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ABSTRACT Automatic modulation classification (AMC) plays a key role in non-cooperative communica-
tion systems. Feature-based (FB) methods have been widely studied in particular. Most existing FB methods
are deployed at a fixed SNR level, and the pre-trained classifiers may no longer be effective when the
SNR level changes. The classifiers may also need to be re-trained to be suitable for the varying channel
environment. To address these problems, a robust AMC method under varying noise conditions is proposed
in this paper. The method attempts to select noise-insensitive features from a large feature set to ensure that
the trained classifiers will be robust to SNR variations. First, a feature set consisting of 25 types of features
is extracted, and 4 features that are insensitive to noise are chosen through a feature selection method based
on rough set theory. The generalizability of an SVM classifier trained on the 4 chosen features is evaluated
based on numerical results. The classification accuracy remains reasonable when the SNR varies between 5
and 20 dB, indicating that the proposed method can be deployed under varying noise conditions.

INDEX TERMS Automatic modulation classification, feature extraction, feature selection, noise robustness.

I. INTRODUCTION
Automatic modulation classification (AMC) is a core tech-
nique in non-cooperative communication systems and has
been widely studied in recent years. AMC has been shown
to be of outstanding value in many applications, both civil
and military. The purpose of AMC is to identify the type of
modulation of a received signal. In general, AMC algorithms
can be divided into two categories: likelihood-based (LB)
and feature-based (FB) methods. LB methods theoretically
yield optimal solutions, but they suffer from high complexity.
They also require prior knowledge of the statistical informa-
tion of the received signal, which is usually unavailable in
practice. Meanwhile, although FB methods usually produce
sub-optimal solutions, they are much easier to implement
and do not depend on prior information. Moreover, a well-
designed FB method can produce sub-optimal solutions that
are very close to the optimal one. As a result, FB methods
are most commonly investigated and applied. FB methods
usually consist of 2 steps: First, features are extracted
from the received signal, most of which represent statistical
information related to either the original received signal or
its transform. Then, suitable classifiers are trained to classify
different modulation types. Thus, the two most important

aspects that affect the performance of FB methods are feature
extraction and the classifier.

Regarding feature extraction, Nandi and Azzouz use
instantaneous features for the classification of both analog
and digital signals in [1], which is the most representa-
tive work in the field of AMC. Instantaneous features are
extracted from the instantaneous amplitude, instantaneous
frequency and instantaneous phase of the signal, or a com-
bination thereof. Cyclostationary features [2], [3] are based
on the spectral correlation density (SCD) function of the
received signal. Wavelet features [4], [5] can be obtained
using the discrete wavelet transform, through which a multi-
scale decomposition of the signal can be generated. High-
order cumulant (HOC) features [6], [7] represent high-order
statistical information of the received signal. Cyclostationary
features and HOC features have been proven to be insensitive
to noise, as additive Gaussian white noise (AWGN) can be
highly suppressed in these features [8]. There are also other
kinds of features, such as fractal features [9], which are
occasionally adopted for radar signals.

However, the extraction of unnecessary features may
lead to redundant information that is not useful for clas-
sification but increases the complexity of the training
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process. Redundant features may also cause the ‘‘curse of
dimensionality’’ [10] to arise. Feature selection, which refers
to choosing a subset of the original feature set by eliminating
redundant features without affecting the classification perfor-
mance, is applied to overcome the problem of high dimen-
sionality. Current feature selection methods usually focus on
choosing different subsets from the original feature set for dif-
ferent SNR levels. The most representative research has been
performed by Wong and Nandi [11]. In this work, a genetic
algorithm (GA) was applied, with an artificial neural net-
work (ANN) as the classifier. In [12], Avci presented a hybrid
algorithm that combines a support vector machine (SVM)
approach with a GA.

Regarding classifiers, the most widely used linear classi-
fiers in the early years were decision trees [13]. Linear classi-
fiers are simple to implement; however, they cannot properly
handle linearly inseparable features. Two of the most popular
non-linear classifiers are ANN [14] and SVM [15] classifiers.
An ANN classifier, because of its nature as a gradient descent
method, can easily fall into local optima. Considering the
advantages of SVM classifiers in terms of limited sample
learning and generalization capabilities, such classifiers have
become the most popular type applied to AMC problems in
recent years.

In this paper, we focus on the problem that existing FB
methods are trained and tested at a constant SNR level
and lack of generalization ability. To address this problem,
a noise-robust AMC method that can operate under vary-
ing noise conditions is proposed. The key to a noise-robust
AMC algorithm is to find a feature set that is insensitive to
noise to ensure that the trained classifier will be robust to
SNR variations. In other words, the separating hyperplane of
the feature set should remain nearly unchanged as the SNR
varies. Initially, an original feature set that contains instan-
taneous features, HOC features, cyclostationary features and
wavelet features is extracted. Subsequently, a feature selec-
tion method based on rough set theory is applied to choose
noise-insensitive features from this original feature set. Thus,
a noise-robust feature set is obtained that is used to trained an
SVM classifier. The classification accuracy remains reason-
able as the SNR varies between 5 dB and 20 dB, indicating
that the proposed method can be deployed under varying
noise conditions.

The remainder of this paper is organized as follows:
Section II describes the basic model of an AMC system.
The signal model and the extracted feature set are intro-
duced in this section, followed by a detailed description
of the presented algorithm, including feature selection and
classification, in Section III. The performance of the pro-
posed scheme is evaluated through simulation in Section IV.
Finally, the paper is concluded in Section V.

II. SYSTEM MODEL
AMC is a process that takes place at the receiver, between
signal detection and demodulation. The signal can be either
at the base band or intermediate frequency. A general AMC

system model is illustrated in Fig. 1.

FIGURE 1. Block diagram of an AMC system model.

Pre-processing usually refers to sampling and quantization,
followed by feature extraction and selection. Corresponding
classifiers that are trained on the results of SNR estimation are
applied to classify the modulation types of received signals.

A. SIGNAL MODEL
In this paper, the considered signals are corrupted by additive
Gaussian white noise (AWGN). Thus, a digitally modulated
signal can be represented as follows:

r(t) = s(t)+ n(t) (1)

where s(t) is expressed as

s(t) = [Am
∑
n

ang(t − nTs)]cos(2π (fc + fm)t + ϕ0 + ϕm)

(2)

In (2), Am, an, Ts, fc, fm, ϕ0, and ϕm denote the modula-
tion amplitude, symbol sequence, symbol period, carrier fre-
quency, modulation frequency, initial phase, and modulation
phase, respectively, and g(t) is a function expressed as

g(t) =

{
1 if 1 6 t 6 Ts
0 other

(3)

The modulation types considered in this paper are
M -ASK, M -FSK, M -PSK (M = 2, 4, 8) and 16-QAM.
M -ASK, M -FSK, and M -PSK signals can be expressed as
shown in (2). However, a 16-QAM signal is slightly different;
it can be represented as shown in (4):

s(t) = [Am
∑
n

ang(t − nTs)]cos(2π fct + ϕ0)

+ [Am
∑
n

bng(t − nTs)]sin(2π fct + ϕ0) (4)

where an, bn ∈ [(2m−1−
√
M )], m = 1, 2, 3, . . . ,

√
M , and

the two carriers are individually modulated by an and bn.

B. EXTRACTION OF THE ORIGINAL FEATURE SET
Before we can choose a feature set for our robust AMC
algorithm, an original feature set consisting of instantaneous
features, HOC features, cyclostationary features and wavelet
features must first be extracted.

1) INSTANTANEOUS FEATURES
There are three important parameters in instantaneous feature
extraction: the instantaneous amplitude, instantaneous phase
and instantaneous frequency, which are represented by an,
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φNL , and fN , respectively. They can be easily obtained in
many ways, e.g., through the Hilbert transform [8]. There are
eight instantaneous features considered in this paper, most
of which were proposed by Nandi and Azzouz in [16], are
described as follows:
• Envelope variation:

mA = σ 2/µ2 (5)

where σ and µ are the variance and mean, respectively,
of an.

• Standard deviation of the amplitude envelope:

E =

√√√√ 1
Ns − 1

Ns∑
i=1

(an(i)−
1
Ns

Ns∑
i=1

an(i))2 (6)

where Ns is the number of sampling points of the
received signal.

• Maximum value of the power spectral density of the
normalized-centered instantaneous amplitude:

γmax =
MAX{|DFT [acn(i)2]|}

Ns
(7)

where acn = An(i) − 1,An(i) = an(i)/ma,ma = 1/Ns ·∑Ns
i an(i).

• Standard deviation of the absolute value of the
normalized-centered instantaneous amplitude:

σaa =

√√√√ 1
Ns

(
Ns∑
i=1

a2cn(i))− (
1
Ns

Ns∑
i=1

|acn(i)|)2 (8)

• Standard deviation of the absolute value of the centered
non-linear components of the instantaneous phase:

σap =

√√√√ 1
C
(
∑

an(i)>at

82
NL(i))− (

1
C

∑
an(i)>at

|8NL(i)|)2

(9)

• Standard deviation of the centered non-linear compo-
nents of the direct instantaneous phase in non-weak
segments:

σdp =

√√√√ 1
C
(
∑

an(i)>at

82
NL(i))− (

1
C

∑
an(i)>at

8NL(i))2

(10)

where C is the number of samples in 8NL(i) for which
an(i) > at , with at being a threshold used to eliminate
noise-sensitive phases.

• Standard deviation of the absolute value of the
normalized-centered instantaneous frequency:

σaf =

√√√√ 1
C
(
∑

an(i)>at

f 2N (i))− (
1
C

∑
an(i)>at

fN (i))2 (11)

• Maximum value of the normalized spectrum:

Pmax = max{
|DFT (r(t))|∑N

i=1 |DFT (r(t))(i)|
} (12)

2) HOC FEATURES
A received signal with noise can be represented in complex
form as follows:

r(t) = A
∑
n

ang(t − nTs)exp[j(ωct + θc)]+ n(t) (13)

The sequence obtained after downconversion and sampling
is represented as

rk = Aejθak + nk k = 1, 2, . . . ,N (14)

where N is the length of rk . Let Mkm be the mixed moment,
which can be defined as Mkm = E[rk−m(r∗)m]; then, cumu-
lants of various orders are defined as follows [8]:

C20 = cum(r, r) = M20 (15)

C21 = cum(r, r∗) = M21 (16)

C40 = cum(r, r, r, r) = M40 − 3M2
20 (17)

C41 = cum(r, r, r, r∗) = M41 − 3M21M20 (18)

C42 = cum(r, r, r∗, r∗) = M42 − |M20|
2
− 2M212 (19)

C60 = cum(r, r, r, r, r, r)

= M60 − 15M40M20 + 30M3
20 (20)

C63 = cum(r∗, r∗, r∗, r, r, r)

= M63 − 9M41M21 − 6M3
21 (21)

In practice, the length of a received signal is limited, mean-
ing that the HOC features must be estimated as follows:

Ĉ20 = M̂20 =
1
N

N∑
k=1

r2k (22)

Ĉ21 = M̂21 =
1
N

N∑
k=1

|rk |2 (23)

Ĉ40 = M̂40 − 3M̂2
20 =

1
N

N∑
k=1

r4k − 3M̂2
20 (24)

Ĉ41 = M̂41 − 3M̂20M̂21 =
1
N

N∑
k=1

r3k r
∗
k − 3M̂20M̂21 (25)

Ĉ42 = M̂42 − |M̂20|
2
− 2M̂2

21

=
1
N

N∑
k=1

|rk |4 − |M̂20|
2
− 2M̂2

21 (26)

Ĉ60 = M̂60 − 15M̂40M̂20 + 30M̂3
20

=
1
N

N∑
k=1

r6k − 15M̂40M̂20 + 30M̂3
20 (27)

Ĉ63 = M̂63 − 9M̂41M̂21 − 6M̂3
21

=
1
N

N∑
k=1

|rk |6 − 9M̂41M̂21 − 6M̂3
21 (28)
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The final seven HOC features extracted for classification
are represented as follows:

d1 = |C40|/|C42|

d2 = |C41|/|C42|

d3 = |C42|/|C21|
2

d4 = |C60|/|C21|
3

d5 = |C63|/|C21|
3

d6 = |C60|
2/|C42|

3

d7 = |C63|
2/|C42|

3 (29)

3) WAVELET FEATURES
The continuous wavelet transform of a signal r(n) is defined
as follows:

C(j, k) =
∑
n∈Z

r(n)ψj,k (t) (30)

where ψj,k (t) is the wavelet function, C(j, k) is called the
wavelet coefficient, j is the scale variable, and k is the
translation variable. The Daubechies-3 wavelet is chosen as
the mother wavelet function. Then, the original signal is
represented as follows:

r(t) =
∑
j∈Z

∑
k∈Z

C(j, k)ψj,k (t) (31)

We apply the algorithm proposed in [17] to obtain different
levels of decompositions of the received signal and thus to
extract the low-frequency component at each level. In this
paper, five levels of signal decomposition are performed. Let
A and D represent the low-frequency component and the
high-frequency component, respectively. The tree structure of
the decomposition process is shown in Fig. 2.

Let dm be the high-frequency-component coefficient of
the mth-level decomposition; then, the signal energy of the
mth-level decomposition is defined as

Em =
∑
n

dm(n)2 (32)

In total, five levels of decomposition are applied to the
received signal, and thus, E1, E2, E3, E4, and E5 are calcu-
lated in accordance with (32). The results are considered as
extracted features for use in classification.

FIGURE 2. Tree structure of multi-scale wavelet decomposition.

4) CYCLOSTATIONARY FEATURES
Under the assumption that the received signal r(t) is a cyclo-
stationary signal, the mean and autocorrelation of the signal
vary periodically with time T : Mr (t + T ) = Mr (t) and
Rr (t + T , u + T ) = Rr (t, u) for all t and u. The cyclic auto-
correlation function can be expressed as Rx(t+τ/2, t−τ/2),
which is also periodic in t with period T . It can be expressed
as a Fourier series as follows:

Rr (t + τ/2, t − τ/2) =
∑
α

Rαr (τ )e
j2παt (33)

where α = m/T0, (m ∈ Z) is the cyclic frequency. The
Fourier coefficient of (33), which is also defined as the cyclic
autocorrelation function, can be represented by

Rαr (τ ) = lim
T→∞

1
T

∫ T/2

−T/2
Rr (t + τ/2, t − τ/2)e−j2παtdt

= lim
T→∞

1
T

∫ T/2

−T/2
r(t + τ/2)r∗(t − τ/2)e−j2παtdt

(34)

The Fourier transform of (34) at cyclic frequency α is
called the spectral correlation density (SCD) function, which
is expressed as

Sαr (f ) =
∫
∞

−∞

Rαr (τ )e
−j2π f τdτ (35)

The length of the signal at the receiver is considered to be
infinite; however, the length of a received signal is limited
in practice. Here, we use the smoothed cyclic periodogram
method [18], which is an approach for estimating the spectral
correlation from the received signal. The cyclic periodogram
of a signal x(t) is defined as follows:

SαrT =
1
T
XT (t, f + α/2)X∗T (t, f − α/2) (36)

where XT is the time-variant Fourier transform, which is
defined as

XT (t, f ) =
∫ t+T/2

t−T/2
r(u)e−j2π fudu (37)

The SCD function that is estimated using the frequency-
smoothed cyclic periodogram is represented as

SαrT (t, f )1f =
1
1f

∫ f−1f /2

f−1f /2
SαrT (t, v)dv (38)

The SCD function can also be inversely expressed as

Sαr (f ) = lim
1f→∞

lim
T→∞

SαrT (t, f )1f (39)

In most cyclostationary methods, the highest values of the
SCD for a given α are taken by a function called profile(α) [2]
and are directly classified by an ANN with no additional
extracted features. However, there are still some other fea-
tures that are valuable for classification and are worth
extracting. Based on Sαx (f ) as obtained above, in total,
5 features are extracted:
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•

R1 = 1/σ 2
1 , σ 2

1 = var[Sαr (f = 0)] (40)

•

R2 = 1/σ 2
2 , σ 2

1 = var[Sαr (f = fc)] (41)

•

R3 = 1/µ, µ = mean[Sαr (f = f0)] (42)

•

β = |
max{Sαr (0)}
max{S0r (f )}

| (43)

•

P =
∫ fc

0
|S2fcr (f )2|df (44)

III. PROPOSED METHOD
In this section, we describe the framework of our proposed
algorithm. The method attempts to select noise-insensitive
features from the original feature set obtained as described
in section II and to use them to train an SVM classifier. The
trained SVM should still be suitable for classification when
the results of SNR estimation are inaccurate.

FIGURE 3. Process of the proposed AMC algorithm.

The process of the proposed algorithm is illustrated in
Fig. 3. The model of the received signal and the original
feature set have already been introduced in Section II. Fea-
ture selection is a two-step process, the purpose of which is
to identify noise-insensitive features with which to form a
robust feature set. The normalized-centered variances of the
features, which directly reflect the fluctuations of different
features, are chosen as the parameters for evaluating whether
a feature is sensitive to noise. First, the normalized-centered
variance of each feature is calculated, based on which we
remove noise-sensitive features from the feature set. Then,
attribute reduction based on rough set theory is applied to
remove possible redundant features. The feature set we obtain
after this two-step feature selection process is used to train
the SVM classifier. Finally, the generalization ability of the
trained SVM is evaluated based on numerical results.

A. ROUGH SET THEORY
Rough set theory is widely used in data analysis. It enables
the removal of redundant information from a given data set
through attribute reduction while preserving the original clas-
sification accuracy and reducing the dimension of the feature
set at the same time. In rough set theory, an information
system is represented by S = {U ,R,V ,F}. U = ∪xr is

defined as the universe, which is a finite and non-empty
set that contains all objects. R is a finite set consisting of
attributes and can be defined as C ∪ D, where C and D are
the condition attributes and decision attributes, respectively.
V = ∪vr is defined as the set of attribute values. f represents
the information function mapping U and R to V as follows:
f : U×R→ V .U can be divided by R to produce equivalent
classes of different attributes, expressed as U/R = ∪Ei.
If there are two different elements u, v ∈ U in the same
equivalent class Ei for R, they are said to be indistinguishable,
expressed as ind(R). If ind(R − r) = ind(R), then r is
unnecessary to R; otherwise, r is necessary to R.
Suppose that in an information system S, there exists a

subset X of U (X ⊆ U ) and P ⊆ R; then, the lower
approximation and upper approximation of X can be defined
as follows:

RX = {Y ∈ U/R : Y ⊆ X} (45)

RX = {Y ∈ U/R : Y ∩ X 6= φ} (46)

where RX represents the set that can certainly be merged
into X , or the positive region, also denoted by POS(X ).
By contrast, RX is the set that can possibly be merged into X .
If RX = RX , then X is a precise representation of U ;
otherwise, X is a rough set. The most important parameter in
attribute reduction is the dependent extent. Given P,Q ⊆ U ,
the dependent extent of P to Q is defined as

γQ(P) = POSQ(P)/|U | (47)

where γQ(P) can be seen as the positive region of Q in
U/ind(P). P is completely dependent on Q if γQ = 1.
Furthermore, for a newly added attribute a in Q, the attribute
importance of a for U/ind(P) is defined as

SGF(a,Q,P) = γQ(p)− γQ−{a}(p) (48)

If SGF(a,Q,P) > SGF(b,Q,P), then attribute a is more
important than b for U/ind(P).

B. SUPPORT VECTOR MACHINE
Consider a supervised classification problem in which the
training set (xxx i, yi), with xxx i ∈ <d and yi ∈ {1,−1}, can be
classified with respect to the hyperplane defined by www · xxx +
b = 0. This binary classification problem can be formulated
as

yi (www · xxx i + b) > 1 (49)

The margin between hyperplanes is 2
‖www‖ . Maximizing 2

‖www‖
is equivalent to minimizing 1

2‖www‖
2. However, the mar-

gin 2
‖www‖ allows no tolerance for misclassification, which is

often not feasible in practice. By introducing slack variables
(ξ1, ξ2, . . . , ξi), (49) can be modified as follows:

yi (www · xxx i + b) > 1− ξi, i = 1, 2, . . .N (50)
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Thus, the basic SVM model is a programming problem
described as follows:

min
www,b,ξ

1
2
‖www‖2 + C

N∑
i=1

ξi

subject to yi(www · xxx i + b) > 1− ξi
ξi > 0, i = 1, 2, . . . ,N (51)

C is a penalty parameter used to control the error. The dual
problem corresponding to (51) can be obtained by applying
Lagrange multipliers αi > 0. This leads to another program-
ming problem, expressed as

max
ααα

N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyj(xxx i · xxx j)

subject to
N∑
i=1

αiyi = 0,

0 6 αi 6 C, i = 1, 2, . . . ,N (52)

which is the linear SVM model. For non-linear problems,
a kernel function K (xxx i,xxx j) is applied to map linearly insep-
arable data into a high-dimensional space. This paper con-
siders the RBF kernel function, which takes the following
form:

K (xxx i,xxx j) = exp
{
−γ

∥∥xxx i − xxx j∥∥2} (53)

By replacing xxx i · xxx j with (53), solutions for non-linear data
can be obtained. The decision function, which determines the
result of classification, can be written as follows:

f (x) = sgn

(
N∑
i=1

αiyiK (xxx i,xxx j)+ b

)
(54)

The performance of an SVM classifier is determined by the
selection of the parameters C and γ .

C. FEATURE SELECTION
In essence, training a classifier usually means determin-
ing a hyperplane for classification. The reason why trained
classifiers can no longer function correctly when the SNR
changes is that some values of the extracted feature changes
as the SNR varies. This will cause a pre-trained hyperplane
to become no longer feasible for classification. This is also
why HOC features are usually suitable for noise-robust AMC
algorithms. To achieve the purpose of finding noise-robust
features, we first need to calculate the variances of all fea-
tures. We define the normalized variance of a feature F as
shown in (55):

var(F) =
1
K

10∑
i=1

K∑
k=1

[Fi(k)− E(Fi)]2 (55)

where K is the number of training data and Fi(k) represents
the normalized center value of fi(k), which is expressed as

Fi(k) =
fi(k)

1
K

∑K
i=1 fi(k)

(56)

TABLE 1. Normalized variances of extracted features.

where fi(k) is the feature value of the kth sample of the ith
modulation type.

The normalized variances of all features can be calculated
based on (55), with the results shown in Table 1.

Features with excessively large variances need to be
removed, whereas those with small variances should be kept.
We apply the K -means clustering method to divide the fea-
tures into the following clusters:

• {d1, d2, d6,E1,R1,R2,R3, β,P}
• {E, γmax , σaa, σap, σdp, σaf ,Pmax , d3, d4, d5, d7}
• {E4,E5}
• {mA,E3}
• {E2}

The first cluster, {d1, d2, d6,E1,R1,R2,R3, β,P}, which
has the minimum average var(F) among all clusters, is
retained as the set of noise-robust features. The other clusters
are removed from the feature set. Although the chosen feature
set is already a robust one, it still needs further reduction
because different features may carry the same information
about the received signal, which would lead to information
redundancy.

This reduction can be achieved through attribute reduction
based on rough set theory. In AMC, the extracted features and
modulation types are regarded as the condition attributes F
and decision attributes D, respectively, based on which a
decision table is first established. The features are then nor-
malized and discredited. The attribute importance of a feature
Fn is calculated from the discredited data as follows:

γD(Fn) = γF − γF−Fn (57)

A feature is eliminated from the feature set if its attribute
importance is very close to zero. Let S denote the decision
table; the details of the attribute reduction process are shown
in Table 2.

The knowledge rules for the features can be obtained based
on the results of attribute reduction. The resulting rules are
shown in Table 3. Finally, 4 features remain in the fea-
ture set, the values of which are illustrated in Fig. 4. The
4-dimensional feature set obtained after feature selection is
referred to as the noise-robust feature set.
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TABLE 2. Process of attribute reduction.

TABLE 3. Knowledge rules for the extracted features.

The noise-robust feature set consists of 3 HOC features
and 1 cyclostationary feature. It can be observed from Fig. 4
that the values of the 4 features remain almost unchanged
at all SNR levels. The distances between classes are also
significant, thereby satisfying the demands of classification.
The contributions of each feature to the classification task can
be described as follows:

ind(d1) = {{2-ASK, 4-ASK, 8-ASK, 2-PSK, 4-PSK,

16-QAM},{2-FSK, 4-FSK, 8-FSK, 8-PSK}}

ind(d2) = {{2-ASK, 4-ASK, 8-ASK, 2-PSK},

{2-FSK, 4-FSK, 8-FSK, 4-PSK, 8-PSK,

16-QAM}}

ind(d6) = {{2-ASK}, {4-ASK}, {8-ASK}, {2-PSK},

{2-FSK, 4-FSK, 8-FSK, 4-PSK, 8-PSK,

16-QAM}}

ind(R1) = {{2-ASK, 4-ASK, 8-ASK, 16-QAM}, {2-FSK},

{4-FSK}, {8-FSK}, {2-PSK, 4-PSK, 8-PSK}}

FIGURE 4. Values of the 4 selected features under SNR levels from
0 to 20 dB. (a) d1. (b) d2. (c) d6. (d) R1.

TABLE 4. Modulation parameters.

IV. PERFORMANCE EVALUATION
Here, the classification accuracies of the original feature set
and the noise-robust feature set under SNRs of 0∼20 dB
are evaluated. We generated 400 samples at each SNR level,
that is, 8400 samples in total. The other parameters are listed
in Table 4.

The classification accuracy of the original feature set with
an SVM classifier is evaluated first. Classifiers trained at
different fixed SNRs in the range of 0∼20 dB were tested at
all SNR levels from 0 to 20 dB to evaluate the classification
accuracy and generalization ability of the original feature set.
The results are illustrated in Fig. 5.

The performance of the original feature set reaches an
extremely high accuracy rate at the SNR for which the classi-
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FIGURE 5. Classification accuracy of the original feature set.

FIGURE 6. Classification accuracy of the noise-robust feature set.

fier was trained. However, the lower is the SNR under which
the classifier was trained, the worse is the generalization
ability of that classifier. For a training SNR lower than 10 dB,
the classifier is no longer effective even for a testing SNR that
is only 1 dB different from the training SNR.

Next, the classification accuracy of the selected feature set
is evaluated. The selected feature set is {d1, d2, d6,R1} and
is tested in the same way. The results are shown in Fig. 6.
The classification accuracy at the training SNR is decreased
by approximately 2.5% compared with that in Fig. 5, but
the accuracy reaches 95% as soon as the SNR of the test
set increases to 5 dB. The classification accuracy is above
97% when the testing SNR is at least 10 dB. At the cost of a
decreased classification accuracy at the training SNR, excel-
lent generalization ability is achieved. However, the accuracy
rate at an SNR level of 0 dB is obviously worse than that at
any other SNR. To find out the reason, the detailed data on the
classification accuracies for each modulation type at training
SNRs of 20 dB, 10 dB and 0 dB are shown in Tables 5, 6 and 7,
respectively.

We find that the classification accuracies are all very
close to 100% except for M -ASK signals, especially 4-ASK
signals. When M -ASK signals are not considered, the clas-
sification accuracies for all modulation types under all SNR
levels are very close to 100%. Only the accuracy for 8-FSK
signals is slightly decreased (96.6% and 94.3%) at 0 dB.
The average classification accuracy forM -FSK,M -PSK and
16-QAM signals is greater than 99% for SNR levels from
5 to 20 dB.

TABLE 5. Classification accuracies for each class (training SNR=20 dB).

TABLE 6. Classification accuracies for each class (training SNR=10 dB).

TABLE 7. Classification accuracies for each class (training SNR=0 dB).

By contrast, the results for ASK signals are not reasonable,
especially when the SNR is near 0 dB. Because we con-
sider the AWGN channel model, the noise is added directly
to the signal amplitude, which makes it difficult to extract
noise-robust features for ASK signals. The classification of
ASK signals mainly depends on R1 and d6, and the dis-
tances between classes are small. The value for 4-ASK varies
between those for 2-ASK and 8-ASK, which makes the per-
formance worse, especially when the SNR is low. Therefore,
it will be necessary to continue seeking better features for
M -ASK classification, especially for cases in which the SNR
is low.

V. CONCLUSION
This paper mainly focuses on addressing the problem that
existing FB AMC algorithms are deployed for a specific
fixed SNR and lack generalization ability. An AMC method
that can operate under varying noise conditions is proposed
to solve this problem. An original feature set containing
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25 types of features is initially established, from which we
choose noise-insensitive features to form a robust feature
set. Features are preliminarily selected based on the nor-
malized variances of all features. Features with excessively
large variances are eliminated from the feature set. Then,
the feature set is simplified through attribute reduction based
on rough set theory. We finally obtain a robust feature
set consisting of only 4 features. Subsequently, the robust
feature set is used to train an SVM classifier. Numerical
results demonstrate that an SVM classifier trained on the
robust feature set at a single SNR level can successfully
classify signals at SNRs of 5∼20 dB. The average accuracy
rate of the algorithm is higher than 95% for all signals at
5∼20 dB. The average classification accuracy for M -FSK,
M -PSK and 16-QAM signals can reach 99%. The general-
ization ability is excellent, demonstrating that our method is
robust to SNR variations; therefore, it can be deployed under
varying noise conditions.
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