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ABSTRACT There is a growing demand for the use of robots to assist humans in their tasks, especially
those involving risks, such as search and rescue. For this reason, coordination among several robots has been
a common option, and one of the ways to study and model these applications involves the problem of pursuit
evasion. This paper extends the results presented earlier on the use of an evolutionary robotics approach to
solve the worst case pursuit-evasion problem, in which evaders are considered arbitrarily fast and omniscient,
while pursuers have limited sensing and communication capabilities, with no prior knowledge regarding
environments, which are treated as discrete and can be multiply connected. First, a formulation based on
random walk is offered. Then, the concept is extended to include a decentralized multi-robot control system
based on a finite-state machine with state-action mapping defined by means of a genetic algorithm. Results
show that the proposed system is able to decontaminate several types of maps, but does not generalize to
all initial conditions, due to the incompleteness in the automaton mapping. Therefore, a complementary
approach is presented in which random walk is used alternatively with the evolved automaton, indicating
random actions in cases of states not sufficiently visited during evolution. In addition, a comparative analysis
of the evolutionary approach and the random walk formulation is also carried out.

INDEX TERMS Evolutionary robotics, pursuit-evasion, clearing problem.

I. INTRODUCTION
The study of systems with multiple robots has intensified in
the last two decades, mainly due to the amount of human
assistance tasks whose execution can be facilitated by the
coordinated work of several agents, such as search and rescue
missions, demining, patrolling and exploration. One of the
ways tomodel such applications is based on so-called pursuit-
evasion games, in which different forms of competitive and
cooperative behaviors can be studied depending on choices
about pursuer and evader’s dynamics, capture conditions and
visibility constraints.

Among several taxonomies and models, the worst-case
adversarial search [1], also called the clearing problem [2],
stands out as a classical case that has the advantage of being
applicable to one or several evaders, regardless of the behav-
ior they present. This is because the scenario, firstly proposed
by Parsons [3], is characterized by omniscient and arbitrarily
small evaders, which can move at unbounded speed, but
continuously, and can be treated as a noxious gas that has

previously contaminated the environment, whereas the pur-
suers have several restrictions.

Over the years, worst case scenario has been studied under
different aspects and, more recently, the interests have turned
to the use of searcher agents with real restrictions in respect
of movement and visibility. Since real robot applications with
limited sensing with respect to the size of environments are
desired, the clearing of any locations that are not limited
to simply connected corridors requires the coordination of
multiple robots to accomplish the task, otherwise the evader
would always be able to recontaminate the environment.

In this sense, Kolling and Carpin [4] were the first to
present a solution for coordination of multiple searchers in
which no prior knowledge of environments is considered.
It is a distributed approach, called Line-Clear, in which the
pursuers are organized in multiple sweep lines and move
according to their role in the formation, following walls or
other close robots. The searchers’ progress is only allowed if
the distance between them does not exceed twice the radius
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of the sensor or the radius itself between the searcher and an
obstacle. A topological map of the discovered environment is
constructed and stored, describing possible line movements
and their associated costs in terms of number of robots.
Coordination only requires local communication between the
leaders of different lines of robots whenever they meet. There
is no concern about the minimum number of robots, given
it is an unknown environment. And also because of this, it
is not guaranteed an optimal way to clear the environment
or to deal with obstacles. There is no proof of convergence,
with theoretical guarantees for environment decontamination,
and the algorithm is not well suited to multiply connected
environments.

Later, Durham et al. [2] presented a distributed algorithm
with theoretical capture guarantee for a sufficient number
of robot searchers, without building or storing any map
and with no global localization required. The method works
maintaining a complete frontier coverage between cleared
and contaminated environments, while expanding the cleared
region according to a predetermined algorithm. When there
are not enough searchers, the algorithm clears as much area
as possible, ensuring no recontamination. Their proposed
method stores and updates the global frontier based on local
intersections and oriented arcs, using a limited amount of
memory per robot. Moreover, their work presents real robot
experiments, including a case in which one robot failed
and the remaining became responsible for completing the
task.

For discrete environments, Gonçalves et al. [5] presented
an approach based on random walk combined with local
constraints, without presenting proof of convergence associ-
ated to the method. Furthermore, the method requires global
communication among the robots.

The present work proposes evolutionary robotics as a tool
to generate a decentralized control command based on finite
state machines in discrete environments. Preliminary results
of the proposed method were published in [6]. The main con-
tributions of this paper are (i) a formal representation of the
worst-case pursuit-evasion problem based on random walk;
(ii) the combination of this formulation with an evolutionary
robotics approach; (iii) the proposition of a complementary
random walk/evolutionary robotics approach; and (iv) a com-
parative analysis between a pure random walk solution, the
evolutionary robotics approach and the combined comple-
mentary approach.

This paper is organized as follows. In Section II, we
define the multi-robot pursuit-evasion problem. Section III
discusses the representation of the problem as a graph and
applies a random walk approach to demonstrate that ran-
domly selected actions can guarantee the clearing of an envi-
ronment. Section IV presents the proposed genetic algorithm
methodology for solving the problem defined in Section II.
Section V explains the complementary approach proposed. In
Section VI, the simulation process and results are presented,
as well as the comparative results. Finally, the conclusion is
presented in Section VII.

FIGURE 1. Available actions for the robots.

II. PROBLEM STATEMENT
This paper addresses the problem in which a team of N
robotic searchers, also called pursuers, has to capture all
evaders in an unknown, limited and planar environment that
may be multiply connected. From now on, we will use only
the term robots instead of pursuers or searchers.
The evaders to be captured move continuously at

unbounded speed and have full knowledge about all robots’
positions and actions. Then, they are treated as contamina-
tion, i.e., they are everywhere. Robots, on the other hand,
have bounded speed and perfect but limited sensors, within a
circumference of radius rsensor . They can communicate with
other robots that are at a maximum Euclidean distance of
twice the radius rsensor .

Given these restrictions, the capture can only be ensured
by coordinated actions among robots, so that they perform
a sweep in formation maintaining between them up to the
maximum distance of the communication radius. Otherwise,
the environment would be immediately recontaminated.

The task is treated in simulation, considering discrete maps
represented by regular grids with resolution r. At each time
step, robots occupy the center of the cell they are located
and can only remain at the same cell or move to one of
the nearest four cells in the von Neumann neighborhood
(Figure 1). Evaders, otherwise, are assumed to be the size
of a cell, in a way they can not hide on imperfections of the
discretization process. Due to their features, evaders are not
directly implemented, because they are at any not cleared part
of the environment.

The house-built simulator, implemented in MATLAB R©,
where the experiments took place, and the sensing were
inspired in the proposal of Gonçalves et al. [5]. Adjusts were
made in the sensory model, that is treated in a more realistic
way as we consider the sensing capabilities to be similar to
a real robot. Figure 2 shows the sensory model and robot
perceptions in the discrete environment. The robots can only
sense the cells that are completely inside their sensing radius,
marked in gray in Figure 2(a). The discretization process is

VOLUME 5, 2017 17553



L. Gregorin et al.: Heuristics for the Multi-Robot Worst Case Pursuit-Evasion Problem

FIGURE 2. (a) The discrete sensory mask and (b) the robot vision.

assumed to has been previously carried out, thereby, when-
ever any point representing an obstacle is detected, a cell
will be marked as occupied, represented by the two cells
with a black X in Figure 2(b). Reversely, a cell becomes
free whenever any free point is observed in a cell. The cells
occluded by an obstacle are unknown and are not marked as
free or occupied (case of the four cells behind the obstacle
in Figure 2(b)).

Under the conditions of the proposed approach, nomemory
restriction is considered: robots store the history of visited
cells, as well as labeling them about contamination and
occupation according to their individual perceptions. Initial
conditions to simulation require a formation such that robots
fully communicate and establish a decontaminated area.

Based on these definitions, two proposed solutions to the
clearing problem are presented. The necessary mathemat-
ical notation will be introduced when needed. Section III
deals with the random walk approach and demonstrates that
the algorithm would result in the whole environment being
cleared in finite time.

III. THE RANDOM WALK APPROACH
In their work, Gonçalves et al. [5] presents a centralized
discrete approach in which random walk is applied to move
robot pursuers, while local restrictions avoid recontamina-
tion. However, no formal introduction of the problem is
offered. Therefore, the mathematical representation and the
demonstration that the environment is cleared by using this
method are contributions of this paper.

This section is divided as follows. Section III-A introduces
the notation necessary to describe the problem as a random
walk. Section III-B analyzes the motion restrictions for the
robots as a group. Section III-C introduces the problem as a
graph. Section III-D describes how even with the restrictions
in motion the robots can reach a final state in an environment
of known dimensions. Finally, Section III-E demonstrates
that starting from a feasible initial state, the final state can
be reached with probability one.

A. INITIAL NOTATION
Let us first define a discrete space V that contains all the
possible positions of the robots. Furthermore, let us consider,

FIGURE 3. Robot neighborhood restrictions.

without loss of generality, that the space is rectangular, i.e.,
|X | = η and |Y | = κ with the state {x, y} = xyv ∈ V . Note
that if we write i = x ∗ κ + y, one can further define the state
iv for x ∈ {1, · · · , η} and y ∈ {1, · · · , κ}.

The position of all N robots is an element of the extended
discrete state space V N

= V × V × · · · × V × V where
v = (v1, v2, · · · , vN−1, vN ) ∈ V N is the position of all the
robots in the environment. Moreover, for any two robots p
and q, vp 6= vq, ∀p 6= q. Also, the state vt ∈ V N may be
represented as a tuple of N integers, where the integer in the
pth position represents the state where robot p is located at
time t .

As discussed in the previous section, each robot has at
their disposal at most five actions: (0) remain where it is,
(1) move to the east, (2) to the north, (3) to the west or (4)
to the south (Figure 1). Some movements are not allowed
and therefore their probability is set to zero (see discussion in
Section III-B). If we define the action set A as the possible
actions for each robot, the action set for all robots can be
represented as A N . But, since the actions are related to the
states, one can introduce the notation A(vt ) ⊂ A N for the
actual action set of permissible actions.

Finally, the choice of the actions a ∈ A(vt ) is mediated
by a probability distribution p ∈ P(A(vt )), where P(·) is a
probability distribution related to the motion restrictions to
be discussed in the next section.

B. MOTION RESTRICTIONS
The motion restrictions presented in this section are the same
introduced in [4]. However, we formally introduce them with
the notation used in this paper. Recall that the position of all
robots at time step t can be represented as a tuple vt , that we
further constrain to be only in a feasible set F , i.e., vt ⊂ F .
The feasible set F is defined as the positions of the robots
such that from each robot p ∈ {1, · · · ,N } either (1) two other
robots or (2) a wall and a robot is sensed in the sensing area
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FIGURE 4. Representation of feasible states for the team of robots: (a) possible initial configuration (environment fully contaminated); (b) possible
configuration during decontamination (environment partially cleared); (c) possible final configuration (environment fully cleared).

defined by the radius rsensor (Figure 3). Notice that it is also
possible for a robot to have two walls as neighbors, but this
case will be left to be discussed in Section III-D. Finally, one
of the sides of the line formed by the placement of the robots
in a state vt ∈ F is completely cleared, i.e., it is guaranteed
that there is no evader in that region (Figure 4(a)).

Let us assumewithout loss of generality that the initial state
v0 ∈ F 0

⊂ F , where F 0 is the set of all possible initial
states for the robots. As shown in Figure 3, this case is only
satisfied ifF 0 represents all robots located in one of the sides
of the environment (in the case shown in the figure, the west).
Each robot can then choose their actions so that the new state
is v1. However, motions are restricted by the requirement of
v1 ∈ F . This, in practice, defines the probability distribution
P(A(v0)) = P0 ∈P of the action set A(v0) as only consider-
ing the set of actions a0 ∈ A(v0) that will result in v1 ∈ F .
The probability distribution function is usually uniform, but it
can also be non-uniform [7]. Moreover, notice that in order to
apply these restrictions, it is required that the motion of each
robot be decided (or at least validated) by a central process
prior to execution. However, notice that the methods present
in Sections IV and V do not assume that a central process is
employed. Therefore, in the simulations of Section VI, this
requirement is not employed.

By the same rationale, the choice of vn+1 is decided by the
probability distribution P(A(vn)) = Pn. Therefore,

(vn ∈ F ) ⇐⇒ (vn+1 ∈ F )

Notice that the restrictions in effect change the probability
of transitioning from one state to another and, therefore, the
probability distributions P0,P1, · · · ,Pn−1,Pn are in general
different, i.e., P0 6= P1 6= · · · , 6= Pn−1 6= Pn.
In the experiments presented in SectionVI, we have chosen

v0 to be all robots set in a line (Figure 4(a)). This guarantees
that the necessary number of robots to perform the task is
chosen if the environment is unknown but of known dimen-
sions, i.e., we assume that the robots know nothing about
the disposition of obstacles in the environment. Figure 4(a)
shows the initial condition of the robots, Figure 4(b) shows

the robots clearing an area. Notice that the area to the west is
cleared whereas the area to the east is contaminated. Finally,
Figure 4(c) shows the environment completely cleared.

C. PURSUIT-EVASION REPRESENTED AS A GRAPH
Let us consider the problem introduced above as a tuple

G = (V N ,A N ,P(·)) (1)

with necessary parameters. Notice that we can alternatively
describe the problem by a graph

G = (V ,E) (2)

where V are the vertices, which represent the states where
the robots can be found, and E are the edges, which represent
the permissible transitions between states. The vertices V
are based on the permissible states V N and the edges E are
based on the allowed actions A N and the probability distri-
butions P . Furthermore, for a finite environment of the type
we are dealing with in this paper, the number of vertices V
may be very large, but are always finite and countable. This
is based on the fact that the environment is discrete and finite
itself.

This problem represented as a graph has been previously
considered in the literature [8]. However, in the previously
defined problems, the vertices of the graph represents the
possible locations of the robots [9]. In the representation used
in this paper, the vertices are all the feasible states of the
robots, i.e., V = V N .

Two features of the problem as represented by a graphmust
be considered. First that there is a path from the initial state of
the robots to the final desired stated (the whole environment
cleared). Second, that the final state of the graph is reachable
in finite time. These two properties are discussed in the next
two sections.

D. EXISTENCE OF A PATH
For the robots to be able to clear the whole environment, it
is necessary that there be no contaminated cell. This means
that starting at a state v0 ∈ F 0, a final state can be reached.
Therefore, one needs to first define the set FF ⊂ F as
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FIGURE 5. Possible types of obstacles: (a) corridor, (b) door, (c) box.

the states wherein in the environment is fully cleared. One
important question is if the set of all possible feasible states
can be built as a connected graph.

By construction, if the dimensions of the environment are
known and the initial condition of the robots is v0 ∈ F 0

(as described in Section III-B), one can choose the required
number of robots necessary to clear the whole environment
assuming that the types of obstacles are known, although not
their dimensions and locations. The obstacles to be consid-
ered are shown in Figure 5: corridors, doors and boxes.

In order to guarantee that there is a path from v0 ∈ F 0 to
vF ∈ FF , we need to determine if the restrictions discussed in
Section III-B are sufficient to cover the whole space without
allowing recontamination. This can be done if expansion is
possible for one of the connected vertices of the graph to
another [2].

Let us consider the three possibilities shown in Figure 5.
First, the corridor. If a sufficient number of robots is con-
sidered, a state with the robots on the other side of the
corridor is always feasible [2]. In the case when robots in
front of the formation cannot move because they would allow
recontamination of the environment, by the assumptions that
there is a sufficient number of robots, there is a probability
that the robots stop and wait for more robots to come to the
front. Some algorithms can result in this behavior [2] and the
probability that this will happen is one [2].

Second, a door can be seen as a special case of a corridor
(a door is a corridor with length equal to the resolution of the
map). Therefore, if the passage through a corridor results in
feasible states, so does the passage through a door.

Finally, a box can be seen as a bifurcation. Given that we
have enough robots, each side of a box can also been seen as
a corridor and a feasible state can be found in the same way
as it can be found in the previous cases. Therefore, a path of
feasible states can be established from the initial state v0 ∈
F 0 to a final state vF ∈ FF . Observe that the analysis done
in this section is not valid for all types of obstacles, especially
if the obstacle is non-convex. If more general obstacles are
present, a more in depth analysis needs to be carried out.

In this section we established that there is a path from a
initial state to a final state. However, it does not guarantee

that the final state can be reached in finite time. This question
will be tackled in the next Section.

E. REACHABILITY
Considering the problem described in Section II and repre-
sented by (1), an environment can be cleared if a final state
of the graph (2) is reachable in finite time.

Let us start by defining reachability. For a final state
vF ∈ FF to be reachable, one only needs to demonstrate
that the hitting time H (v0, vF ) <∞, ∀v0 ∈ F 0.

If the probability distribution for all actions is uniform,
one can define hitting time with the following recursive equa-
tion [10]

H (v0, vF ) = 1+
1

|A(v0)|

∑
v1∈0(v0)

H (v1, vF )

where 0(v0) denotes the set of neighboring vertices of v0.
Intuitively, this equation means that the expected time to
reach a state is dependent on the local connections of the
graph and the probability distribution of the edges. Notice
that if the probability distribution is not uniform, the equation
would change, as the probabilities for the transitions would
not be the same.

Treatment of the random walk defined in graphs has been
done in several works. If the graph does not have loops
(transitions to the same states), hitting time can be calculated
more easily [11], [12]. In the case in which transitions to the
same state are allowed (such as the problem defined in this
paper), calculation of hitting time can be more complex, but
there are also results that allow the calculation of hitting times
if the graph can be reduced to a tree [13]. Unfortunately, this
is not the case of the formulation introduced so far.

Some other results have shown that the random walk can
be represented by a Markov chain [14], [15]. Moreover,
notice that the graph in (2) with the restrictions discussed in
Section III-B is irreducible and aperiodic. In this case, there
are general methods for the calculation of upper bounds for
hitting time [15], [16].

As it should be expected, hitting time is dependent on the
number of vertices in the graph G = (V ,E) [13]. Moreover,
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it also depends on the valence of the graph, i.e., the number of
connections coming into each vertice. Reference [15, Th. 2]
in [15] shows that the hitting time in the general case (when
no upper bound is enforced for the valence) is bounded to

H (v0, vF ) ≤ N (N − 1)2 (3)

where N is the number of vertices in the graph. Therefore,
the order for the time duration of the random walk is O(N 3)
and this has a series of implications for the problem at hand,
of which we mention only one that is pertinent for the results
discussed in this paper.

The number of vertices in the graph is potentially very
large as it depends on the environment (size and disposition
of obstacles) and the number of robots. Therefore, the method
is not scalable. This is the main motivation for the use of the
method discussed in the next section.

IV. THE EVOLUTIONARY ROBOTICS APPROACH
Evolutionary robotics is a field of research that applies
artificial evolution, mainly genetic algorithms, to generate
morphologies and control systems for autonomous mobile
robots [17]. Evolutionary approaches have demonstrated ben-
efits in a wide range of purposes, showing potential to build
autonomous systems for problems of many dimensions, also
able to deal with new information not predicted during the
project, which arouses interest to investigate and expand their
applications.

Despite the pursuit-evasion problem has been studied for
years in evolutionary robotics (in that context called predator-
prey), no research was carried out about the worst case sce-
nario in a cooperative approach. Therefore this technique was
chosen to develop this work, and a preliminary analysis was
presented in [6].

Althoughmost of the work in evolutionary robotics consid-
ers artificial neural networks as the controller paradigm [18],
finite state machine has also shown several advantages [19]
and was the tool selected to model the control system
of robots in order to develop the ability to interact and
sweep environments in a formation that does not allow
recontamination.

As mentioned in the previous section, the main motivation
for the use of the approach discussed in here is the scalability
of the random walk solution. Moreover, we are interested in
studying how well the evolutionary approach deals with this
challenging problem.

Similar to the problem in (1) and (2), the proposed con-
troller is a discrete automaton defined by a finite set of
possible states, mapped to a finite set of motion actions, so
that each robot is ruled independently by the same automa-
ton model. The main difference is that the approach to be
defined shortly is decentralized whereas the random walk
approach is centralized (for it requires the check of motion
actions by all robots prior to the actual execution of the
actions). Also, the number of states (or vertices of the
graph) is reduced by a clustering mechanism. Notice that if
the same approach was used in the method of Section III,

the graph would not necessarily cover the whole discrete
space.

The proposed automaton is defined by the quintuple

G = (S N ,A N , δ, 0s,F ) (4)

where:

• S N is the finite set of possible states sn ∈ S , with
|S | = 10 and S = B10, with B = {0, 1}. Conse-
quently, sni ∈ B, n ∈ {1, 2, ...,N }, i.e., each element of
state vector is binary and defined according to the local
perception of the nth robot concerning the environment
and the contamination border.

• A N is the finite set of actions α ∈ A associated to G,
with |A | = 5.

• δ : S N
× A N

→ S N is the transition function. The
future state st+1 ∈ S N of the robot group is defined by
their current state st ∈ S N , their action αt ∈ A N and
the environment. Notice that it is not possible to define
the target state from the occurrence of an action given a
current state of a single robot. This happens because the
new state is dependent on the actions of all robots and
cannot be determined by the action of a single agent.

•
0s is the initial state of the system, such that any state
can be the initial one.

• F is the set of final states, in which any state can be
the final one (this would be the FF in the random walk
approach).

Each dimension of the state vector is a binary digit,
sni ∈ {0, 1}, whose value is defined by agreement to the
affirmative description of dimensions, according to Table 1.
Then, the value assigned to each dimension will be 0 if the
answer to the corresponding statement is false and 1 if it is
true.

TABLE 1. State vector description.

The first dimension refers to frontier status, as perceived
by a robot, which will be guarding a frontier in two cases:
(i) when the intersections of its sensory mask with obsta-
cles or with other robots’ mask has a neighborhood (eight
adjacent cells) with a contaminated cell, without allowing
recontamination, or (ii) when the robot is in a totally cleared
area, but still communicates with the robots in the frontier.
Consider the example of Figure 6 as an illustration of the
robots’ perceptions.
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FIGURE 6. Examples of robots’ states.

Robots 3 and 4 are an example of the first case, i.e, sn1 = 1
for n ∈ {3, 4}, while robot 2 is an example of the second case,
i.e, s21 = 1. On the other hand, sn1 = 0 for n ∈ {1, 5, 6, 7, 8}.
Notice that the reasons for sn1 being 0 are different for each
robot. Robot 1 and 8 are not part of the frontier and, therefore,
are not guarding it, so s11 = s81 = 0. Robots 5 and 7
are actually maintaining a frontier, but depending on their
motion, they can break it. For example, if robot 5 moves in
the north or west directions, or if robot 7 moves in the south
or east directions, they lose the connection and will allow
recontamination of the environment. For this reason, sn1 = 0,
for n ∈ {5, 6, 7}, as robot 6 is not communicating with an
structured frontier. Moreover, observe that the state does not
identify which frontier is unsafe. This choice was made in
order to generalize the motion of the robots and will lead to a
conservative behavior, but as results will show it still allows
robots to clear different types of maps.

The safe information of the second dimension denotes
whether the robot’s motion can cause recontamination of pre-
viously cleared areas. Also in Figure 6, robots 5, 7 and 8 are
unsafe frontier examples, i.e., sn2 = 0 for n ∈ {5, 7, 8}. Robot
8 disengaged from the frontier and it is in a contaminated area,
so its movement does not interfere with the safety of cleared
area. Robot 1, although it cannot communicate with robots
in the frontier, is considered aware that it was behind, due to
moving history. Once the evolutionary process is interrupted
in recontamination case, as will be detailed in the next section,
the robot considers it is in a cleared area and then it is
free to move anywhere, so its frontier is classified as safe,
i.e., s12 = 1.

Concerning dimensions 3 to 6, each robot labels the con-
taminated condition of cells with respect to the four pos-
sible motion directions. Notice that the directions do not
correspond to the actual cardinal points, but are assigned at

FIGURE 7. Directions for decontamination analysis.

initialization considering the initial position of the robots.
This will be further discussed in the next section. The regions
of sensorymask are divided according to Figure 7. Cells at the
border of the mask always contribute in classification of more
than one direction. For example, if cell number 3 indicates
contamination, then this information will be assigned to east
and also north direction.

Going back to the cases of Figure 6, only searchers 1, 2 and
6 indicate clean cells in all directions, so s1i = s2i = s6i = 1
for i ∈ {3, 4, 5, 6}. Robot 8 is in a fully contaminated region,
while robot 7 has signs of contamination in at least one sensor
cell in each direction, then, s7i = s8i = 0 for i ∈ {3, 4, 5, 6}.
Lastly, robots 3, 4 and 5 can define only west as cleared, so
for n ∈ {3, 4, 5}, sn5 = 1 e sni = 0 with i ∈ {3, 4, 6}.
The last four dimensions concern the freedom of displace-

ment, in order to avoid collisions. The avoidance of collision
is not in the scope of this work and a low level controller
is assumed. Therefore, actions that would take the robot to
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FIGURE 8. Collision Examples.

TABLE 2. Possible robot actions.

hit obstacles or other robots are prohibited. To identify these
cases, risks of collisions are defined differently among robots
and between robot and obstacle. A robot has collision risk
if (i) there is an obstacle in one of the four neighborhood
cells or if (ii) there is another robot two cells away in any
direction of its neighborhood (due to the fact that robots move
synchronously). Some examples are presented in Figure 8.

In the figure, robot 1 has collision risk in all directions, i.e.,
s1i = 0 for i ∈ {7, 8, 9, 10}. This is because the displacement
to west or south causes a collision with the wall, and because
the movement to north or east can cause a collision in two
cases: if robot 1 moves to the east and robot 2 moves to the
south, or if robot 1 moves north and robot 2 moves west.
Therefore, dimensions 9 and 10 of robot 2 also show they
are not free of collision, i.e., s29 = s210 = 0.

Robots 3 and 4 also are not free of collisions as there will
be a collision if robot 3 moves north and robot 4 moves south.
For all other directions the displacement is free, so s3i = 1 for
i ∈ {7, 9, 10} and s4i = 1 for i ∈ {7, 8, 9}.
Since each dimension can assume one of two values,

we have a total of 210 = 1024 possible states for the
automaton. Transition between two states depends on the
motion action α ∈ A , and the future state depends on
the environment and also on other robots’ situations, so that
it cannot be defined independently from the current state.

At each iteration, a robot’s state is individually identified
from among 1024 possible states, defining the scenario in
which the robot is. Then, each state, marked with an identifier
(id), must correspond to a single motion action α. The motion
actions α can take integer values from 0 to 4, as described in
Table 2.

In this work, evolutionary search was the chosen method to
find a mapping to solve the problem. The genotype consists

of 1024 motion actions, corresponding to the possible states
of the system.

Motion actions with zero value, which correspond to the
permanence of the robot in the same cell, are only allowed
in cases of collision in all directions. This is done in order to
accelerate the evolution of the decontamination behavior, not
allowing robots to remain still without need.

Once the population of chromosomes is initialized, each of
them is simultaneously incorporated as a control system of all
robots present in the simulation. This is due to the fact that, in
the proposed approach, the evolution does not operate on the
state machine itself, but in the mapping of states and actions.

Unlike traditional optimization, in which the calculation
of the cost function is performed directly on the individ-
ual’s phenotype, evolutionary robotics brings the concept
of embodied cognition, i.e., each candidate solution must
take control of the robot and the evaluation takes place in
emergent behavior from the interaction of the robot with its
environment.

In the case of this study, the N simulated robots carry on
their control system the same candidate solution, or the same
chromosome, and the emergent behavior is evaluated at the
end of iterations according to the fitness function

fitness =


0, Recontamination

1
Contamination

, Contamination > 0

1, Contamination = 0

(5)

such that

• Recontamination points out that robots opened forma-
tion, leading to contamination spreading throughout the
environment, in which case the simulation of that chro-
mosome is interrupted. Thus, even though there is no
explicit prohibition of recontamination, the penalty is
imposed in order for this behavior to disappear in the
evolutionary process; and

• Contamination corresponds to the number of contami-
nated cells at the end of simulation, so that the evalu-
ation is greater the lower the number of contaminated
cells, and in cases of complete decontamination of the
environment, the individual receives maximal fitness.

After evaluation of the population, all individuals are
sorted and selected by tournament to be part of the next gener-
ation, through the genetic operators crossover and mutation.

The simulation of each individual is interrupted in cases
of recontamination, complete environment decontamination
or whether the limit number of iterations is reached. But the
stopping criterion of the whole evolutionary algorithm is the
established number of generations, when it is expected that
there have been individuals that satisfy the decontamination
task.

V. COMPLEMENTARY PROPOSED APPROACH
In order to investigate the impact of states not properly
mapped in the automaton during the evolutionary process,
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FIGURE 9. Example of moving choice in the complementary approach.

a complementary approach was also considered, inspired by
both evolutionary and random walk approaches.

The approach consists in the insertion of random draws to
move the robot in cases in which the identified state has been
rarely visited during evolution and therefore considered not
properly mapped to one of the α actions.

The random walk probability distribution applied in this
complementary approach is uniform over the possible motion
actions, similar to the one used in [5], but without the restric-
tions or the possibility of remaining in the same cell.

The random walk replaces the evolved automaton when-
ever the state identified by a robot does not meet the estab-
lished cutoff point for the number of visits, a situation in
which the mapping obtained in evolution is considered as
unreliable. Figure 9 shows an example of how the choice of
an automaton and the random walk differs.

In the example of the figure, δ is the transition function
that associates a state with an action, that is, it represents the
mapping. In the case of δ1 and δ3, the individually identified
states were considered sufficiently visited, and therefore the
mapping of the evolved automaton was accessed and led
to the corresponding actions defined in the evolution pro-
cess of the embedded solution: move south and move north,
respectively.

However, δ2 represents the situation of a robot that iden-
tifies a state whose number of visits does not exceed the
established cutoff point, therefore, the transition function is
replaced by a draw, in which one of the indicated actions is
randomly chosen, under equal probability. Note that staying
still at the current cell is not a valid option.

Applying this complementary approach, it is possible to
investigate the impact of a different method on the rarely
or unvisited states. The approach is used to verify if the
definition of new actions tends to result in the improvement of
performance and if those states really deserve more attention.
In case this is true, a new on-line method could be used to
update the selection of actions after the evolutionary algo-
rithm converges.

VI. SIMULATION SETUP & RESULTS
In order to validate the ideas presented in the pre-
vious sections, several simulations were carried out.

Section VI-A shows results for the random walk approach.
These results are included as a baseline for comparison.
Then, Section VI-B presents the results of the evolutionary
robotics approach. Section VI-C analyses the use of the
complementary approach for overcoming issues with the
mapping of states to actions. Finally Section VI-D discusses
all comparative results for all methods.

A. RANDOM WALK
For the simulations, four robots were considered with
rsensor = 150 cells, number sufficient to allow decontam-
ination of all maps shown in Figure 10. The discretized
maps are simply-connected, with 24 × 32 cells, and were
chosen in order to represent parts of real environments such as
narrow passages, rooms and corridors. For the random walk
approach, in the case of Map 4, it was necessary to use five
robots to fulfill the task. This was done because the resulting
graph is larger and a much higher number of iterations would
be necessary. For all other maps and in the simulations of the
evolved solutions, only four robots were used.

FIGURE 10. Maps used in the simulations.

Two different approaches can be used in order to define
the feasible states (or valid vertices) of the graph presented
in Section III. The first is to do an extensive search over all
the possible states and create a graph with the feasible tran-
sitions respecting the restrictions described in Section III-B.
However, this would be very time consuming as it depends
on the size of the environment and number of robots.

The second is to dynamically apply the restrictions. In this
case, the robots are allowed to select their actions indepen-
dently and a supervisor decides if the motion is valid. Only
after the restrictions are validated, the robots are allowed to
move. This is also time consuming, but from an implemen-
tation point of view is much simpler. Therefore, this was the
chosen approach.

The number of attempts to draw until all restrictions
imposed on the work are fulfilled is much greater than
the number of actual motions and was recorded in the
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TABLE 3. Mean and standard deviation of valid iterations and of
attempts on Gonçalves’ approach.

experiments performed. Table 3 shows the mean and standard
deviation of the valid and tentative iterations for each map.

As shown in the table, several attempts are necessary until
a valid state can be reached. This greatly impacts the time
required to complete the clearing of the environment. If larger
maps and a larger number of robots are considered, the com-
plexity will be significantly increased, which does not occur
for the evolved automaton approach, as is shown in the next
section.

B. EVOLUTIONARY ROBOTICS
For the evolution stage, the same configuration of the random
walk experiments was used. However, few more settings are
necessary.

Before simulation, the origin of eachmap is assigned as the
position of the first robot, which is attached to the first cell
available in the extreme southwest, considering the motion
directions indicated in Figure 6. The origin serves as a ref-
erence point to all other robots, whose positions, in turn, are
drawn within a narrow vertical range, but always aligned to
the west end, so that they always start from a decontamination
formation and with full communication.

Figure 11 depicts an individual used during evolution of the
genetic algorithm. An individual represents a state machine
and is ported to all the robots used in the simulation, i.e., the
same controller is used for all robots. At each time step, the
states of the robots are individually identified as discussed in
Section IV. Each state, marked with an identifier, must have
a corresponding action, as shown in Figure 11. The states are
then mapped to the five possible actions of Table 2.

In the first generation, the chromosome of each individual
in the population to be evolved is randomly initialized with
1024 motion actions, corresponding to the same number of
possible states that robots can identify. In future generations,
elitism occurs in 10% of the population, which in this case
only indicates that such individuals performed better in spe-
cific positions that have been tested, but may not be replicated
when new startup positions are set.

In order to complete the new population, parents are
selected by simple tournament between any two individuals,
i.e., two chromosomes of the current population are randomly
selected as candidates and the one with the highest fitness is
chosen for the group of parents. The process continues with
reinsertion until the required number of parents is achieved.
Once the assembly is complete, each pair of parents produce
two children. If the crossover operator is not applied, the
offspring are identical to the parents.

FIGURE 11. State-Action Mapping.

TABLE 4. Genetic algorithm parameters.

FIGURE 12. Evolutionary process flowchart.

The crossover and mutation rates were defined by tests
inspired in the literature, and the number of crossover points
was chosen to suit the size of the chromosome. Each chromo-
some has a 20% chance to mutate and, if chosen, new actions
are drawn to 20% of the genes (state-action pair), respecting
the prohibited actions, i.e, actions that would generate a
collision. Table 4 describes all parameters used in the genetic
algorithm.

Since not all states will be tested in each one of the maps,
to find a solution able to adjust to the largest possible part
of the state-action mapping, the evaluation of solutions was
defined by the resulting behavior in all four maps presented,
within the same evolutionary process. This means that the
same candidate solution was tested in each map of Figure 10
and its evaluation was based on the sum of the partial evalu-
ations performed on each map according to (5). If all maps
are decontaminated the maximum fitness is achieved, i.e.,
fitness = 4.
The simulation on each map has a maximum duration of

70 time steps and can be interrupted earlier if the robots
allow recontamination or if the clearing task is finished. The
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FIGURE 13. Success rate in decontamination task.

TABLE 5. Average success of last generation.

complete flowchart of the evolutionary process performed is
illustrated in Figure 12.

Ten runs of the same evolutionary process, carried
out entirely in the house-built simulator implemented in
MATLAB, were performed. To verify the quality of the solu-
tions (i.e, the individuals that represent the state machine),
which is related to the success of accomplishing the task, tests
were conducted with the top ten individuals of each run, all
starting from random initial positions. The initial conditions
of tests and of the evolution process are independent, i.e., the
positions chosen for the tests do not correspond to positions
used during the evolution process.

The solutions were first tested in the same maps used
in the evolution process. A set of 12 distinct positions for
each map was arbitrarily selected at random and applied in
all tests. For each one of the four maps, the solutions were
tested every 20 generations, starting from generation 100,
with the same set of initial conditions. Thus, the average
performance of the decontamination task for the best indi-
viduals was obtained for each of the ten runs and for each
map. The results are shown in Figure 13, with average and
standard deviation of all tests. Table 5 shows the performance
of the last generation solutions for each map, broken down by
experiment.

Based on these results one can conclude that the solutions
found during the evolution are not able to solve the clearing
problem for all initial conditions. One of the causes for this
issue may be the incomplete adjustment of the state machine,
since only about 50% of the possible states are visited dur-
ing evolution. Due to the fact that the initial conditions for
the evolution and tests are different, unvisited states can be
reached and actions chosen would be basically random.

It is also possible to notice in Figure 13 a reduction in
the average decontamination of maps 2 and 3. These occur-
rences demonstrate the attempt of the evolutionary process
to establish a compromise between successes in all maps,
searching for more general behaviors. However, notice that
the rate reduction for one map is always accompanied by
an increase for another in the same generation, and that the
overall average decontamination of maps always increases.

Subsequently, tests were performed onmaps different from
those used in evolution, in order to continue to check the
quality and robustness of the solutions. The two multiply
connected maps chosen are shown in Figure 14.

For these tests, new initial position sets with 32 different
scenarios were generated for each map. Also, the tests were
conducted varying the number of robots available on the
maps, from four to nine robots, all of then implementing the
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TABLE 6. Decontamination on multiply-connected maps.

FIGURE 14. Multiply connected maps.

same control system based on the state-action mapping. This
test was performed in order to verify the effect of redundancy
in the system.

Table 6 presents, for each map and number of robots, the
average and standard deviation of decontamination success of
the top ten solutions of each one of the ten evolutionary exper-
iments. The results are also graphically shown in Figure 15.
One may notice that by increasing the number of robots, the
decontamination rate of the maps also increases. Therefore,
more redundancy leads to better solutions.

The last tests were performed on larger maps, called here
conjugated maps. This nomenclature was used because the
new maps are a connection of the already presented maps,
as shown in Figure 16. Conjugated maps 2 and 4 have
24 × 64 cells and conjugated maps 1 and 3 have 24 × 92
and 24× 126 cells, respectively.

The best ten individuals of the evolutionary experiments
8 and 9 presented in Table 5 were used in the conjugated
maps. Experiments 8 and 9 were chosen because they were
the experiments with the best average results. The tests were
repeated 30 times for each map.

Considering the size and complexity of this conjugated
maps, the tests were done first for a group of nine robots
and then with another group of 15 robots. Also, a partial
recontamination tolerance of 70 cells was allowed, that is, if
part of the robots open the formation and less than 70 cells
undergoes recontamination, the simulation is not interrupted
such as the previous ones. Recontamination is necessary
because the maps have not been used during the evolution
phase. Therefore, certain situations will not have been seen
before, what will lead to random motion, which, in turn, will
cause recontamination.

Such number of 70 cells was stipulated based on the use of
larger map and on some observations that, in some occasions,
a partial recontamination does not compromise the accom-

FIGURE 15. Success rate for new maps.

TABLE 7. Results for the conjugated maps (CM).

plishment of the task. Furthermore, 70 cells represent only
2 to 5% of the total size of the maps. Simulations of up to
400 iterations were allowed for the conjugate map 3, and
200 for the other maps.

Table 7 reports the average rate of success of the decon-
tamination task per map for both selected experiments and
two different group sizes. The average number of itera-
tions spent for the successful cases is also presented in the
table. It was observed that in most cases of failure sev-
eral robots were trapped in decontaminated sections of the
map and these states were not visited during the evolution
process.

The recorded failures in the conjugated maps reinforce the
hypothesis of incomplete automaton mapping, which does
not guarantee visitation to all states, and points to a highly
nonlinear cost function, so that small modifications in the
genotype can lead to major changes in the system behavior.

In order to reach all possible states during the evolution
process, a prohibitive amount of time would be required
and it would imply the use of several maps with several
different initial conditions, which would be close to the
idea of an exhaustive search. However, we are interested in
the investigation of the impact of such unmapped states on
task accomplishment, and for that reason the complementary
approach was proposed with the alternating application of
randomwalk tomove the robot in cases wherein the identified
state has been rarely visited during evolution and therefore
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FIGURE 16. Conjugated maps.

TABLE 8. Results for conjugated maps (CM) with the complementary
approach.

not properly mapped to one of the actions. The next section
presents the results obtained with this approach.

C. COMPLEMENTARY APPROACH
The conjugated maps of Figure 16 were chosen for the com-
plementary approach tests and, as in the previous simulations
with those same maps, groups of nine and 15 robots were
used, and the partial recontamination of up to 70 cells was
also allowed. Considering the existence of a random compo-
nent, the tests were performed twice and the iteration limit
accepted for the simulation was increased to 500, except for
the conjugate map 3, where this value was set to 700. The
iteration limit is increased in order to explore the random
behavior of the RandomWalk. Observe that for the evolution-
ary approach, increasing the limit does not have any effect as
the actions are selected deterministically.

The cutoff point chosen was 100,000 visits, on an experi-
mental basis and by observing the amount of visitation of the
states. Table 8 shows the test results also performed with the
individuals from experiments 8 and 9 in the same 30 posi-
tions used for the simulations whose results were presented
in Table 7. In addition, it is also shown the percentage of
iterations in which any of the robots opted for the draw, rather
than the automaton mapped through evolution.

The results of Table 8 show an average improvement of
21% in the clearing rate in comparison to the tests carried out
without the application of the draw. This indicates that the

investigation of an alternative method to choose the action
for these particular states is valid. In this paper we use a
random walk, but one could use either a modified evolu-
tionary process with a more complicated fitness function
or some adaptation technique based on on-line learning to
adjust the rarely visited states. It is also interesting to note,
especially considering the size of the conjugated maps, that
the frequency of the random walk usage and the number
of iterations for convergence indicate that the robots were
mostly still guided by the evolutionary approach.

D. COMPARATIVE RESULTS
In order to establish another parameter to evaluate the
quality of solutions obtained through evolution, a compara-
tive analysis between the random walk results presented in
Section VI-A and the evolutionary approach was performed.

The comparisons are made using the maps of Figure 10 for
the 12 initialization positions of the formation of each map.
All tests were performed using four robots with the exception
ofMap 4, which required the use of five robots for the random
walk. As discussed before, if four robots were to be used, the
random walk approach would take a prohibitive amount of
time.

The success rate for the evolutionary approach was 100%
when the last generation of experiment 8 was used. The
algorithm based on random walk was considered to have
failed once in decontaminating the environment of Map 4
due to the high number of iterations (170,000) without the
task being fulfilled. In the comparison of complexity, the
iterations necessary for decontamination were considered,
being recorded only when the experiments were successful.

In addition, some cases with very high number of iterations
were considered outliers (only 2 simulations out of 96 were
considered outliers) and were not included in the analysis to
facilitate the visualization of the results, shown in Figure 17.
Notice that these outliers were only generated in the random
walk approach due to the stochastic nature of the approach.
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FIGURE 17. Comparative analysis between evolutionary (ER) and random walk (RW) approaches: full scale and detailed for up to 200 iterations.

Figure 17 presents the statistical comparison of the number
of iterations between the evolutionary approach (ER) and
the random walk approach (RW) for each of the four maps
used. The top chart includes all the data, except for the tests
considered outliers (with more than 3,500 iterations).

The bottom plot shows the details for up to 200 iterations,
so that the results of the evolutionary approach are better
visualized. The plots also show that the results of the two
approaches are statistically different. Although the evolution-
ary approach requires a previous stage of evolution, once
the solution is obtained, the decontamination time of the
environment is considerably lower than in the application
of the random walk, because the complete search process is
performed with each new experiment.

VII. CONCLUSION
In this paper, solutions for the worst-case pursuit evasion
problem were proposed. First a solution based on random
walk and then a solution based on evolutionary robotics. Both
solutions use the same problem formulation and a comparison
of both was offered.

The random walk approach is based on a graph that is
created based on restrictions that do not allow the envi-
ronment to be recontaminated. The graph is also shown to
cover the whole range of possibilities for the environment.
Furthermore, the environment can be cleared in finite time,
although the time can be very large.

The evolutionary approach discussed in the paper extended
the results presented earlier for the solution of the worst-case
pursuit evasion problem. All the robots in the group have
the same control system based on a finite automaton, whose

mapping of states in actions is subject to an evolutionary algo-
rithm. Evolution is guided by the evaluation of the collective
behavior resulting from robots actions, simulated in discrete
maps.

The results point to reasonable solutions found with a rela-
tively low number of generations. The derived control system
is capable of solving the problem for some, but representative,
types ofmaps, even somemaps that were not presented during
the evolutionary process. In addition, the automata were also
able to generalize for several variations of initial conditions
and to a larger number of robots.

It was observed that the solution does not generalize to
all initial conditions. The reason for this could be related to
the completeness of the finite state machine, for our method
does not guarantee that the whole state machine is correctly
derived. In order to investigate this issue, tests were done with
a complementary approach, in which a random walk solution
was combined with the evolutionary approach, determining
the robots’ actions when specific states were considered not
have been sufficiently visited during evolution. The results
showed that the control systems improved their success rate
in the decontamination of the conjugate maps by 21%, con-
sidering the average of all the maps for groups of nine and
15 robots. For this reason, in the future, we intend to use
a learning technique (Learning Automata) to adapt to the
states not correctly defined by the evolutionary method or not
visited during evolution.

On the other hand, the comparative analysis of results
performed with the random walk approach showed that the
proposed evolutionary process, despite requiring the previous
adaption of the control system, presents a solution capable of
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decontaminating the same maps with a much smaller number
of iterations.

Besides the development of the Learning Automata, in
the future we intend to test our solution in Unmanned Air
Vehicles (UAVs) to study the portability of the method.
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