IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 19, 2017, accepted August 21, 2017, date of publication August 31, 2017, date of current version September 27, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2747626

Monkey Says, Monkey Does: Security and
Privacy on Voice Assistants

EFTHIMIOS ALEPIS AND CONSTANTINOS PATSAKIS, (Member, IEEE)

Department of Informatics, University of Piraeus, 185 34 Pireas, Greece
Corresponding author: Constantinos Patsakis (kpatsak @ gmail.com)
This work was supported in part by the European Commission under the Horizon 2020 Programme (H2020), as part of the OPERANDO

project under Grant 653704 and is based upon work from COST Action CRYPTACUS (IC1403), and in part by European Cooperation in
Science and Technology.

ABSTRACT The introduction of smart mobile devices has radically redesigned user interaction, as these
devices are equipped with numerous sensors, making applications context-aware. To further improve user
experience, most mobile operating systems and service providers are gradually shipping smart devices with
voice controlled intelligent personal assistants, reaching a new level of human and technology convergence.
While these systems facilitate user interaction, it has been recently shown that there is a potential risk
regarding devices, which have such functionality. Our independent research indicates that this threat is not
merely potential, but very real and more dangerous than initially perceived, as it is augmented by the inherent
mechanisms of the underlying operating systems, the increasing capabilities of these assistants, and the
proximity with other devices in the Internet of Things (IoT) era. In this paper, we discuss and demonstrate

how these attacks can be launched, analysing their impact in real world scenarios.

INDEX TERMS Security, voice recognition, mobile devices, Android permissions, voice assistants.

I. INTRODUCTION
We are currently witnessing the continuous growth of smart
devices and their accompanied services in both numbers
and usage. The main reasons for this radical shift can be
attributed to the incorporation of numerous sensors in these
devices, as well as to the fact that users can easily install
applications through a number of application marketplaces.
Embedded sensors, such as cameras, accelerometers, or even
GPS receivers, enable developers to make their applications
more context-aware, radically improving user experience.
While these improvements are significant and welcomed by
the users, their arbitrary usage can become quite dangerous,
as sensitive information such as real-time video or location
can be leaked. To counter such security and privacy issues,
mobile operating systems have introduced permission models
that inform users of the privacy invasive resources that each
application needs to access. This way, users can assess the
risk they are exposed to and determine whether they agree to
take it. In recent versions of most popular mobile operating
systems, users may even grant these privileges on runtime
and/or revoke them whenever deemed necessary.

To further improve user experience, virtually all mobile
operating systems, as well as service providers, have gradu-
ally introduced voice assistants in their platforms, also known

as “Intelligent Personal Assistants”. In fact, these software
entities have not only drawn the attention of major Oper-
ating System vendors, but also other software giants such
as Samsung, Facebook and Amazon. Voice assistants are
replacing traditional human-computer interaction, redefining
the way we access the Web, data and apps. This facilitates
users as they are not required to type commands or have any
kind of physical interaction with their devices, realising the
concept of ubiquitous computing, and eventually providing a
more human-like experience. This seamless interaction with
the smart device provides more user satisfaction [1], [2].
Generally, these systems operate silently in the back-
ground, waiting for specific keywords/commands, or more
specifically ‘“hot-words”, from the users. While all of these
systems can respond to explicit voice commands such as
“Call Bob”, most of them are able to understand, and conse-
quently execute, more complex user requests such as “Find
the closest gas station”, or even start a dialog with a user in
order to accomplish a complex task. As a result, they have
evolved in performing a broader set of actions, whether this
is to adjust light luminosity in a smart house, or order goods
from a market, as they are able to interact with other IoT
devices and services. This is rather alarming, as sophisticated
voice assistants are able to execute an increasing number

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 5, 2017

Personal use is also permitted, but republication/redistribution requires IEEE permission. 17841

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE Access

E. Alepis, C. Patsakis: Monkey Says, Monkey Does: Security and Privacy on Voice Assistants

of high priority commands, such as commands that involve
changing OS system settings. Voice assistants are aiming in
‘““assisting” or even ‘“‘replacing” user interaction and thus
require a large set of software permissions to accomplish
their tasks, as illustrated in Appendix B. In addition, voice
assistants most often belong either to the OS or to the device
manufacturer, hence they have even more elevated privi-
leges than typical apps. Furthermore, Voice Assistants’ use
is becoming so popular [3], [4] that a significant percentage
of mobile search queries are performed by them [5], [6] and a
growing number of devices and more importantly third party
applications have emerged, that provide new ways to interact
directly with them.

While voice assistants are becoming part of our daily lives
and major tech giants are competing in acquiring the largest
market share, these new technologies are accompanied with
new risks for their users, introducing a new attack vector.
In this work we examine some new attacks that can be
launched from voice assistants, proving that we are not yet
familiar enough with the new concepts they realise, and also
the fact that they have not reached the necessary maturity.
To this end, we study the most well-known voice assistants,
focusing mostly on Android. More precisely, we focus on
the five major voice assistants, namely Google Assistant
(formerly known as Google Now), S Voice, Cortana (for both
Android and Windows), Alexa and Siri and illustrate how
they can be exploited from applications or nearby devices
that do not request any permission from the user, evidently
without the user’s consent and/or actual knowledge about it.
In this regard, the presented attacks are clearly local privilege
escalation attacks, but since they can be used to exploit other
devices they are also remote code execution attacks. While
our baseline is Android AOSP, which at the time of writ-
ing is Android Nougat, essentially we discuss the Samsung
“flavour” of Nougat, as S Voice is installed only in Samsung
devices.

Road Map: The rest of this work is organised as follows.
The next section, Section II provides an overview of the
related work. Then, in Section III we detail some attack sce-
narios for various voice command systems, highlighting what
an adversary could achieve. The applicability of our attacks
is discussed in Section IV. Finally, the article concludes,
discussing future work and probable countermeasures.

Il. RELATED WORK

A. ATTACKS TO VOICE ASSISTANTS

One could argue that the predecessors of voice assistants can
be traced in accessibility tools that are offered in several oper-
ating systems. Jang et al. [7] managed to trick these systems
into performing unauthorised commands, using voice among
other means. Recognising the risks that the users are exposed
to, using voice assistants, Diao et al. [8] presented several
attacks. One of the basic characteristics of these attacks was
that a malicious app triggers the voice assistant to call the
adversary, who then issues his/her commands via the headset.

17842

Later, Vaidya et al. [9] and Carlini et al. [10] further extended
the aforementioned attacks, exploring the possibilities of hid-
ing voice commands, e.g. in videos, illustrating that an adver-
sary could hide voice commands in something that humans
perceive as noise, but would still retain all the characteristics
for a computer system to consider it a valid voice com-
mand, thus tricking voice assistants into executing it. These
reported attacks could enable an adversary to leak sensitive
user information, such as users’ location, or visit web pages
which contain malware, to gain unauthorised access to smart
devices. More advanced attacks may even use an FM antenna
to transmit radio waves in order to trick a device into convert-
ing them into voice signals, as long as a pair of headphones
with a microphone are plugged into its jack [11].

While the aforementioned attacks are quite serious, they
can be considered as static, as they lack actual interaction
with the attacker. Moreover, they include a number of pre-
conditions in order to be launched, which makes them have
a limited impact and finally they do not investigate the IoT
dimension of the attack vector, which in many cases makes
the attacks stealthier and much more difficult to defend
against them. In this research we attempt to unlock these
attacks to their full potential, not only in terms of impact, but
also stealthiness, as we present novel techniques to launch
them in a more automated and responsive way. Additionally,
we propose an attack methodology in order to create a chain
of attacks, managing to successfully attack other devices in
proximity as well.

The core difference of our approach is that our attacks are
interactive, hence able to execute more advanced commands,
or bypass security measures in an automated way. Further-
more, not only do we consider the case of local exploita-
tion, which results to the obvious local privilege escalation
attacks that previous researchers pointed out, but we also
discuss extensions that could be added to achieve remote
code execution attacks. Additionally, we detail how one
could leak further sensitive information from users without
the need to request dangerous permissions, such as using
microphone input, like Diao et al. [8]. Finally, we illustrate
how these attacks can be further extended, becoming far more
severe, by utilising forced and implicit machine-to-machine
communication.

B. ANDROID PERMISSIONS
The attacks which will be presented in this work are initiated
from but are not necessary limited to malicious Android
applications. Despite the fact that Android smartphones are
by far the most widely used, the choice of Android was also
made because of several inherent vulnerabilities in its work-
flow that can be exploited to execute possible attacks. The
most profound one is that voice assistants can be launched
remotely and without requesting any privileges from the user.
At this point it is worth highlighting two core differences
in the two major mobile ecosystems, which are relevant to
this work. Firstly, the use of intents, a mechanism in Android
which allows applications to internally exchange information,

VOLUME 5, 2017

E. Alepis, C. Patsakis: Monkey Says, Monkey Does: Security and Privacy on Voice Assistants

IEEE Access

TABLE 1. Android permissions levels. The full catalog of dangerous permissions is illustrated in figure 1.

Normal Dangerous Signature System

Assignee System User System/App System

Revocable No Yes No No

Risk level Low High Critical Critical

Access Sensors/actions with low Sensors/actions with high Sensors/actions with high Sensors/actions with criti-
risk risk risk cal risk

Example resource/ func- Accelerometer, Internet, Camera, Microphone, Privileges of another app Reboot/encrypt device,

tionality Environemental sensors SMS, Storage, Calls, of the same developer change system settings

Location

TABLE 2. Capabilities of voice assistants. activation methods, apart from (V)oice, may also include (I)ntents which can be exploited programmatically.

Voice Assistant Siri Google Assistant Alexa Cortana S Voice
Voice Authentication v v Prob No v
Activation methods \Y VI \ V.I VI
Online dependency v
Access device settings v v Alexa Skills v
Post Private Information v v v v
Purchases v To come v v
Calls/SMS* v v Skills v v
3rd party apps v v v v Only launch
Permission Levels System System System System/ Dangerous System
Connectivity Car (via CarPlay), Apple ~ Wearables, TV, Auto, = Home, Smart Devices PC, Xbox One -

Watch, PC Home
Always on v v
Wake up in secure lock v v v

facilitates developers in many ways, it simultaneously opens
the door for various attacks, as malicious apps can utilize
them to load their payload and exploit other apps. This mech-
anism does not exist in 10S, since URL Schemes seem to be
the only way inside this OS to achieve inter-app communica-
tion. Secondly, contrary to Android, to succeed in launching
Apple’s voice assistant through an app, a rooted device is
needed and certainly such an app cannot pass through the App
Store’s filters as the requested permission can only be granted
by Apple.

It is also essential to discuss some details of the Android
permission model since by exploiting it, we will execute our
attacks and hide part of their traces. Up to recently, once a
user wanted to install an app, Android would display a noti-
fication screen, informing him/her of the access permissions
that he/she would have to grant. This was a one time offer,
applying a ‘“‘take it or leave it” policy, as users would have
to accept the offer and grand the permissions to install it.
Under the pressure of the custom modding communities and
i0OS who realised customisable permission policies, Google
revised its permission model in Marshmallow, allowing users
to apply fine-grained access policies. Thus, permissions are
now granted after installation and applied during runtime,
and most importantly, they can be revoked when deemed
necessary.

The aforementioned permissions involve access to numer-
ous smartphone embedded sensors. While for some of them
their use seems quite straightforward, they can be used to
infer a lot of other information, so gradually, many appli-
cations have started requesting more and more permissions.
This way, they harvest user data and monetize them through

VOLUME 5, 2017

data analytics. As a result, simple applications often require
absurd permissions [12], gradually relaxing users’ tolerance
to requests for sensitive permissions, making users ignore
them, without understanding the risks they can be exposed to
in the end [13]-[15]. The revised permissions to resources can
be categorized according to the risk implied when granting
them as shown in Table 1 and are the following.
Normal: These permissions may expose the user
or the system to the least possible risk. They are
automatically granted upon installation and cannot
be revoked.
Dangerous: These permissions can expose private
user data or allow control of the device. Therefore,
explicit user approval is required to be granted and
can be revoked by the user at any time. Dangerous
permissions are illustrated in Figure 1.
Signature: While Android applications may
exchange information through inter component
communication, to facilitate apps of the same devel-
oper in sharing more information, Google intro-
duced the signature permission, enabling automatic
access to the same resources for application which
are signed with the same certificate without user
notification.
System: To allow applications which are shipped
by the manufacturers, to have even more elevated
privileges, e.g. to reboot the device, activate and
deactivate system settings, Android provides the
system permission.
Apparently, since voice assistants are usually developed by
the manufacturers and/or OS vendors, they have signature and

17843

IEEE Access

E. Alepis, C. Patsakis: Monkey Says, Monkey Does: Security and Privacy on Voice Assistants

Camera
CAMERA
Microphone
RECORD AUDIO
Sensors
BODY SENSORS
Location ACCESS FINE LOCATION
RECEIVE MMS
ACCESS COARSE LOCATION
READ SMS
SMS
SEND SMS
RECEIVE SMS
RECEIVE WAP PUSH
Calendar READ CALENDAR
WRITE CALENDAR
CALL PHONE
READ PHONE STATE
READ CALL LOG
READ EXTERNAL STORAGE GG
Storage WRITE EXTERNAL STORAGE Phone
ADD VOICEMAIL
GET ACCOUNTS
READ CONTACTS
Contacts USESIE

WRITE CONTACTS

FIGURE 1. Dangerous permission groups in Marshmallow.

PROCESS OUTGOING CALLS

system level permissions. Hence, they can execute commands
with higher privileges. Despite the fact that the new permis-
sion model signifficantly improves the security and privacy of
Android, many attacks have already been reported that man-
age to bypass them exposing users to great risks [16], [17].
Nevertheless, Figure 1 indicates that in order for an app to
access the microphone or to send a message etc., the app
needs to be explicitly granted this permission. Finally, access
to any other sensor beyond the ones reported in this figure are
automatically granted and cannot be revoked.

Ill. ATTACKING VOICE ASSISTANTS REVISITED

A. THREAT MODEL

In the proposed attacks, which portray the vulnerabilities
of voice assistants, we assume that a user has been tricked
into installing our malicious app in his/her device, a scenario
which is very typical in such attacks [18]-[20]. In fact, an
adversary is expected to use many illicit techniques that
promote their apps in the market, or lure users by sending
targeted messages to their contacts.

We consider the above a weak requirement, as in our
work we follow a ‘“‘zero-permission” approach. Similar to
the work of Diao et al. [8], our app is seemingly harmless
as it does not request access to any ‘“‘dangerous’ permission.
Moreover, since a small number of the required permissions
are “normal”, they are automatically granted and cannot be
revoked. The latter also means that any installed app can be
updated to execute our attacks, without requesting any further
user interaction. More specifically, application updates may
take place at any time and especially in the cases where

17844

no extra ‘“‘dangerous” permission is required, that imposes
explicit action taken by the user, users have no actual control
about anew “‘capability’’ an app may be shipped with. In fact,
in most of the cases, the only permission we need in order to
deliver our payload and launch an attack to a voice assistant is
the Internet access permission, which is a normal permission.
A few more permissions, e.g. vibration, that are required
in some cases are also normal and they are only used to
determine the timing of the attack and the proximity to other
devices and to the user. The lack of permission dependencies
in our attacks is crucial as one could use reflection techniques
to fetch code from the Internet, e.g. in the form of a dex file
and execute it, circumventing static code analysis [20]-[22].
Nonetheless, it should be outlined that many users may dis-
regard the permissions that apps request [13]-[15], however,
requesting many permissions, especially dangerous ones,
facilitates the detection of malicious activity.

To this end, as a first step, we silently monitor the state of
the target device in order to determine whether the user is in
proximity. This can be easily achieved by effectively combin-
ing data such as time (part of the day), device acceleration
(moving/still), device battery status (charging/discharging),
or even utilizing light sensors (indoor/outdoor). Should the
app infer that the device is left “unattended”, it sends an
update to the Command and Control (C&C) server declaring
its availability.

B. ATTACK AMPLIFICATION

In the next paragraphs we present our attach flow, while at the
same time we detail the drawbacks of current reported attacks

VOLUME 5, 2017

E. Alepis, C. Patsakis: Monkey Says, Monkey Does: Security and Privacy on Voice Assistants

IEEE Access

and how they can be enhanced to become more lightweight,
stealth and powerful. In this regard, we provide the pieces
of a bigger puzzle which is going to be presented when we
describe the possible attack scenarios.

Current state of the art attacks to voice assistants can be
considered rather static, as the attacks are launched using
mostly recorded audio files which are played by malicious
apps to invoke voice assistants [8] or broadcasted by a static
medium (e.g. a YouTube video) [9] for a more covert channel.
While Diao et al. [8] imply the use of Text-to-Speech, it is not
actually used due to the requirement for Internet connection.
Moreover, Diao et al. suggested that the malicious app makes
a call to the attackers phone to allow further interaction
with the voice assistant, and more importantly to extract the
necessary sensitive information from the victim, since this is
the only way to access the microphone without requesting
any sort of dangerous permission. However, to the best of
our knowledge this attack vector does not exist anymore, as
voice assistants cannot be triggered by audio by means of
a voice call. Mobile OSes are now using voice cancellation
techniques during voice calls, therefore audio from voice calls
cannot be used as input to the microphone. While in this
case it can be considered a defence mechanism, in reality
it improves the quality of voice calls by drastically reducing
external noise.

To overcome the need for making phone calls, which could
also reveal the identity of the attacker, we propose to use the
embedded Text-to-Speech technology. This choice enables
our app to be rather lightweight, as there is no dependency
for prepared audio files, making our attack more “dynamic”
since we can generate any voice command in demand.
Contrary to the past, Text-to-Speech conversion is now per-
formed locally without Internet dependencies. Nevertheless,
in our model we use the Internet permission to exchange
information between the attacker and the victim, since, as
already discussed, it is automatically granted and cannot be
revoked.

While we could have used direct communication of the
victim with a typical C&C server as in the case of many
malware with their bots, we opted for the use of Firebase, a
Google powered cloud platform that incorporates real-time
databases. The use of Firebase can be considered similar
to the use of Facebook, Twitter, etc. by social botnets [23]
to hide their C&C server and traffic. This practice is very
common lately [24] as it manages to hide the malicious traffic
from anti-malware mechanisms which consider the exchange
of messages benign. In our case, we hide the communication
using a legitimate channel of communication operated by
Google, so that it would not raise an alert to an analyst.

Another twist in our attack is on the way we launch voice
assistants. Diao et al. [8] the researchers assume that due to
the popularity of Google Now, the victim will most likely
have it preinstalled in his/her device. This assumption may
result in several problems as the authors also use implicit
intents in their implementation. For instance, these attacks
may not be launched if Google Now is not present. Or even

VOLUME 5, 2017

due to the fact that more assistants are installed in a device,
a screen would be presented to the user prompting him to
select one of them, and thus rendering these attacks useless
in both cases. To bypass this obstacle, in our implementation
for each victim’s device we retrieve the applications’ package
names of all running services. For this action no permission is
required and we end up with a list of all the installed packages.
Subsequently, from the list of the installed packages we are
able to first determine which voice assistants are installed
in each mobile device and secondly which permissions each
voice assistant supports. This small, yet significant remark
can be proposed as a way to launch attacks to “less popular”
voice assistants software solutions, developed by other soft-
ware vendors than the top tech giants, analyzed in this paper.
After having defined both the targeted voice assistant and the
“kind” of attack we want to issue, we use explicit intents, by
specifying the targeted application’s package name, guaran-
teeing that the attack will be successful.

As previously discussed, attacks to voice assistants in the
literature cannot extract all the information, as the output
of the speaker is canceled in the microphone. To over-
come this issue, we use native voice recognition methods
of Android which, as reported by the authors,! do not
request any dangerous permission. More precisely utilizing
Google Voice Recognition one can collect data from the
audio channel, without users’ consent and without requesting
the use of microphone from the user, bypassing this way
Android’s permission system. This way, we automate sen-
sitive data collection, by automatically recording voice assis-
tants’ results, consequently converting it to text format which
is then stored to Firebase. This is accomplished by using
an implicit intent to action_recognise_speech with
startActivityForResult, which returns the voice in
text without the need to request any dangerous permission.

To illustrate the aforementioned described attack scenar-
ios, which can be considered as quite complex in terms of
services discovery, attack orchestration and modalities of
interaction, Figure 2 describes the steps of our attack flow.

Up to recently, voice assistants were able to perform help-
ful, yet limited in number, tasks. However, they are gradually
increasing their capabilities as other applications have started
enabling interaction with them. Therefore, voice assistants
can perform far more tasks than just send emails and SMSs,
make voice calls, as reported in the related work. For instance,
they can post on social media (e.g. Facebook) or even perform
orders, e.g. in the case of Alexa. These new capabilities are
exploited in our proof of concept app, enabling it to perform a
wide set of commands to victims, so as to achieve more fierce
attacks.

C. DETERMINING PROXIMITY

Due to the fact that malicious apps cannot interact or send
information directly to the adversary, the actual threats that
are discussed in current state of the art research involve

lAcknowledged by Google in 216234 report.

17845

IEEE Access

E. Alepis, C. Patsakis: Monkey Says, Monkey Does: Security and Privacy on Voice Assistants

VA installed?

Device
locked?

Device
“ unattended?

FIGURE 2. Overview of the attack flow.

attacks which are targeting devices independently. Certainly,
the case of a YouTube video, reported in [10], can target
millions of devices simultaneously, nonetheless, the attack
targets each one and cannot chain the attack to infect others
directly.

Our proof of concept exploits its proximity to other voice
assistants or nearby devices to perform a wider range of
attacks, creating an implicit machine-to-machine commu-
nication channel. To launch such attacks, our application
first determines the timeframe and then the proximity to the
user and to other devices. For the latter, we monitor various
resources to determine whether the phone is still and out of
the users’ proximity. To this end, apart from the obvious use
of accelerometer, we monitor the presence of a power jack,
luminosity and grip sensor. Should the device be charging,
the user is assumed to be far from the device and not paying
attention to it. Similarly, the measurements from a grip sensor
can indicate whether a user is holding the device, whereas the
luminosity sensor can help us determine whether a device is
located in a dark place e.g. left in a room unattended, or inside
a bag. Finally, we also monitor the proximity of wearables.
This is an additional input which can be used to determine
whether a user is in proximity or e.g. sleeping, so that he
is least expected to listen to the attack. It is worth noticing
that modern smartwatches can independently execute voice
commands, since voice assistants are currently enabled in
Android wearables. In this research however, we regard the

17846

Devices in
proximity?

linked wearable and the infected device’s wearables as the
same entity.

2N

X

N~

nl; Jh

FIGURE 3. Monitoring device proximity. If two devices lie on the same
table one can sense the vibration of the other, or if properly positioned,
sense the light beams. Other proximity methods such as usage of Wi-Fi
and Wi-Fi P2P can also be used.

To monitor the proximity to other devices, we use four
methods, illustrated in Figure 3. To overcome the restriction
of requesting location permission, which is considered dan-
gerous (requires ‘“‘dangerous” permissions), we first utilize
Wi-Fi and Wi-Fi P2P. While getting hardware identifiers
from Wi-Fi and Bluetooth scans demand location permis-
sion as of Marshmallow, collecting the name and the MAC
address of the connected Wi-Fi node can be achieved with
normal permissions and can serve as a good sieve. Therefore,
our app collects the name of the connected Wi-Fi and the
MAC address of the corresponding node to determine which

VOLUME 5, 2017

E. Alepis, C. Patsakis: Monkey Says, Monkey Does: Security and Privacy on Voice Assistants

IEEE Access

already infected devices might be in proximity. Additionally,
we can use Wi-Fi P2P, formerly known as Wi-Fi Direct,
which enables devices to create ad hoc wireless networks.
Notably, scanning for hardware identifiers using Wi-Fi P2P
does not require location permission, as reported by the
authors,” allowing the tracking of users’ whereabouts within
a radius of 100m [25]. For more accurate results we use
vibration (requesting a normal ‘“Vibrate” permission) and
light sensing. In the former method, we trigger a vibration
pattern to one of them and test whether it was detected by
the accelerometers of the other, to determine whether the two
devices are placed closely. In the latter method, if the devices
are placed appropriately; one facing up, the other one facing
down, we initiate a sequence of light beams and test whether
they can be sensed from the other’s luminosity sensor. The
presence of a nearby wearable device can also be detected,
this time directly through the Android SDK, requiring no
permissions.

D. ATTACK SCENARIOS

Now that all the pieces of the puzzle have been laid out, in this
part we start putting them in place. Our targets are the most
well-known and widely used voice assistants, namely Google
Assistant, Siri, Cortana, Alexa and S Voice, each of which
has different capabilities, as seen in Table 2. In principle,
these systems are invoked by speech, whenever a user says
a catch phrase like “OK Google”, “Hey Siri’ etc. However,
Google Assistant, Cortana and S Voice can also be launched
through intents. Since intents are a native mechanism of
Android, no dangerous permission needs to be granted to
the malicious application. Even more interestingly, intent
parameters are string variables, which do not have to be hard-
coded and can be easily fetched from an Internet service,
in our case Firebase, making the attack untraceable in static
analysis. This means that one can launch the voice assistant
remotely and issue arbitrary commands through an app. More
importantly, this allows our malicious application to send
commands which need more than one step for their execution.
For instance, some voice assistants may type the requested
message but wait for an additional vocal confirmation from
the user to send it. While one could record such commands
and send them to victims either packed in the application upon
installation, or through a covert channel, the most lightweight
solution is to use Android’s Text-To-Speech (TTS) function-
ality. This functionality requires no permission to be exe-
cuted, so the user will not be notified about this activity.

In the least sinister case, an adversary can request the
infected device to call a phone number to premium services,
leading to additional charges, or simply to call his/her phone
to eavesdrop the victim. Note that the call could also include
video, e.g. using Hangouts teleconference issuing a command
like ““Video call with Alice”. Additionally, the attacker can
request the victim to send an SMS to a premium number, or
a text message containing his/her location.

2Acknowledged by Google in 216235 report.

VOLUME 5, 2017

Similarly, the adversary can use the Voice Assistants’ inte-
gration with third party apps, e.g. social network apps, to
post disgraceful or harmful items on the victim’s profile. For
example, in our tests we managed to send information using
the WhatsApp app by issuing a “Send a WhatsApp message
to Alice”” command. Further extending the attacks, one could
also command the Voice Assistant to browse an infected with
malware web-page in order to gain persistence, as already
reported in the literature.

To extract further private information, the attacker needs
to gain microphone access to its victim. Contrary to the
approach of current attacks, we use Speech-to-Text (STT).
As already mentioned in the previous section, the adversary
does not need to request any dangerous permission, and can
record information of approximately 10 seconds from the
victim, which is automatically transformed into text and can
be easily sent to a cloud backend. Obviously, if the answer is
expected to last more seconds, the adversary can repeat the
process with the necessary delay. Having knowledge about
devices being in proximity can further help us bypass the
“Voice Cancellation” mechanisms that reside in a specific
device, since one device can be used as a transmitter and
another device can be used as the receiver. Additionally,
this makes the attack more stealth and more difficult to be
prevented.

The adversary may now extract information such as
appointments from the calendar, or recent messages. The
latter is really important since it can be used not only to read
personal messages, but to bypass two factor authentication.
To clarify the latter, the reader can consider the following
use case scenario. Most messenger applications that use two
factor authentication typically use the device MAC address;
which can be easily found with a sniffer, and a validation SMS
which is sent to the device. Therefore, Malory can easily set
the MAC address to the desired one in a device she controls
and request the SMS authentication message from the service.
This message is received from the victim’s device and can be
accessed by the voice assistant using a command to read the
last SMS, granting full access to the victim’s account.

Due to the penetration of services like Google Now, the
adversary could also read the victim’s bills, or flight itinerary.
Moreover, using the elevated permissions of S Voice (system
permissions), one could even change the status of Location
and Mobile Hotspot by switching them on or off, a function-
ality that an application without signature permissions cannot
achieve, as these actions require ‘“‘changing system settings”’,
signature level permissions.

Moving a step further, compromised devices can be used
to further exploit victims, by attacking other devices in
proximity, regardless of whether they are infected by our
malicious app, as it is illustrated in Figure 4. Attackers now
have the advantage that since the arbitrary voice command
originates from another device, voice cancellation mecha-
nisms cannot be applied. Targets also vary, as there is a
plethora of devices having voice assistants, leading to greater
exposure. An obvious attack is against other smartphones,

17847

IEEE Access

E. Alepis, C. Patsakis: Monkey Says, Monkey Does: Security and Privacy on Voice Assistants

Commands
Firebase
Text Results
C J
=/ Voice Results
Malory

Mobile
device

FIGURE 4. Compromising devices in proximity.

smartwatches, personal computers, or even smartTVs. Note
that in the case of a smartwatch, since most likely it is linked
to a smartphone, two smartphones are not needed to be in
proximity, as smartwatches may act as a median, further
extending the impact radius.

In this context, a different attack scenario is to force com-
promised devices in performing purchases through nearby
Alexa powered devices. In our tests we ordered Alexa through
Echo using voice commands to buy for us several items
from Amazon. It is important to note that Alexa by default
does not provide any voice recognition or parental control,
so all orders are automatically processed. Moreover, Alexa
is a voice assistant which is actually designed from scratch
to perform purchases and is being gradually equipped with
third-party applications, which allow her to perform orders,
or call taxis from affiliated companies.

Moving to another target, we used the compromised device
to attack a Cortana powered device. Apart from the obvious
smartphone target, we used it to attack a desktop computer,
since Cortana is preinstalled in Windows 10. Launching Cor-
tana through voice, we were able to navigate the system
to arbitrary web pages, control settings (e.g. enable/disable
Wi-Fi), create reminders, events, alarms, find location, send
emails, make calls and send SMSs through linked smart-
phones regardless of their proximity.

As a smartphone app, Cortana by default is trained to
respond only to her ‘“master’s” voice, something that is
also relevant for Siri and S Voice, but not the default case
for the latter. In these cases, the “trusted voices™, as they
are referred, can be bypassed using two methods. In the
more obvious scenario, we used recordings of the user’s
voice and replayed them using the compromised device’s

17848

Device with
voice assistant

applications

o] 18]

3" party

-

Linked
Desktop device
PC
.||lI|I|II|I|-|||||I|I|||
Compromised
device
Linked
Wearable device

speakerphones. While this approach is straightforward, it is
cumbersome to get all the needed wording from the victim to
cut and choose the necessary commands to launch the attack.
A feasible alternative for the attacker is to use a ““trained”
voice engine. In this case, the attacker would take a good
sample of the victim’s voice and train the voice engine to
mimic his/her voice. Note that since the set of commands
that we want to issue is quite limited, the actual sample that
is needed is also reduced. It is worth mentioning that Siri,
Google Assistant and S Voice can be triggered even when a
smartphone is securely locked (e.g. pin/pattern lock), if the
voice is trusted. Interestingly, Cortana for Desktop computers
has an option to be launched from ‘“‘anyone” who says “Hey
Cortana”, which is also the case of Alexa Echo.

Finally, as shown in Table 2, voice assistants can be con-
nected to even more devices, varying from vehicles to smart
appliances, to allow them partial control. In this regard, taking
control of a voice assistant, may result in also controlling
the linked devices. Knowing in advance whether someone
has smart appliances in his/her home sounds as a far fetched
scenario, the truth however is that it is quite simple to acquire
such knowledge. In the case of Android, one can extract a
list of all the installed applications without stumbling upon
any dangerous permission. Due to their “‘smartness”, the
connected devices are expected to have the respective apps
installed in the user’s device, informing the adversary of their
presence.

IV. APPLICABILITY

All reported attacks have been tested and responsibly dis-
closed to Google, while in the cases of other voice assistants,
their corresponding companies have also been informed.

VOLUME 5, 2017

E. Alepis, C. Patsakis: Monkey Says, Monkey Does: Security and Privacy on Voice Assistants

IEEE Access

Notably, all these attacks can be applied in Android AOSP
which at the time of writing is Nougat.

In all our tests, the attacks where successful both in
the cases of unattended devices and also in cases of
locked devices (simple lock, not secure lock). While not
all users lock their devices, even if they do so, appli-
cations may use the normal permissions WAKE_LOCK
and DISABLE_KEYGUARD, as well as the activity flag
FLAG_KEEP_SCREEN_ON to prevent or prolong the screen
lock to timely launch a Voice Assistant. Finally, even in the
cases of securely locked devices (pin or pattern lock) it should
be noted that all Android smartwatches can be considered as
trusted devices by the users of the connected smartphones,
therefore, if they are in proximity the devices do not actually
securely lock. Therefore, even in the “most difficult™ for the
attacker case, when a device is securely locked, if the user is
not close but in proximity to the mobile device e.g. 10m or
another room, the device will not be securely locked and the
attack can be executed without the user being able to notice it.

To further enhance the efficacy of our attacks we also
managed to get our malicious app accepted in Google Play.
This is rather significant since published apps are being tested
by Bouncer,? a system which analyses apps for malicious
functionality, mostly using dynamic analysis [26], indicating
that this attack vector is not being considered. However, as
already discussed, the aforementioned attack scenarios utilize
mechanisms that are unlikely to be traced. As a result, the
attacks described in this paper apply to smartphones of all
Android versions in the market, having as precondition that
at least one voice assistant is present.

To summarize the applicability of the attacks to voice
assistants we argue that our attacks are able to affect voice
assistants that are incorporated in a large variety of smart
devices, whose number is continuously growing in the IoT
era. These devices include the highly widespread smart-
phones and tablets, the personal computers, modern wear-
ables, smart-home devices and TVs and we might shortly find
them in cars and vehicles incorporating smartphone OSes.
Their exploitation might initiate from applications that, as
shown in this study, are quite straightforward to be used
for malicious reasons, however it does not stop there. Voice
assistants are software entities with enormous capabilities
and permissions, whose potential might be exploited by web-
pages or even other malicious people, having physical access
to a device. This kind of research is beyond the scope of this
paper, however it is easily provable that either websites or
people can issue voice commands in assistants, especially in
the cases where the assistants are not able to determine the
identity of their “owner”.

V. CONCLUSIONS

Voice assistants are gradually getting to a momentum, since
they are being preinstalled in many devices, and they are
getting smarter gaining support from third parties to interact

3 http://googlemobile.blogspot.gr/2012/02/android-and-security.html

VOLUME 5, 2017

with an increasing number of applications. Therefore, they
are radically changing user behaviour and expectations as
they provide new levels of convenience and an enhanced
user experience. However, they suffer from an inherent flaw:
up till now, they depended solely on the vocal modality of
interaction. As demonstrated in this work, one can easily
control and manipulate the voice commands remotely, issuing
arbitrary commands which can greatly expose the users.
Nonetheless, we are not able to fully understand these risks to
their full extent. One reason is that voice assistants are backed
by artificial intelligence making them more extensible.
However, common practice has shown that such systems can
be easily manipulated [27]. Finally, it is apparent that counter-
ing such attacks is not straightforward. Voice cancellation and
recognition might seem probable solutions, yet they cannot be
considered a panacea, due to the way voice assistants can be
launched and the fact that one can chain the attacks from one
device to another.

We argue that in order to provide defense mechanisms
against many of these attacks, the underlying operating sys-
tem, in this case Android, firstly needs to decouple voice
input and output. Having simultaneously a number apps using
voice input and output has already been shown to expose
users’ security and privacy, therefore, there is a definite need
from the OS side to consider both microphone and speaker as
a unique communication channel and identify apps that try to
use both flows (input and output) when only one is granted
by the user. This approach has been originally proposed by
AuDroid [28] and some of the concepts have already been
deployed in AOSP. Nevertheless, it cannot identify all the
information flows discussed in this work, as they can also
involve other devices. Moreover, the issue is complicated
by the use of intents and the fact that Voice Assistants
are constantly activated, which invalidates the assumption
of only one application using the communication channel.
A rather simplistic, yet powerful defense mechanism against
the attacks that target voice assistant would be to utilize
biometrics in order to identify the actual device owners and
enable or disable the function of these assistant accordingly.

Finally, based on the permissions the user is presented,
regardless of whether they are requested on installation or
runtime, one expects that the installed apps will not use the
microphone if s/he does not explicitly grant the permission.
Allowing applications to arbitrarily access the microphone
e.g. through intents, is far more than risky and as detailed in
this work can have more implications than simply spying on
users’ conversations.

APPENDIX

VOICE ASSISTANT PERMISSIONS

To understand the capacities of the voice assistants and the
actions they are allowed to perform, the Table 3 provides
an overview of the permissions they are granted in Android.
Note that while some documentations describe the command
sets that they are allowed to execute, their permissions allow
them to perform far too many tasks if exploited.

17849

IEEE Access

E. Alepis, C. Patsakis: Monkey Says, Monkey Does: Security and Privacy on Voice Assistants

TABLE 3. The android permissions of voice assistants.

Google Now (Assistant)

Samsung S-Voice

Microsoft Cortana

mission.FINISH_GEL_ACTIVITY
com.google.android.apps.now. CURRENT_ACCOUNT_ACCESS
rmission.C2D_MESSAGE

com.google.android.

com.google.android

com.google.android.c2dm.permission RECEIVE
android.permission.GLOBAL_SEARCH
android.permission. READ_CONTACTS
android.permission. WRITE_CONTACTS
com.android.browser.permission.READ_HISTORY_BOOKMARKS
com.android browser.permission. WRITE_HISTORY_BOOKMARKS
android.permission. ACCESS_NETWORK_STATE
android.permission.INTERNET
com.google.android.launcher. permission. CONTENT_REDIRECT
com.google.android.launcher.permission. READ_SETTINGS
om.google.android ion.WRITE_SETTINGS
RECEIVE_LAUNCH_BROADCASTS
RECEIVE_FIRST_LOAD_BROADCAST
android.permission.USE_CREDENTIALS
android.permission. MANAGE_ACCOUNTS
android permission.WRITE_SETTINGS
com.google.android.providers.settings.permission READ_GSETTINGS
com.google.android.providers.settings.permission. WRITE_GSETTINGS
com.google.android.providers.gsf.permission. READ_GSERVICES
com.google.android.voicesearch.SHORTCUTS_ACCESS
com.google.android.voicesearch. ACCESS_SETTINGS
com.androidbrowser.permission.PRELOAD
com.google.android.cars.permission. WRITE
android.permission BROADCAST_STICKY
android permission MEDIA_CONTENT_CONTROL
android.permission.INTERACT_ACROSS_USERS
com.google.android.googlequicksearchbox.permission. PAUSE_LHOTWORD
android.permission.GET_PACKAGE_SIZE
android.permission. ACCESS_WIFI_STATE
android.permission. ACCESS_NOTIFICATION_POLICY
android.permission. CHANGE_WIFI_STATE
android.permission BLUETOOTH_ADMIN
n. CHANGE_NETWORK_STATE
n.READ_EXTERNAL_STORAGE
n.RECEIVE_BOOT_COMPLETED
android.permission.WAKE_LOCK
com.google.android.gms.permission. ACTIVITY_RECOGNITION
android.permission.READ_PROFILE
com.google.googlenav.friend.permission.OPT_IN

PREFETCH

om.google.android

om.google.android

.. _FINE_LOCATION
n.BLUETOOTH
android.permission.CALL_PHONE
android.permission. CALL_PRIVILEGED
android.permission. GET_ACCOUNTS
android.permission. MODIFY_AUDIO_SETTINGS
ion.READ_CALENDAR
sion.READ_CALL_LOG
n.READ_SMS
android.permission. READ_PHONE_STATE
android.permission. READ_SYNC_SETTINGS
android.permission. RECORD_AUDIO
android.permission.SEND_SMS
android.permission. VIBRATE
android.permission.GET_TASKS
android.permission.REAL_GET_TASKS
android.permi n. WRIT] 'ALENDAR
android.permission. WRITE_EXTERNAL_STORAGE
android.permission. WRITE_SMS
com.android.alarm.permission.SET_ALARM

om.google.android.app:

AUTO_SEND
com.google.android.gm.permission. AUTO_SEND
com.google.android.gm.permission. READ_GMAIL
GOOGLE_AUTH.cp
_AUTH

com.google.android.googleapps.permission. GOOGL
com.google.android hangouts. START_HANGOUT
com.google.android.voicesearch. AUDIO_FILE_ACCESS
android.permission. CAMERA

android.permission. FLASHLIGHT

android.permission. DOWNLOAD_WITHOUT_NOTIFICATION
android.permission. MANAGE_VOICE_KEYPHRASES
ccom.android.chrome.PRERENDER_URL

android.permi n.CAPTURE_AUDIO_HOTWORD
android.permission.STOP_APP_SWITCHES

n.STATUS_BAR

on. SET_WALLPAPER
android.permission.SET_WALLPAPER_HINTS
android.permission.BIND_APPWIDGET
com.android.launcher.permission.INSTALL_SHORTCUT
android.permission.USE_FINGERPRINT

android.permission. WRITE_EXTERNAL_STORAGE
android.permission. MODIFY_AUDIO_SETTINGS

android.permission. ACCESS_NOTIFICATION_POLICY
com.sec.android.app.twdvfs. DVFS_BOOSTER_PERMISSION
com.samsung.voiceserviceplatform. permission. BACKUP_RESTORE
com.sec.android.settings. permission. SOFT_RESET
com.samsung.mdl.radio permission READ_RADIO_STORAGE
com.sec.imsservice. PERMISSION

com. msservice. READ_IMS_PERMISSION

com.sec.imsservice. WRITE_IMS_PERMISSION
com.samsung.svoice.sync. READ_DATABASE

com.samsung.svoice.sync. WRITE_DATABASE
com.samsung.svoice.sync. ACCESS_SERVICE
android.Manifest.permission. MEDIA_CONTENT_CONTROL
android.permission.MEDIA_CONTENT_CONTROL
android.permission. CALL_PRIVILEGED
com.google.android.providers iss
com.samsung.android.scloud.ba

com.samsung.android.scloud.backup.lib.write
android.permission. GET_TASKS
com.samsung.permission.SBEAM_SETTINGS
android.permission. CHANGE_NETWORK_STATE
android.permission. WRITE_SYNC_SETTINGS
android.permission. ACCESS_NETWORK_STATE
android.per: on.ACCESS_FINE_LOCATION
ion. ACCESS_COARSE_LOCATION
ion.READ_SYNC_SETTINGS
android.permission.INTERNET
android.permission. RECORD_AUDIO
android.permission.VIBRATE

android.permission. READ_PHONE_STATE
android.permission.BLUETOOTH
android.permission. BLUETOOTH_ADMIN
android.permission. BROADCAST_STICKY
com.android.alarm.permission.SET_ALARM

m.sec.android.app.

READ_ALARM
com.sec.android.app.clockpackage.permission. WRITE_ALARM
android.permission. READ_LOGS
com.sec.android.wid q!1_penmemo. ion READ
d q1_penmemo. ion. WRITE
android.permission.CALL_PHONE
android.permission. READ_CONTACTS
android.permission.WRITE_CONTACTS
android.permission. ACCESS_WIFI_STATE
android.permission.CHANGE_WIFI_STATE
android.permission. WAKE_LOCK
android.permission. READ_SMS
android.permission. WRITE_SMS
android.permission.SEND_SMS
android.permission. RECEIVE_SMS
android.permission. RECEIVE_MMS
android.permission. RECEIVE_WAP_PUSH
com.android.mms.permission. RECEIVE_MESSAGES_INFORMATION
com.sec.mms.permission. RECEIVE_MESSAGES_INFORMATION
android.permission READ_CALENDAR
android. permission.WRITE_CALENDAR
com.sec.android.app. READ_CALENDAR_SETTINGS
android.permission.WRITE_SETTINGS
ion.RECEIVE_BOOT_COMPLETED
on.READ_CALL_LOG

m.infraware. provider. SNoteProvi READ
com.infraware.provider.SNoteProvider. permission. WRITE
amsung.android. i

amsung.android ion.WRITE
samsung.snote.permission. MEMO_CONTROL
com.samsung.android.app.notes.READ
mission.C2D_MESSAGE
com.samsung.android.memo.READ
com.samsung.android.memo. WRITE
com.samsung.android.intent.action.MEMO_SERVICE
com.android.browser.permission READ_HISTORY_BOOKMARKS
com.sec.android settings.myplace.p READ_DATA
com.sec.android settings.myplace.permission. WRITE_DATA
com.samsung.helphub.permission. HELP
com.wssnps.permission.COM_WSSNPS

com.sec.android.

com.samsung.android.app.notes.

READ_MUSICPROVIDER
WRITE_MUSICPROVIDER
com.samsung.android.internal.intelli ysi
om.samsung.android.internal.ii
com.sec.android.provider.logsprovider. permission.READ_LOGS
android.permission. DISABLE_KEYGUARD
com.sec.voice.permission.RECEIVE

android.permission. WRITE_SECURE_SETTINGS
android.permission. INSTALL_PACKAGES

m.samsung.musicplus.provi

m.samsung.android.providers.context.
android.permission. READ_EXTERNAL_STORAGE
om.samsun, ission. READ_CONTENT

READ_PLACE
'WRITE_PLACE

WRITE_USE_APP_FEATURE_SURVEY

android.permission. INTERACT_ACROSS_USERS_FULL
android.permission. DOWNLOAD_WITHOUT_NOTIFICATION
android.permission.USE_CREDENTIALS
android.permission. BLUETOOTH

android.permission BLUETOOTH_ADMIN

android. permission INTERNET

android.permission. CHANGE_WIFI_STATE
android.permission. WRITE_SETTINGS
android.permission.SYSTEM_ALERT_WINDOW
com.android.alarm.permission.SET_ALARM
cyanogenmod.permission. MANAGE_ALARMS
cyanogenmod.permission. READ_ALARMS

cyanogenmod.permission. MODIFY_NETWORK_SETTINGS
cyanogenmod.permission MODIFY_SOUND_SETTINGS
android.permission.CAPTURE_AUDIO_HOTWORD
android.permission.REBOOT

ion.INSTALL_SHORTCUT
ion. UNINSTALL_SHORTCUT
com.android.launcher.permission.READ_SETTINGS
com.android.launcher3.permission.READ_SETTINGS
om.google.android r.permission. READ_SETTINGS
com.huawei.android launcher.permission. READ_SETTINGS
android.permission. ACCESS_FINE_LOCATION
android.permission. ACCESS_COARSE_LOCATION
android.permission. DISABLE_KEYGUARD
android. permission.WAKE_LOCK
android.permission.VIBRATE
android.permission. READ_PHONE_STATE
cyanogenmod.permission. THIRD_PARTY_KEYGUARD
cyanogenmod.permission.LIVE_LOCK_SCREEN_MANAGER_ACCESS_PRIVATE
android.permission. READ_SYNC_SETTINGS
android.permission.WRITE_SYNC_SETTINGS
android.permission. AUTHENTICATE_ACCOUNTS
android.permission. MANAGE_ACCOUNTS
com.google.android.c2dm S| RECEIVE
android.permission. ACCESS_WIFI_STATE
android.permission. ACCESS_NETWORK_STATE
android.permission. GET_ACCOUNTS
android.permission READ_CONTACTS
android.permission. READ_PROFILE
android.permission. RECEIVE_SMS
com.google.android.c2dm.SEND
android.permission. RECEIVE_BOOT_COMPLETED
com.google.android.gms.permission. ACTIVITY_RECOGNITION
android.permission.CALL_PHONE
android.permission. WRITE_EXTERNAL_STORAGE
android.permission. WRITE_CALENDAR
android.permission. READ_CALENDAR
android.permission. SEND_SMS
android.permission. READ_SMS
android.permission. WRITE_SMS
android.permission.PROCESS_OUTGOING_CALLS
android.permission. READ_EXTERNAL_STORAGE
android.permission CHANGE_NETWORK_STATE
com.microsoft.bing.dss.async
android.permission. RECORD_AUDIO
android.permission.GET_TASKS

REFERENCES

[1] J. Jiang et al., “Automatic online evaluation of intelligent assistants,”
in Proc. 24th Int. Conf. World Wide Web, 2015, pp. 506-516.

[2] J. Kiseleva et al., “Understanding user satisfaction with intelligent assis-
tants,” in Proc. ACM Conf. Human Inf. Interaction Retr. (CHIIR), 2016,
pp. 121-130.

[3] (2016). Mindmeld. Intelligent Voice Assistants: User Adoption
Survey Results Q1. [Online]. Available: http://info.mindmeld.
com/survey2016q1.html

[4] T. Mozer, Speech’s Evolving Role in Consumer Electronics... From Toys
to Mobile. New York, NY, USA: Springer, 2013, pp. 23-34.

[5] (2016). S. Pichai. Google /O Keynote. [Online]. Available:
https://www.youtube.com/watch?v=862r3XS2YB0O

[6] I. Guy, “Searching by talking: Analysis of voice queries on mobile Web
search,” in Proc. 39th Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., 2016,
pp. 35-44.

17850

[7] Y. Jang, C. Song, S. P. Chung, T. Wang, and W. Lee, “Ally attacks:

[8]

[91

[10]

(11]

Exploiting accessibility in operating systems,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2014, pp. 103-115.

W. Diao, X. Liu, Z. Zhou, and K. Zhang, “Your voice assistant is mine:
How to abuse speakers to steal information and control your phone,” in
Proc. 4th ACM Workshop Secur. Privacy Smartphones Mobile Devices,
2014, pp. 63-74.

T. Vaidya, Y. Zhang, M. Sherr, and C. Shields, *“Cocaine noodles: Exploit-
ing the gap between human and machine speech recognition,” in Proc. 9th
USENIX Workshop Offensive Technol. (WOOT), 2015, pp. 1-8.

N. Carlini et al., “Hidden voice commands,” in Proc. 25th USENIX
Secur. Symp. (USENIX Secur), Austin, TX, USA, Aug. 2016,
pp. 513-530.

C. KasmiandJ. L. Esteves, “IEMI threats for information security: Remote
command injection on modern smartphones,” IEEE Trans. Electromagn.
Compat., vol. 57, no. 6, pp. 1752—-1755, Jun. 2015.

VOLUME 5, 2017

E. Alepis, C. Patsakis: Monkey Says, Monkey Does: Security and Privacy on Voice Assistants I E E E ACC@SS

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

(2014). SnoopWall. Flashlight APPS Threat Assessment Report.
[Online]. Available: http://www.snoopwall.com/wp-content/uploads/
2015/02/Flashlight-Spyware-Report-2014.pdf

A.P.Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android
permissions: User attention, comprehension, and behavior,” in Proc. 8th
Symp. Usable Privacy Secur., 2012, p. 3.

P. G. Kelly, S. Consolvo, L. F. Cranor, J. Jung, N. Sadeh, and D. Wetherall,
“An conundrum of permissions: Installing applications on an Android
smartphone,” in Financial Cryptography Data Security. New York, NY,
USA: Springer, 2012, pp. 68-79.

R. Balebako, J. Jung, W. Lu, L. F. Cranor, and C. Nguyen, “‘Little brothers
watching you’: Raising awareness of data leaks on smartphones,” in Proc.
9th Symp. Usable Privacy Secur., 2013, p. 12.

Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee, ““Cloak and dagger: From
two permissions to complete control of the Ul feedback loop,” in Proc.
IEEE Symp. Secur. Privacy (Oakland), San Jose, CA, USA, May 2017,
pp. 1041-1057.

E. Alepis and C. Patsakis, “Trapped by the Ul: The Android case,” in
Proc. 20th Int. Symp. Res. Attacks, Intrusions Defenses. 2017. [Online].
Available: https://www.raid2017.org/program/

A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of
mobile malware in the wild,” in Proc. 1st ACM Workshop Secur. Privacy
Smartphones Mobile Devices, 2011, pp. 3—14.

T. Vidas, D. Votipka, and N. Christin, “All your droid are belong to
US: A survey of current Android attacks,” in Proc. 5th USENIX Conf.
Offensive Technol., 2011, p. 10.

P. Faruki et al., “Android security: A survey of issues, malware penetration,
and defenses,” IEEE Commun. Surveys Tuts., vol. 17, no. 2, pp. 998-1022,
2nd Quart. 2015.

S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna, “‘Execute
this! Analyzing unsafe and malicious dynamic code loading in Android
applications,” in Proc. NDSS, vol. 14. 2014, pp. 23-26.

M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and
S. Weisgerber, “On demystifying the Android application framework:
Re-visiting Android permission specification analysis,” in Proc. 25th
USENIX Secur. Symp. (USENIX Secur.), 2016, pp. 1101-1118.

E. J. Kartaltepe, J. A. Morales, S. Xu, and R. Sandhu, “Social network-
based botnet command-and-control: Emerging threats and countermea-
sures,” in Proc. Int. Conf. Appl. Cryptograph. Netw. Secur., 2010,
pp. 511-528.

J.-1. Boutin. Turla’s Watering Hole Campaign: An Updated Firefox
Extension Abusing Instagram. Accessed: Aug. 19, 2017. [Online].
Available: https://www.welivesecurity.com/2017/06/06/turlas-watering-
hole-campaign-updated-firefox-extension-abusing-instagram/

E. Alepis and C. Patsakis, “There’s Wally! Location tracking in Android
without permissions,” in Proc. Int. Conf. Inf. Syst. Secur. Privacy, 2017,
pp. 278-284.

VOLUME 5, 2017

[26] J. Oberheide and C. Miller, “Dissecting the Android bouncer,” in
Proc. SummerCon, 2012. [Online]. Available: https://jon.oberheide.org/
blog/2012/06/21/dissecting-the-android-bouncer/

[27] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Sep. 2015, pp. 427-436.

[28] G. Petracca, Y. Sun, T. Jaeger, and A. Atamli, “Audroid: Preventing attacks
on audio channels in mobile devices,” in Proc. 31st Annu. Comput. Secur.
Appl. Conf. (ACSAC), 2015, pp. 181-190.

EFTHIMIOS ALEPIS received the B.Sc. degree
in informatics and the Ph.D. degree from the
Department of Informatics, University of Piraeus,
Greece, in 2002 and 2009, respectively. He has
been an Assistant Professor with the Department
of Informatics, University of Piraeus, since 2013.
He has authored or co-authored over 60 scientific
papers which have been published in international
journals, book chapters, and international confer-
ences. His current research interests are in the
areas of object-oriented programming, mobile software engineering, human-
computer interaction, affective computing, user modeling and educational
software.

CONSTANTINOS PATSAKIS received the B.Sc.
degree in mathematics from the University of
Athens, the M.Sc. degree in information security
from Royal Holloway, and the Ph.D. degree in
security from the University of Piraeus. He was a
Researcher with the UNESCO Chair, Data Privacy
and Trinity College. He is currently an Assistant
Professor with the University of Piracus. He has
several publications in peer-reviewed international
conferences and journals and participated in many
national and European Research and Development projects. His main areas
of research include cryptography, security, privacy, and data anonymization.

17851

