaxation Algorithm takes advantage of
the relations among the coefficient matrices to eliminate the
redundant constraints in some certain subset of the problem
domain. Due to those differences, the Fast-relaxation Algo-
rithm has a significantly lower computation complexity than
the Enhanced-SDR algorithm. Theoretical approximation
ratio of the Fast-relaxation Algorithm is also presented in
this section.
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Algorithm 1 Gaussian Randomization Procedure of the
Enhanced-SDR Algorithm

Input: Enhanced-SDR optimal solutions Z∗1 , Z
∗

2 ,
the number of randomizations Nrand .

for l = 1, 2, . . . ,Nrand do
Generate ξ2 ∼ Nc(0,Z∗2 ).
Construct

zl2 =
ξ2

min1≤i≤m2

√
ξH2 H2iξ2

. (25)

for any i, j = 1, . . . ,MN , i 6= j do
Compute the squared distance

d21 = |
√
MN (zl2(i)− z

l
2(j))|

2.

if d21 < min {εA, εB} then
Construct zl2(i) = zl2(j).

1

if the exclusive law is not satisfied then
Eliminate above construction.

end if
end if

end for
for any i, j = 1, . . . ,MN , i 6= j do

Construct zl2(i) = zl2(j).
if the exclusive law is not satisfied then

Eliminate above construction.
end if

end for
Generate ξ1 ∈ CM+N

∼ Nc(0,Z∗1 ).
Construct

zl1 =
ξ1

min{ξ1HMξ1}
.2 (26)

end for
Determine l∗ = arg min

l=1,...,Nrand
(zl1)

H zl1 + (zl2)
H zl2.

for k = 1, 2, . . . ,K do
Compute the descent direction:

1z1 = −2zl
∗

1 , 1z2 = −2zl
∗

2 .

Choose the step size:

t1 = δ1|randn(M + N , 1)|, t2 = δ2.

Generate:

zk1 = zl
∗

1 + t1 ◦ (1z1), zk2 = zl
∗

2 + t21z2

if zk1, z
k
2 are feasible then

if (zk1)
H zk1 + (zk2)

H zk2 < (zl
∗

1 )
H zl

∗

1 + (zl2)
H zl

∗

2 then
Update zl

∗

1 = zk1, z
l∗
2 = zk2.

end
end

end
Output The approximate solutions z̃1 = zl

∗

1 , z̃2 = zl
∗

2
to (16).

1Note that this construction means there is a certain i that makes
(zl2)

HEizl2 = 0 in problem (16).
2M contains all the coefficient matrices H1i, i = 1, . . . ,m1 and such

part of coefficient matrices Di that corresponds to (zl2)
HEizl2 6= 0 in

problem (16).

In order to describe the algorithm conveniently, let
fi, gi, hi, and dk denote the corresponding coefficient vectors
in problem (14), and take that

z1 =
1
√
M
A ∈ CM

z2 =
1
√
N
B ∈ CN

zT3 =
1
√
MN

[s11 s12 . . . sMN ] ∈ C1×MN . (31)

Then by defining {Fi := fif Hi }
m1
i=1, {Gj := gjgHj }

m2
j=1,

{Hi := hihHi }
m3
i=1, and {Dk := dkdHk }

2m1m2
k=1 , the original

problem (14) can be equivalently rewritten as

min
z1,z2,z3

zH1 z1 + z
H
2 z2 + z

H
3 z3

s.t. zH1 Fiz1 ≥ 1, i = 1, 2, . . . ,m1

zH2 Gjz2 ≥ 1, j = 1, 2, . . . ,m2

zH3 Hiz3 ≥ 1, i = 1, 2, . . . ,m3

(
[
z1
z2

]H [ Fi ±figHj
±gjf Hi Gj

] [
z1
z2

]
− 1)(zH3 Dkz3) ≥ 0

i = 1, . . . ,m1, j=1, . . . ,m2, k=1, . . . , 2m1m2. (32)

where we still use m1, m2 and m3 to denote the respective
number of constraints. It can be checked that in this section,

m1 = C2
M

m2 = C2
N

m3 = MC2
N + NC

2
M . (33)

Note that in this section, the values of m1, m2, and m3 are
different from those in Section IV. All the coefficientmatrices
{Fi}

m1
i=1, {Gj}

m2
j=1, {Hi}

m3
i=1, and {Dk}

2m1m2
k=1 are still positive

semidefinite and rank-one.

A. FAST-RELAXATION AND RANDOMIZATION
APPROXIMATION
This subsection relaxes problem (32) directly into a new
solvable semidefinite programming problem by taking good
advantage of the coefficient relations. Then based on the
matrix solutions of the obtained relaxed problem, a heuris-
tic randomization approximation procedure is developed to
jointly design the constellations and network coding mapping
method.
Proposition 2: Problem (32) can be relaxed into the the

following semidefinite programming problem:

min tr(Z1)+ tr(Z2)+ tr(Z3)

s.t. tr(FiZ1) ≥ 1, i = 1, 2, . . . ,m1

tr(GjZ2) ≥ 1, j = 1, 2, . . . ,m2

tr(HiZ3) ≥ 1, i = 1, 2, . . . ,m3

Z1 � 0, Z2 � 0, Z3 � 0. (34)
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Proof: The proof begins with changing the optimization
variables in problem (32) equivalently to {Zi := zizHi }

3
i=1

and Z4 := z2zH1 as Eq. (22). Then problem (32) can be
transformed into the following equivalent formulation:

min tr(Z1)+ tr(Z2)+ tr(Z3)

s.t. tr(FiZ1) ≥ 1, i = 1, 2, . . . ,m1

tr(GjZ2) ≥ 1, j = 1, 2, . . . ,m2

tr(HiZ3) ≥ 1, i = 1, 2, . . . ,m3[
tr(FiZ1)± 2tr(figHj Z4)+ tr(GjZ2)− 1

]
· tr(DkZ3) ≥ 0

i = 1, 2, . . . ,m1, j = 1, 2, . . . ,m2,

k = 1, 2, . . . , 2m1m2

rank(Z1) = 1, rank(Z2) = 1, rank(Z3) = 1

Z1 � 0, Z2 � 0, Z3 � 0

Z4 = z2zH1 . (35)

Similar to the discussion in subsection of Enhanced-
SDR relaxation, by directly relaxing the rank constraints
and Z4 = z2zH1 , we can relax problem (32) into the following
Fast-relaxation problem:

min tr(Z1)+ tr(Z2)+ tr(Z3)
s.t. tr(FiZ1) ≥ 1, i = 1, 2, . . . ,m1

tr(GjZ2) ≥ 1, j = 1, 2, . . . ,m2

tr(HiZ3) ≥ 1, i = 1, 2, . . . ,m3[
tr(FiZ1)± 2tr(figHj Z4)+ tr(GjZ2)− 1

]
· tr(DkZ3) ≥ 0
i = 1, 2, . . . ,m1, j = 1, 2, . . . ,m2,

k = 1, 2, . . . , 2m1m2

Z1 � 0, Z2 � 0, Z3 � 0. (36)

This relaxation method is termed as Fast-relaxation
because problem (36) has much lower computation com-
plexity than the Enhanced-SDR relaxation problem (18).
Although problem (36) is nonconvex due to the existence of
the 2m1m2 nonconvex quadratic constraints, we can quickly
obtain the optimal solutions by taking full advantage of
the relations among the coefficient matrices. These rela-
tions show that the nonconvex quadratic constraints in prob-
lem (36) are redundant in some feasible regions, which
exactly be proved to contain the optimal solutions.

Based on the observation above, we can prove that prob-
lem (36) has the same optimal value with the semidefinite
programming problem (34). Let vr and v̂r respectively denote
the optimal value of problems (36) and (34). Noting that
problem (34) is the further relaxation of problem (36), we thus
have

v̂r ≤ vr . (37)

We denote the optimal solutions to problem (34) by
Z∗1 , Z

∗

2 , and Z
∗

3 . Then we have

tr(FiZ∗1 ) ≥ 1

tr(GjZ∗2 ) ≥ 1

v̂r = tr(Z∗1 )+ tr(Z∗2 )+ tr(Z∗3 ). (38)

We may as well suppose that Z∗4 = 0. Then it can be easily
checked that in problem (36), we always have

tr(FiZ∗1 )± 2tr(figHj Z
∗

4 )+ tr(GjZ∗2 ) ≥ 1. (39)

Meanwhile, since Z∗3 � 0 and {Dk = dkdHk }
2m1m2
k=1 , it follows

that

tr(DkZ∗3 ) = tr(dHk Z
∗

3 dk ) ≥ 0. (40)

Hence the quadratic constraints always hold in problem (36).
Considering that Z∗1 , Z

∗

2 , Z
∗

3 simultaneously satisfy all the
other constraints in problem (36), we can conclude that
Z∗1 , Z

∗

2 , Z
∗

3 , and Z
∗

4 = 0 are exactly a group of feasible
solutions to problem (36). Hence, we have

vr ≤ tr(Z∗1 )+ tr(Z∗2 )+ tr(Z∗3 ). (41)

Finally, combining Eqs. (37) and (41), we can conclude
that

vr = v̂r . (42)

The proof is completed.
Problem (34) consists of a linear objective function,

m1+m2+m3 linear inequality constraints, and three positive-
semidefinite constraints. Hence it belongs to a standard
semidefinite programming problem. Since semidefinite pro-
gramming problem (34) has much less number of constraints
than semidefinite programming problem (18) obtained by
Enhanced-SDR relaxation, problem (34) has much lower
computation complexity as discussed before. TABLE 2
shows the computation complexity that the algorithms take
by using interior point methods, where we respectively plug
the values of m1, m2, and m3 in Eqs. (17) and (33).

TABLE 2. Complexity comparison of the algorithms.

Similar to the Enhanced-SDR Algorithm, a heuristic ran-
domization procedure is developed to design the optimized
constellations and network coding mapping method for PNC
by using the obtained optimal solutions Z∗1 , Z

∗

2 , Z
∗

3 , Z
∗

4 . The
details of the randomization procedure to extract approximate
solutions to problem (32) are depicted in Algorithm 2.
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Algorithm 2 Gaussian Randomization Procedure of the
Fast-Relaxation Algorithm

Input: Fast-relaxation optimal solutions Z∗1 , Z
∗

2 , Z
∗

3 ,
the number of randomizations Nrand ,
the number of iterations K ,
the step sizes of the iterations δ1, δ2.

for l = 1, 2, . . . ,Nrand do
Generate ξ3 ∼ Nc(0,Z∗3 ).
Construct

zl3 =
ξ3

min1≤i≤m3

√
ξH3 Hiξ3

. (43)

for any i, j = 1, . . . ,MN , i 6= j do
Compute the squared distance

d21 = |
√
MN (zl3(i)− z

l
3(j))|

2.

if d21 < min {εA, εB} then
Construct zl3(i) = zl3(j).
if the exclusive law is not satisfied then

Eliminate above construction.
end if

end if
end for
Generate ξ̂ ∼ Nc(0, Ẑ ), where Ẑ =

[
Z∗1 0
0 Z∗2

]
.

Construct

ẑl =
ξ̂

min{ξ̂HMξ̂}
.3 (44)

end for
Determine l∗ = arg min

l=1,...,Nrand
(ẑl)H ẑl + (zl3)

H zl3.

for k = 1, 2, . . . ,K do
Compute the descent direction:

1ẑ = −2ẑl
∗

, 1z3 = −2zl
∗

3 .

Choose the step size:
t1 = δ1|randn(M + N , 1)|, t2 = δ2.

Generate:
ẑk = ẑl

∗

+ t1 ◦ (1ẑ), zk3 = zl
∗

3 + t21z3
if ẑk , zk3 are feasible then
if (ẑk )H ẑk + (zk3)

H zk3 < (ẑl
∗

)H ẑl
∗

+ (zl
∗

3 )
H zl

∗

3 then
Update ẑl

∗

= ẑk , zl
∗

3 = zk3.

end
end

end
Output The approximate solutions z̃1 = ẑl

∗

, z̃2 = zl
∗

3
to problem (32).

Upon obtaining the solutions z̃1, z̃2, we can also derive the
optimized constellations and mapping method by an opera-
tion similar to the formulations in Eqs. (27-30).

3M has the meaning similar to that in footnote.2

B. PERFORMANCE ANALYSIS
In order to evaluate the performance of the novel Fast-
relaxation Algorithm, this subsection develops the detailed
theoretical approximation ratio analysis by using the con-
structed solutions z̃1, z̃2 as above. We firstly develop two
Lemmas. Then based on the two Lemmas, the theoretical
bound is developed. The following Lemma 1 will estimate
the left-tail of the distribution of a convex quadratic form of
a complex-valued circular normal random vector.
Lemma 1: Let H ∈ Cn×n, X ∈ Cn×n be two arbitrary

Hermitian positive semidefinite matrices (i.e.,H � 0,X � 0)
and rank(H ) = 1. Suppose ξ ∈ Cn is a random vector gener-
ated from the complex-valued normal distribution Nc(0,X ).
Then, for any γ > 0,

Pr{ξHHξ < γE(ξHHξ )} ≤ γ. (45)
Proof: See Appendix A.

Based on Lemma 1, we develop the following Lemma 2 to
estimate the right-tail of the distribution of z̃1, z̃2 constructed
by Eqs. (43) and (44).
Lemma 2: Let �i, X be arbitrary Hermitian positive

semidefinite matrices that satisfy tr(�iX ) ≥ 1 and
rank(�i) = 1 for any i = 1, 2, . . . , n. Then for any γ > 0
and µ > 0, if ξ ∼ Nc(0,X ), the following inequality holds:

Pr{ min
1≤i≤n

ξH�iξ ≥ γ, ||ξ ||
2
≤ µtr(X )} ≥ 1− nγ −

1
µ
.

(46)
Proof: See Appendix B.

Then by applying Lemma 2, we can now bound the perfor-
mance of the Fast-relaxation Algorithm.
Theorem 1: For problem (32), suboptimal solutions can

be obtained by the Fast-relaxation Algorithm with the
boundary 3π

2 ·max{m1 + m2 + 2m1m2,m3}.
Proof: The proof begins with the knowledge that

tr(FiZ∗1 ) ≥ 1, i = 1, . . . ,m1 (47)

tr(GjZ∗2 ) ≥ 1, j = 1, . . . ,m2, (48)

where Z∗1 , Z
∗

2 are the optimal solutions to problem (36). Then
it can be verified that

tr(
[

Fi ±figHj
±gjf Hi Gj

] [
Z∗1 0
0 Z∗2

]
) ≥ 1, ∀i, j. (49)

According to Lemma 2, if letting ξ̂ ∼ Nc(0, Ẑ ), where we
define

Ẑ =
[
Z∗1 0
0 Z∗2

]
, (50)

we can get that

Pr{min ξ̂HMξ̂ ≥ γ, ||ξ̂ ||2 ≤ µtr(Ẑ )} ≥ 1− nγ −
1
µ
. (51)
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In Eq. (51), n denotes the number of the coefficient matrices
in M. It can be checked that

n ≤ m1 + m2 + 2m1m2. (52)

We choose that

u = 3, γ =
3
πn

(1−
1
3
) =

2
πn
.

Plugging these choices of γ and µ into Eq. (46), we see that
there is a positive probability (independent of problem size)
of at least

1− γ n−
1
µ
= 1−

2
π
−

1
3
= 0.03 . . .

that ξ̂ generated by ξ̂ ∼ Nc(0, Ẑ ) satisfies

min ξ̂HMξ̂ ≥
2
πn

and ||ξ̂ ||2 ≤ 3tr(Ẑ ). (53)

Likewise, we can conclude that there is also a positive
probability that ξ3 generated by ξ3 ∼ Nc(0,Z∗3 ) satisfies

min
1≤i≤m3

ξH3 Hiξ3 ≥
2
πm3

and ||ξ3||2 ≤ 3tr(Z∗3 ). (54)

Let ξ̂ , ξ3 be any vector satisfying Eq. (53) and Eq. (54).
Note that ξ̂ , ξ3 are independent with each other. Meanwhile,
according to the randomization approximation procedure in
Algorithm 2, a group of feasible solutions ẑl , zl3 to prob-
lem (16) can be constructed with probability 1. Hence we
have

vm ≤ ||ẑl ||2 + ||zl3||
2

≤
||ξ̂ ||2

min ξ̂HMξ̂
+

||ξ3||
2

min
1≤i≤m3

ξH3 Hiξ3

≤
3tr(Ẑ )
2/(πn)

+
3tr(Z∗3 )
2/(πm3)

≤
3π
2
·max{n,m3} · (tr(Ẑ )+ tr(Z∗3 ))

≤
3π
2
·max{m1 + m2 + 2m1m2,m3} · (tr(Ẑ )+ tr(Z∗3 ))

=
3π
2
·max{m1 + m2 + 2m1m2,m3} · vr , (55)

where the last equality uses

vr = tr(Z∗1 )+ tr(Z∗2 )+ tr(Z∗3 ) = tr(Ẑ )+ tr(Z∗3 ). (56)

Since the followed iteration process in the algorithm guar-
antees that each accepted step should have the lower trans-
mission power than the last step, Eq. (55) still holds after the
iterations. This completes the proof.

VI. DISCUSSIONS ON THE PRACTICAL ISSUES
In this section, we discuss some practical issues of the pro-
posed Analog Network-coded Modulation Strategy.

A. THE IMPLEMENTATION OF THE PROPOSED STRATEGY
In this subsection, in order to make the proposed strategy
more practical, we propose an implementation method of
designing the constellations and mappings offline as well as
searching modulation books online.

We firstly adopt the precoding technique to achieve the
channel difference to be 0 and then split the magnitude
region of h2/h1, i.e. |h2/h1|, into small sections. Practically,
the maximum transmission power at the source nodes is
limited. As a result, for the regions where γ is sufficiently
large or small, from the view of RN , the constellation from
the worse channel will be much smaller than that from the
other channel. That is, at the receiver of RN , a constellation
is superposed by another constellation that is much smaller.
This makes for this case, the conventional XOR mapping
can effectively cluster the superposed constellation points.
Similar discussion is also demonstrated in [15]. Based on this
consideration, we focus on the joint mapping and modulation
design within a bounded region with boundaries c1 and c2.
The upper boundary c2 can be selected sufficiently larger and
the lower boundary c1 can be selected sufficiently smaller.
Then we split the bounded region into finite number of small
sections. We can firstly provide the design result for each
small section by using its mean value, and then store them
as the modulation books in the nodes.

When taking the strategy into practice, we store the bound-
aries c1, c2, and the boundaries of all the small sections at
the nodes. The decision regarding which mapping and con-
stellation to use can be made by finding the small section in
which |h2/h1| falls. For the case where |h2/h1| is outside the
bounded region, we can use the conventional XOR mapping
and modulation. For the case where |h2/h1| is inside the
bounded region, we use the mapping and modulation jointly
designed by the proposed algorithms.

B. BIT-MAPPING DESIGN FOR THE OPTIMIZED
CONSTELLATIONS
In this subsection, we provide a bit-mapping design method
for the newly designed constellations based on the trellis
coded modulation.

According to the proposed modulation framework,
the denoising-and-mapping operation at RN is performed on
symbol level, rather than bit level. Hence it is unnecessary
to investigate the bit-mapping operation for the constellation
S used by RN . Meanwhile, the bit-mapping operation for
the constellations A and B cannot affect the denoising-and-
mapping reliability at RN . This ensures that the bit-mapping
operation cannot cause the ineffectiveness of the designed
constellations and mapping.

For the bit-mapping design, a common principle is that
only one bit differs between two neighboring constellation
points, similar to the Gray code. However, as for the bit-
mapping design for constellations A and B in PNC, what is
different is that the one bit variation should happen between
such two constellation points that are mapped to the two
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Algorithm 3Bit-Mapping Operation for the Newly Designed
Constellation Based on Trellis Coded Modulation

Input: The newly designed constellation A (or B).
Initial Set the superior-tree to be constellations A.
Step 1: Compute and sort the ED between arbitrary two
points in the superior-tree.
Step 24: Find out the the two points corresponding to the
minimum ED, and partition them into two different limbs.
Label 0 and 1 on each branch respectively.
Step 3: Find out the two points that have the minimum ED
in the rest points of the superior-tree.
Step 45: Partition the two points above into the two limbs
generated in step 2 according to the principle of maximiz-
ing the minimum ED.
Step 5: Repeat Step 3-Step 4 until the points in the
superior-tree are all partitioned into the two limbs.
Step 6: Update the superior-tree by each limb obtained
above.
Step 7: Repeat Step 2-Step 6 until the superior-tree con-
tains only two points.
Step 8: Label the two points by 0 and 1 respectively.
Output: The bit-mapping result corresponds to each con-
stellation point.

adjacent constellations points in S. This is because the des-
tination nodes decode the intended information by detecting
the signal from RN , rather than detecting the signal directly
from the corresponding source nodes. As a result, we should
firstly find out the two points in S with minimum ED, and
then find out the corresponding two points in A (or B) and
code them with only one bit variation. However, for different
local prior information, the corresponding pairwise constel-
lation points in A (or B) are different. This makes it hard to
achieve the bit-mapping that guarantees the one-bit variation.

Here we adopt the gist of the trellis coded modula-
tion, which is based on the set partitioning methodology.
Bit-mapping by set partitions firstly groups the symbols in
a tree-like structure, separating them into two limbs of equal
size. For each sub-tree, the symbols are further partitioned
until the minimum ED satisfies the requirement. The binary
bits 1 and 0 can be labeled on each branch to perform the
bit-mapping. Algorithm 3 provides the implementation pro-
cess of the bit-mapping operation. The design criterion of
the proposed bit-mapping method is that in each sub-tree,
the minimum ED is larger than that in the superior-tree.

VII. SIMULATION RESULTS
In this section, simulation results are presented to demon-
strate the potential of the joint constellation and network
coding mapping design algorithms. We firstly show the joint

4If there are different pairs of points corresponding to the minimum ED,
we select an arbitrary pair.

5This step has totally two choices. The principle of maximizing the
minimum ED means that we choose the one that can provide the larger
minimum ED.

FIGURE 3. Illustration of the jointly optimized constellations and network
coding mapping designed by Enhanced-SDR Algorithm. The parameters
are configured as: M = 2, N = 4, h1 = 1, h2 = 1.

design results of the constellation and the network coding
mapping under different parameter configurations. Then the
SER curves are demonstrated by Monte-Carlo simulation.

A. JOINTLY DESIGNED CONSTELLATIONS AND
MAPPING PATTERNS
This subsection shows the design results of the constellations
and the network coding mappings under different parameter
configurations.

We firstly configure the simulation parameters as follows:
M = 2, N = 4, εA = 1, εB = 1, εR = 1, h1 = 1, h2 = 1.
The Enhanced-SDR Algorithm is firstly applied to solve the
optimization problem, where Nrand = 107 randomizations
are simulated because the average transmission power gain
becomes very smaller when Nrand > 107. The other parame-
ters in the algorithm are configured as: K = 105, δ1 = 0.1,
δ2 = 0.005. The designed constellations and mapping pattern
are shown in FIGURE 3. By assuming AWGN with zero
mean, the network coding mapping at RN can be depicted
by the Voronoi diagram as shown in the mapping pattern.
When the signals received at RN are located at the regions
within the same color, RN will broadcast them by an identical
constellation point. Total four colors are contained in the
mapping pattern, so correspondingly the constellation used
at RN only contains four points as shown in FIGURE 3. For
comparison, we run the Fast-Relaxation Algorithm under the
same parameter configuration. The designed constellations
and mapping pattern are shown in FIGURE 4.

Furthermore, the design results are demonstrated for the
higher-order case where the parameters are configured as
follows: M = 4, N = 4, εA = 1, εB = 1, εR = 1, h1 = 1,
h2 = (1+j)/2.We choose h1 = 1, h2 = (1+j)/2 as the chan-
nel state because it belongs to a kind of particular channel
conditions, referred to as singular points in [15], for which
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FIGURE 4. Illustration of the jointly optimized constellations and network
coding mapping designed by Fast-relaxation Algorithm. The parameters
are configured as: M = 2, N = 4, h1 = 1, h2 = 1.

FIGURE 5. Illustration of the jointly designed constellations and network
coding mapping by Enhanced-SDR Algorithm. The parameters are
configured as: M = 4, N = 4, h1 = 1, h2 = (1 + j )/2.

the conventional 4-ary XOR network coding cannot cluster
all the neighboring points effectively. FIGURE 5 shows the
constellations designed by the Enhanced-SDR Algorithm.
The simulation parameters are configured as: Nrand = 107,
K = 106, δ1 = 0.1, δ2 = 0.005. FIGURE 6 shows
the constellations designed by the Fast-relaxation Algorithm.
The simulation parameters are configured as: Nrand = 108,
K = 106, δ1 = 0.1, δ2 = 0.005.
In the next subsection, we will demonstrate and discuss the

SER performance of the designed constellations and network
coding mapping patterns.

FIGURE 6. Illustration of the jointly designed constellations and network
coding mapping by Fast-relaxation Algorithm. The parameters are
configured as: M = 4, N = 4, h1 = 1, h2 = (1 + j )/2.

FIGURE 7. SER performance comparison among the constellations
respectively designed by Enhanced-SDR algorithm, Fast-relaxation
algorithm, and exhaustive search. The parameters are configured as:
M = 2, N = 4, h1 = 1, h2 = 1.

B. PERFORMANCE COMPARISON OF THE ALGORITHMS
In this subsection, in order to directly evaluate the perfor-
mance of the jointly designed constellations and mapping
patterns, the end-to-end SER performances are demonstrated
by Monte-Carlo simulation.

FIGURE 7 shows four different SER curves that cor-
respond to four different constellation design methods.
The black diamond curve is the benchmark one, which
is given by an elaborate one-to-one mapping scheme.
In this scheme, BPSK and QPSK are respectively used at
SN1 and SN2, and correspondingly 8QAM is used at RN .
We use this case that has limited optimization for comparison
to observe the gains obtained through the proposed optimized

18282 VOLUME 5, 2017



Z. Yu et al.: Analog Network-Coded Modulation With Maximum ED: Mapping Criterion and Constellation Design

FIGURE 8. SER performance comparison among the constellations
respectively designed by Enhanced-SDR algorithm, Fast-relaxation
algorithm, and the algorithms in [15]. The parameters are configured as:
M = 4, N = 4, h1 = 1, h2 = (1 + j )/2.

algorithms. The black asterisk curve in the figure repre-
sents the optimal performance given by the constellations
designed by an elaborate exhaustive search, where BPSK
and QPSK are used at SN1 and SN2, and QPSK is also used
at RN for broadcasting. In this search, we firstly find out
all possible network coding mappings. Then we search the
optimal constellation for each kind of network coding map-
ping. The red circle cure is simulated from the constellations
shown in FIGURE 3, designed by Enhanced-SDRAlgorithm.
The blue square curve is obtained from the constellations
in FIGURE 4, designed by Fast-relaxation Algorithm. It is
shown that both the algorithms can achieve a significant SER
gain over the benchmark one.

It can also be observed that the Enhanced-SDR
Algorithm outperforms the Fast-relaxation Algorithm in
SER performance. However, as discussed in TABLE 2,
by using interior point methods, the Enhanced-SDR Algo-
rithm requires a worst complexity of O(MN log(1/ε)) iter-
ations, with each iteration taking at most O(M12N 12)
arithmetic operations, while the Fast-relaxation Algo-
rithm requires only O(

√
MN log(1/ε)) iterations, with each

iteration taking only O(M6N 6) arithmetic operations. The
Fast-relaxation Algorithm outperforms the Enhanced-SDR
Algorithm in complexity. Hence the two proposed algorithms
achieve the tradeoff between the communication performance
and the computation resouces.

The SER curves of the constellations in FIGURE 5 and
FIGURE 6 are shown in FIGURE 8. The black diamond
curve is simulated by the one-to-one mapping strategy, where
QPSK modulation is used at the MA stage and 16QAM
is used at the BC stage. The proposed algorithms can still
achieve a significant SER gain over the benchmark one.
Besides, we compare the SER performance of the jointly
designed constellations with that of the existing method

in [15], in which the network coding mapping and the con-
stellations are successively designed by the numerical meth-
ods. It is shown that the jointly designed modulations and
mappings by the Enhanced-SDR algorithm and the Fast-
relaxation algorithm outperform the design result in [15]
by near 1.4 and 0.8 dB respectively at the SER of 10−4.
The black triangle curve is simulated by the case, where
the precoding technique is adopted (to set the channel phase
difference to be 0), and QPSK modulation is used at all
the three nodes. This case is shown to provide the best
performance for the modulation design mechanism in [15].
It is demonstrated that the joint design results under the
proposed modulation framework can respectively outperform
it by about 1.2 and 0.6 dB.

C. BIT ERROR RATE (BER) PERFORMANCE SIMULATION
OF THE PROPOSED BIT-MAPPING METHOD
In this subsection, in order to demonstrate the effectiveness of
the proposed bit-mapping method in the last section, we pro-
vide the BER performance simulations and the bit-mapping
results.

FIGURE 9. Bit-mapping methods designed by Algorithm 3 for the
constellations at the source nodes shown in FIGURE 5.

FIGURE 10. Bit-mapping methods designed by Algorithm 3 for the
constellations at the source nodes shown in FIGURE 6.

In FIGURE 9 and FIGURE 10, we provide the bit map-
ping results for the constellations shown in FIGURE 5 and
FIGURE 6. Note that the denoising-and-mapping at RN is
performed by per-symbol operation. Hence it is unnecessary
to perform the bit-mapping operation for the constellation
used at RN . FIGURE 11 demonstrates the effectiveness of
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FIGURE 11. BER performance simulated respectively by the bit-mapping
results in FIGURE 9 and FIGURE 10. In [15], Gray coding is applied for the
QPSK Modulation at the source nodes.

FIGURE 12. Illustration of the SER performance for different error
radiuses of α.

the proposed bit-mapping method, where the BER simula-
tions for the bit-mapping results shown in FIGURE 9 and
FIGURE 10 are provided. We also provide the BER simula-
tion result for the modulation mechanism in [15], where Gray
coding mapping and QPSK modulation are used at the two
source nodes. It is demonstrated that the BER performance
by the proposed bit-mapping method can outperform that of
the mechanism in [15].

D. PERFORMANCE INVESTIGATION FOR THE IMPERFECT
CHANNEL STATE INFORMATION (CSI)
In this subsection, we provide the simulation results for the
scenarios where the channel estimation errors are considered.

We adopt the additive model to depict the channel imper-
fection as

h = ĥ+ e, (57)

where we define h = h2/h1, ĥ denotes the channel estimate
and e denotes the estimation error. We assume that the error
satisfies the following elliptic model:

‖e‖ ≤ α, (58)

where α denotes the radius of the error region. This model
is motivated by considering the channel estimation as the
main source of the channel uncertainty [25, Sec. 4.1]. Given
the above imperfect CSI model, we simulate the worst-case
SER performance under different error region radiuses α,
as shown in FIGURE 12. It can be observed that the jointly
designed constellations and mappings are not sensitive to the
perturbation of the channel errors, although the performance
degradation can also increase as the channel error becomes
larger.

VIII. CONCLUSION
This paper investigated the joint optimization of the mapping
method and constellation design for the two-way relaying
networks quipped with PNC. A unified Analog Network-
coded Modulation Strategy is build, where a novel analog
mapping criterion is proposed. Based on this strategy, we for-
mulated an optimization problem by minimizing the average
transmitting power while guaranteeing the SER requirements
and transmission rate. This problem is proved to be NP-hard
and two polynomial-complexity approximation algorithms,
referred to as Enhanced-SDR Algorithm and Fast-relaxation
Algorithm, are proposed to solve it. Monte-Carlo simulation
results show that the two proposed algorithms can achieve the
tradeoff between the communication performance and com-
putation resource. Besides, it is also shown that the proposed
algorithms can outperform the existing design methods.

APPENDIX A
PROOF OF LEMMA 1
Since the matrix X � 0 is hermitian matrix and has rank
r := rank(X ), we can diagonalize it by some U ∈ Cn×r as

UHXU = Ir . (59)

Similarly, since H � 0 is hermitian matrix, we perform an
eigen-decomposition operation as

UHHU = Q3QH , (60)

where QH ∈ Cr×r is the corresponding unitary matrix, and
3 = diag{λ1, λ2, . . . , λr } with λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0.
Since rank(H ) = 1, UHHU has rank at most r̄ = 1. Thus,
we have

λi = 0, ∀i = 2, . . . , r . (61)

Let ξ ∼ Nc(0,X ) and ξ̄ = QHUH ξ . It is readily checked
that

ξ̄ ∼ Nc(0, Ir ). (62)
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Pr{ min
1≤i≤n

ξH�iξ ≥ γ, ||ξ ||
2
≤ µtr(X )}

= Pr{ξH�iξ ≥ γ, ∀i = 1, . . . , n, and ||ξ ||2 ≤ µtr(X )}

≥ Pr{ξH�iξ ≥ γ tr(�iX ), ∀i = 1, . . . , n, and ||ξ ||2 ≤ µtr(X )}

= Pr{ξH�iξ ≥ γE(ξH�iξ ), ∀i = 1, . . . , n, and ||ξ ||2 ≤ µE(||ξ ||2)}
= 1− Pr{ξH�iξ < γE(ξH�iξ ), for some i, or ||ξ ||2 > µE(||ξ ||2)}

≥ 1−
n∑
i=1

Pr{ξH�iξ < γE(ξH�iξ )} − Pr{||ξ ||2 > µE(||ξ ||2)}

≥ 1− nγ −
1
µ
, (73)

Furthermore, ξ is statistically identical toUQξ̄ , so that ξHHξ
is statistically identical to

ξ̄HQHUHHUQξ̄ = ξ̄H3ξ̄ =
r̄∑
i=1

λi|ξ̄ (i)|2 = λ1|ξ̄ (1)|2.

(63)

Then we have

Pr{ξHHξ < γE(ξHHξ )}
= Pr{λ1|ξ̄ (1)|2 < γE(λ1|ξ̄ (1)|2)}
= Pr{λ1|ξ̄ (1)|2 < λ1γE(|ξ̄ (1)|2)}. (64)

If λ1 = 0, then this probability is zero, which proves
Eq. (45). If λ1 > 0, then we have

Pr{ξHHξ < γE(ξHHξ )} = Pr{|ξ̄ (1)|2 < γE(|ξ̄ (1)|2)}.
(65)

Recall that the probability density function of a complex-
valued circular normal random variable t ∼ Nc(0, σ 2) is

f (t) =
1
πσ 2 e

−
|t|2

σ2 , ∀t ∈ C, (66)

where σ is the standard deviation. In polar coordinates,
the density function can be written as:

f (ρ, θ) =
ρ

πσ 2 e
−
ρ2

σ2 , ∀ρ ∈ [0,+∞), θ ∈ [0, 2π ),

(67)

from which we can see that the argument θ of the complex-
valued normal variable is uniformly distributed over [0, 2π )
and the modulus ρ follows a Rayleigh distribution with den-
sity function:

f (ρ) =


2ρ
σ 2 e
−
ρ2

σ2 if ρ ≥ 0;

0 if ρ < 0.
(68)

Then, it is readily concluded that the square of modulus
u = ρ2 follows a exponential distribution with density
function:

f (u) =


1
σ 2 e
−

u
σ2 if u ≥ 0;

0 if u < 0.
(69)

Considering ξ̄ (1) ∼ Nc(0, 1), we thus have

E(|ξ̄ (1)|2) = 1

Pr{|ξ̄ (1)|2 ≤ γ } = 1− e−γ . (70)

Substitute this into Eq. (65) and we get that

Pr{ξHHξ < γE(ξHHξ )}
= Pr{|ξ̄ (1)|2 < γ }

≤ 1− e−γ ≤ γ, (71)

which completes the proof.

APPENDIX B
PROOF OF LEMMA 2
Considering E(ξξH ) = X , we have

E(ξH�iξ ) = tr(�iX ) ≥ 1, ∀i = 1, 2, . . . , n. (72)

Thus, for any γ > 0 and µ > 0, we have Eq. (73), as shown
at the top of this page, where the last step uses Lemma 1 and
Markov’s inequality:

Pr{||ξ ||2 > µE(||ξ ||2)} ≤
1
µ
. (74)

This completes the proof.
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