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ABSTRACT Human action recognition nowadays plays a key role in varieties of computer vision
applications. Many computer vision methods focus on algorithms designing classifiers with handcrafted
features which are complex and inflexible. In this paper, we focus on the human action recognition problem
and utilize 3D convolutional neural networks to automatically extract both spatial and temporal features for
classification. Specifically, in order to address the training problems with small data sets, we propose an
internal transfer learning strategy adapted to this framework, by incorporating the sub-data classification
method into transfer learning. We evaluate our method on several data sets and obtain promising results.
With the proposed strategy, the performance of human action recognition is improved obviously.

INDEX TERMS Action recognition, 3D convolutional neural networks, internal transfer learning, small
dataset.

I. INTRODUCTION
Nowadays automatically detecting and understanding the
human actions in the video streams has become crucial
in many applications such as intelligent video surveillance,
auto-driving, somatic gaming and so on. This task is highly
challenging when taking both accuracy and robustness into
consideration. Considerable works are devoted to this topic
in the human action recognition area. However, most of
these methods highly rely on the reliable handcrafted fea-
tures which consumes lots of time, and those features may
vary with different datasets. Schuldt et al. [1] used sup-
port vector machines (SVM) in combination with several
local spatial-temporal features as the recognition method.
Scovanner et al. [2] introduced the 3D SIFT descriptor, based
on which they extended the bag of words paradigm to videos
to improve the action classification performance. Besides,
other effective feature descriptors have also been utilized in
the task of action recognition such as HOF (Histogram of
Optical Flow) + MBH (Motion Boundary Histogram) [3],

HOG (Histogram of Oriented Gradients) + HOF + BOF
(Bag of Features) [4], DT (Dense Trajectories) + BOF [5]
and so on.

In the recent years, Convolutional Neural Networks
(CNN), one of the popular deep learning models, have shown
great success inmany computer vision tasks like image recog-
nition [6], [7], image segmentation [8], object tracking [9],
image super-resolution [10] and so on. The CNN tends to
learn a hierarchy of features from low-level to high-level and
researchers find that these features automatically learnt by
the CNN are usually better than those handcrafted ones [11].
In human action recognition, researchers have put much
efforts to build neural networks capable of capturing spatial-
temporal features. Inspired by the 2D CNN, Ji et al. [12]
developed a novel 3D CNN architecture which learnt from
several adjacent video frames to obtain useful features.
However, their model still took some pre-acquired low-level
features (gradients and optical flows) as part of the input.
After that, Karpathy et al. [13] proposed a multiresolution
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CNN architecture combining two separate streams for large
scale video classification. Encouraged by this work, many
joint-training CNN models with multiple parallel networks
were put forward [14]–[16] in different video recognition
tasks and they indeed signficantly increased the classifica-
tion accuracy. Later, Zhu et al. [17] presented a multimodal
gesture recognition method combining the 3D CNN and the
long-short-term-memory (LSTM) network. However, these
deep learningmodels with complex architectures require con-
siderable amount of training data [18]. With small sample
size, they tend to suffer from the overfitting problem and fail
to achieve good results.

In this paper, we are interested in the human action
recognition in the dataset with small sample size such as
KTH [1], Weizmann [19], UCF Sports [20] and VIVA chal-
lenge dataset [21]. To solve this problem, we apply the pro-
posed the internal transfer learning algorithm to the 3DCNN
for classification and achieve competitive results on these
datasets.

II. METHODOLOGY
A. 3D CONVOLUTION NEURAL NETWORKS
In a typical 2D CNN, convolution operations are only applied
to spatial dimensions. This conventional manner of convo-
lution cannot capture the temporal features which are use-
ful for action recognition. Different from 2D convolutions,
3D convolutions span the convolution operations over both
spatial and temporal dimensions by convolving 3D kernels on
the given video volumes. Involving the third dimension with
such a 3D kernels allows to extract the useful spatial-temporal
motion information that is crucial for action recognition.

FIGURE 1. Illustration of the 3D convolutions in both spatial and time
dimensions. In this figure two kernels are used and the size in the
temporal dimension is 3.

Suppose we collect a few contiguous frames from the input
videos and then stack them to form a data cube of w× h× d ,
with w, h and d representing the width, height and depth
(temporal length) respectively. A 3D convolutional kernel of
sizew′×h′×d ′ is then applied across this volume to generate a
feature map. As illustrated in Fig 1, two sets of 3D kernels are

used, and the output value vxyz corresponding to the position
(x, y, z) in the volume can be calculated by:

vxyz = f (
w′−1∑
i=0

h′−1∑
j=0

d ′−1∑
k=0

wijkk(x+i)(y+j)(z+k) + b), (1)

where wijk is the weight at position (i, j, k) of the ker-
nel, k(x+i)(y+j)(z+k) is the intensity of the image at position
(x + i, y+ j, z+ k) of the volume, f is the activation function
and b is the bias entry. Thus, applying a given number of 3D
kernels the convolutional network consequentially generates
the same number of feature maps.

B. INTERNAL TRANSFER LEARNING
In this section, we present our proposed internal transfer
learning (ITL) algorithm on small datasets which is a com-
bination of transfer learning and the sub-data classification
method. Transfer learning is an effective strategy for the cases
with limited resources including training data and computa-
tion overhead. It aims to get the already learnt knowledge
from a related task in the same domain and then apply it
to the new task at hand. However, this kind of knowledge
transfer requires other big datasets for pre-training and this
extra condition cannot be always met. To address this prob-
lem, when dealing with an N -class classification task, we
propose to divide this task to several binary ones, similar
to the One-vs-One algorithm. However, unlike the time-
consuming One-vs-One strategy, a significant difference is

that we do not design N×(N−1)
2 binary classifiers and sum up

the classification results of all these classifiers at validation
stage.

Specifically, for neural networks, we firstly design an
N -class network architecture and train it on the whole
dataset. From the validation results, we pick out several best-
distinguished and worst-distinguished pairs of classes and
then form an N ′-class (N ′ ≤ N ) sub-dataset. Usually the
general knowledge useful for classification can be learnt from
the best-distinguished pairs on condition that the pairs are
not quite similar. And the worst-distinguished pairs have the
possibility of generating key classification information if dug
into deeply. Thus we take both of them into consideration
and set the proportion of them to 1:1 in the sub-dataset by
experiments. In the following we use the same network to
build N ′×(N ′−1)

2 binary classifiers and pick out 5 models with
the top-5 validation accuracy after rounds of training. These
binary models are much easier to train and next we can utilize
the learnt knowledge from these 5 pre-trained binary models
and apply it to the original N-class classification network
like the normal transfer learning procedure does: loading
the weights and fine-tuning the last few newly-added layers.
Finally themodifiedN-classmodel with the best performance
is chosen as the best model. The details of the ITL algorithm
is illustrated in Fig 2. The ITL algorithm makes use of the
knowledge learnt from the sub-dataset and performs well in
our later experiments.
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FIGURE 2. The implementation details of the internal transfer learning
algorithm.

C. THE PROPOSED 3DCNN ARCHITECTURE
As mentioned above, our model is implemented by apply-
ing the ITL algorithm to the 3DCNN architecture. In the
following, the descriptions are based on the experiments on
the KTH dataset. At first we design a 6-class classifica-
tion 3DCNN architecture inspired by AlexNet [6] which is
depicted in Fig 3. This architecture consists of six layers
of which the first five are 3D convolutional or max-pooling
layers and the last one is a fully connected layer. The network
receives video volumes of size 35 × 55 × 16 as the input.
For shorthand notation, we denote this model architecture
by C(16, 5, 5, 3)− S(2, 2, 1)− C(32, 6, 7, 3)− S(3, 3, 1)−
C(64, 4, 7, 1) − F(1024), where C(n,w, h, d) represents a
convolutional layer with n kernels of sizew×h×d , S(w, h, d)
represents a pooling layer with sub-sampling size ofw×h×d
and F(n) represents a fully-connected layer with n neurons.
Finally the network outputs 6 values which is as same as
the action types, representing the probability of each motion
hypothesis with the help of the softmax regression function.

After the training of this 3DCNN completes, we apply
the ITL algorithm by setting N ′ = 4 and pick out the top
5 binary models whose architecture is based on the 6-class
3DCNN but the number of output values is changed to 2.
Then we keep all the layers remained except the last fully
connected layer in the 3DCNN model and load the weights
of the 5 pre-trained binary models by turn which are kept
fixed in the following training procedure. After adding three
new fully connected layers to the end of the former part, the
redesigned ITL-3DCNN architecture are formed. As shown
in Fig 3, the last three new fully connected layers output
512, 256 and 128 values separately. In the next stage, the
ITL-3DCNNs are trained and the one with the highest val-
idation accuracy is chosen as the best multi-class classifier.

D. TRAINING
To train the network, we choose the average cross-entropy as
the loss function to minimize it:

l = −
1
N

N∑
i=1

P(x i) · log(Q(x i)), (2)

where N is the total number of the samples of the data,
x i denotes the ith sample of the dataset, P and Q denote
respectively the inherent probability distribution and the
probability distribution of x predicted by the model.
During training, we adopt the momentum method when

updating the weight parameter wi using stochastic gradient
descent with mini-batches of 50 samples. At each iteration,
the weights are updated by the following rules:

vi+1 = µ · vi − lr · ∇g, (3)

wi+1 = wi + vi+1, (4)

where i denotes the iteration index, µ denotes the momentum
coefficient, v denotes the current velocity vector, lr denotes
the learning rate and ∇g denotes the average value of the
gradients with respect to wi over the mini-batch at each
iteration. We also bring up an update rule of the learning rate
lr which proves to play a key role in the training procedure.
The update rule is:

lr = lr ·
1

1+ d · i
, (5)

where d is the decay parameter and i is the iteration index.
The decay of learning rate leads to smaller training errors
and a better generalization capability. Specifically, in our
fine-tuning procedure, the parameters µ and d are set to
0.9 and 0.008 separately after abundant experiments.

In our experiments the weights in each layer are initial-
ized from a truncated normal distribution centered on 0 with

standard deviation std =
√

2
n where n denotes the input

or output connections at a layer according to [22]. And we
choose the ReLU activation function and set the biases for all
the layers to 0 by the same reason. During the training stage,
we apply drop-out strategy [23] with probability 0.5 after
all the fully-connected layers and L2 regularization on the
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FIGURE 3. The 3DCNN and the redesigned ITL-3DCNN architectures. In the architectures, C stands for the convolutional
layer, S stands for the pooling layer and F stands for the fully-connected layer. In our work, 3DCNN is firstly used for
multi-class classification and then modified for binary classification. Finally, the multi-class ITL-3DCNN utilizes part of the
well-trained binary 3DCNN’s structure and weights.

FIGURE 4. Confusion matrix for the KTH dataset. Total accuracy 98.2%.

weights of all the layers to overcome the possible overfitting
problem. To accelerate the training, we also apply batch
normalization [24] to the response of each layer.

III. RESULTS AND DISCUSSION
A. KTH DATASET AND WEIZMANN DATASET
On the KTH and Weizmann dataset, we perform our experi-
ments using the proposed 3DCNN architecture in Fig 3 and
achieve promising results.

The KTH dataset contains six different types of human
actions performed by 25 people in four different scenarios.
And each action has 100 video samples. The Weizmann

FIGURE 5. Confusion matrix for the Weizmann dataset. Total
accuracy 100%.

dataset consists of 90 video clips which can be divided into
10 action classes. The original video volumes of the two
datasets are firstly down-sampled to the size of 40×60×16.
Then we apply the data augmentation strategy that we ran-
domly crop out 19 times of clips with size 35× 55× 16 from
the video volumes on the training data which accounts for
90% of the dataset. Andwe use 10-fold cross-validation when
evaluating the performance of the model.

We set N ′ = 4 on both the KTH and Weizmann dataset.
Then we have 6 binary 3DCNNs on the sub-dataset. Note that
training errors on these binary models converge very fast so
that the entire procedure is not very time consuming. Then the
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FIGURE 6. The C3D and ITL-pC3D architectures. In the convolution block, ConvN1N2 represents N2 convolutional kernels of
size N1 × N1 × N1. And FCN represents N nodes in the fully-connected layer.

models with top 5 validation accuracy are picked out and their
weights are fed into the redesigned ITL-3DCNN by turn for
the next stage of training. Finally, after rounds of training,
the two best multi-class classification models achieve the
holistic recognition accuracy of 98.2% and 100% on the two
datasets respectively. The confusion matrices are depicted
in Fig 4 and Fig 5. The comparison with other peer works
is reported in Table 1.

TABLE 1. Comparisons of our work to the state-of-art methods on the
KTH and Weizmann dataset. The 3DCNN is the multi-class classification
model trained from scratch using the proposed architecture.

B. UCF SPORTS DATASET AND VIVA CHALLENGE DATASET
The UCF Sports dataset is a very challenging dataset which
has 150 video clips from 10 actions. On one hand, the dataset
has complex backgrounds and camera motion and clutter.
One the other hand, its sample size is very small. For exam-
ple, the skateboarding actions have only 6 videos and they
vary a lot from each other, which brings great obstacle to
the deep learning training procedure. The VIVA challenge
dataset which has 19 hand gesture classes is also very chal-
lenging for its settings like cluttered background and volatile
illumination.

The small sample size and complex data contents make
it very difficult to obtain high recognition accuracy when
training neural networks on the two datasets’ raw input data
from scratch. Especially on the VIVA challenge dataset, the
state-of-art accuracy is only 77.5% achieved by a two-stream
CNN architecture with complex data augmentation method
in Molchanov et al.’s work [14]. To prove the effectiveness
of ITL algorithm, we test the 3DCNN, ITL-3DCNN, C3D,
ITL-C3D, pC3D, ITL-pC3D models on the two datasets and
report the results in Table 2.

C3D is a 15-layer architecture for action recognition pro-
posed by Tran et al. [29]. However, we can find that even this

TABLE 2. The performance comparison of different methods on the
UCF-Sports and VIVA challenge datasets. In the table, the 3DCNN and the
ITL-3DCNN use the same proposed architectures performed on the
KTH dataset.

FIGURE 7. Confusion matrix for the UCF-Sports dataset. Total
accuracy 93.6%.

highly effective model cannot achieve a high accuracy faced
with the two datasets. When ITL is added, the accuracies
increase. Going further, we incorporate the ITL algorithm
into the pre-trained C3D model (pC3D) and achieve satis-
factory results. As shown in Fig 6, the upper part network
is the C3D network loaded with pre-trained weights on the
Sports-1M dataset [13]. Then we remove several bottom
layers and add a few new layers to the former part whose
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weights remain fixed. Next we put this new architecture into
the binary classification training procedure and use the top-5
models’ weights as initialization for the final multi-class
classification by turn. Finally, by this way, our ITL-pC3D
achieve 93.6% and 96.1% validation accuracy onUCF-Sports
and VIVA challenge dataset. 2/3 of the data is used for
training and the remained for validation and 10-fold cross-
validation is adopted. The confusion matrices are depicted
in Fig 7 and Fig 8.

FIGURE 8. Confusion matrix for the VIVA challenge dataset. Total
accuracy 96.1%.

Our model is trained on one NVIDIAGTX1080 8GBGPU
and each experiment is trained for roughly 8 hours. The exper-
iments on the four datasets prove the effectiveness of the ITL
algorithm.We can find that ITL can always improve the origi-
nal model’s performance. On the challenging UCF Sports and
VIVA dataset, it can be noticed that simple networks like the
proposed 3DCNN or complex networks like C3D can hardly
obtain high recognition accuracy if trained from scratch on
the raw input data. But when the ITL algorithm is applied to
the pre-trained network, we can achieve a satisfactory high
validation accuracy.

IV. CONCLUSIONS
In this paper, we focus on the human action recognition
problem. Instead of using conventional ways to capture the
handcrafted features, we utilize the 3D convolutional neural
network to automatically extract useful spatial-temporal fea-
tures. To overcome the difficulty of training with datasets of
small sample size, we propose the internal transfer learning
algorithm (ITL). Our method achieves competitive results on
several datasets compared to the peer works.
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