
SPECIAL SECTION ON ADVANCED CONTROL AND HEALTH MANAGEMENT
FOR AIRCRAFT AND ITS PROPULSION SYSTEM

Received July 16, 2017, accepted August 21, 2017, date of publication August 29, 2017, date of current version September 19, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2744262

A Constraint-Programmed Planner for Deep
Space Exploration Problems With
Table Constraints
XIAO JIANG AND RUI XU, (Member, IEEE)
Key Laboratory of Autonomous Navigation and Control for Deep Space Exploration, Ministry of Industry and Information Technology, School of Aerospace
Engineering, Beijing Institute of Technology, Beijing 100081, China

Corresponding author: Xiao Jiang (jiangxiaotwn@hotmail.com)

ABSTRACT In recent years because of the increasing number and types of scientific payloads on a probe,
the constraints between payload and probe and the constraints among payloads have become increasingly
complex. The technology of constraint processing has gradually become a focus of research in deep space
planning. In this paper, we propose a constrained-programmed planner called DSPlan for deep space
planning problems based on table constraints. We first propose a technique for automatically converting the
planning domain definition language model used in planning into the form of table constraints. Following
the common practice of coding a planning problem as a constraint satisfaction problem with multiple levels,
we propose a dynamic constraint set and a corresponding mutex filtering algorithm to express the different
combinations of constraints on varying levels that need to be satisfied. This new form of data structure
uses explicit domain information to maintain the generalized arc consistency of table constraints. Empirical
analyses demonstrate the efficiency of table constraints over the international planning competition problem
and classic deep space instances in general arc consistency schema algorithms. Experimental results also
prove that DSPlan and table constraints are highly promising general-purpose tools for deep space planning
problems compared with other planners.

INDEX TERMS Planning, constraint satisfaction, table constraints, deep space exploration.

I. INTRODUCTION
In the field of deep space exploration, traditional telemet-
ric remote control is a major technical method of detector
control. However, at certain key stages of exploration [1],
such as the separation of the lander and detector (SLD) for
Mars exploration, inevitable defects arise in telemetric remote
control. First, because of the long distance between Earth
and Mars, the time delay for data transmission is too long to
satisfy the real-time requirements of separation; second, the
traditional control strategy, in which a ground station sends
commands to orbit, is a typical open-loop control method,
meaning that even a slight error may cause data loss or
even the failure of the entire task; and third, in the process
of executing a command sequence, if unexpected hardware
failure or an unexpected change in the environment occurs,
the detector may abandon the original sequence and enter safe
mode, waiting for the ground to produce a new command
sequence. In this case, the SLD mission will miss its time
window.

These challenges impose very harsh requirements for
the traditional method of telemetric remote control [2].
In fact, NASA, the U.S. Department of Defense (DoD),
and the European Space Agency (ESA) have already con-
ducted extensive research in the field of autonomous planning
and scheduling technology for deep space exploration [3],
including the deep space exploration program in the U.S.,
space-based observation systems (the Hubble Space Tele-
scope [4]), and the ESA’s projects for on-board autonomy
(the Proba series of satellites [5]–[8]). These autonomous
planning and scheduling technologies have assisted in the
establishment of autonomous control systems for deep space
detectors, allowing these detectors to realize control without
participation from a ground station. Using the knowledge
available onboard and information obtained by sensors about
the current state of the surrounding environment, the planner
achieves its goal by determining a sensible motion execution
sequence. This approach not only reduces the operating cost
but also increases the reliability of the task.

17258
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017



X. Jiang, R. Xu: Constraint-Programmed Planner for Deep Space Exploration Problems With Table Constraints

With the increasingly long flight distances of recent deep
space exploration missions, the payloads on probes must be
increased in quantity and variety for scientific and economic
reasons. The resulting complex constraints among payloads
have given rise to new technical difficulties facing deep space
planning technologies. For this reason, the constraint satisfac-
tion technique has become a new hot topic of interest in the
field of deep space planning.

The constraint satisfaction technique is a powerful
paradigm for solving combinatorial problems because of
its strong pruning ability and high processing efficiency.
In 1996, Kautz and Selman first proposed the method of
using the CSP formulation to solve planning problems [9].
They estimated the length of a planning problem during a
preprocessing procedure and set this estimated value as a
fixed bound, which was then used to convert the planning
problem into an NP (Non-deterministic Polynomial) hard
problem [10], [11]. The resulting problem could then be
solved using the NP-complete CSP formalism [12]. The
first constraint-programmed planner was CPLAN, developed
in 1999 [13], with manually coded domain-dependent con-
straints. Since then, many constraint-programmed planners
have been developed that transform various types of classic
planners, such as HTN [14], Graphplan [15] and partial
planners [16] into the CSP formalism. Pavel Surynek and
Roman Barták encoded HTN Planning as a constraint-
programmed planner using the Dynamic CSP technique.
In their paper, they divided the variables into three classes,
the first type encoding ground instances of primitive
tasks as primitive task variables, the second type rep-
resenting non-primitive tasks as non-primitive variables,
and the third type treating all predicate symbols and steps
as state variables. Then, these three types of variables
could be used to specify constraints defining dynamic rela-
tions. GP-CSP [17] was the first GraphPlan-like constraint-
programmed planner, which was proposed by Minh Binh Do
and Subbarao Kambhampati. Because of the similarity of
the frameworks between a constraint-programmed planner
and GraphPlan, GP-CSP adopts a coding method in which
the facts (or propositions) in GraphPlan are denoted by
variables in CSP, whereas the actions that make the facts
true are represented by values. Dynamic (or conditional)
constraint satisfaction techniques are also used because the
constraint-programmed planner contains a multi-layer frame-
work. Experimental results proved that GP-CSP is superior to
approaches based on both satisfiability (SAT) [18] and integer
linear programming (ILP) [19].

The rich theoretical results discussed above have been
widely used in deep space exploration [20]–[22]. The NASA
deep space spacecraft DS-1 uses the Remote Agent (RA)
autonomous control system [23], [24], which is the first
software to be used as the autonomous closed-loop control
software system of a spacecraft. Its planning and schedul-
ing system, RAX-PS, uses the domain description language
DDL [25] to describe the structure, functions, resources,
and various types of constraints. The planning engine uses

a variety of constraint propagation algorithms to generate the
constraint network and to find and resolve conflicts until a
solution is found. The satellites in the TechSat21 constellation
and the EO1 spacecraft use the Autonomous Sciencecraft
Experiment (ASE) software [26], whose decision-making
module CASPER uses local constraint processing technol-
ogy and can be used in continuous dynamic programming.
ASPEN [27], [28] is used in combination with aerospace
control, hardware models, scientific experiments, and opera-
tional procedures to automatically generate lower-level space
manipulator sequences and is widely used by NASA in
deep space missions, including Citizen Explorer, MARS-01,
and DS-T. The EUROPA planning and scheduling
system [29], [30] uses the framework of constraint interval
description and considers the priority of observation tasks.
The research discussed above has also focused on coding for
the translation and extension of the CSP formalism to address
the complex deep space environment, using approaches
such as timelines [31], possibilities [32], and infinite data
streams [33]. However, the domain-independent modeling
method and planners that have been designed, such as
ASPEN and EUROPA, become inefficient as the size of the
problem increases with more complex constraints. Without
specific guidance on model information, the standard CSP
heuristics and search methods [34], [35] greatly restrict the
efficiency of problem solving. By contrast, the domain-
dependent approach has always shown impressive perfor-
mance, as in [36], describing the CSP planner for the Express
orbiter. However, such planners have the fatal flaw that they
need to be coded manually and are difficult to transplant and
maintain for later projects.

To take advantage of the efficiency of domain-dependent
planners and overcome their defects, an automatic coding
mode is needed instead of manual coding to allow the planner
to cope with different planning domains. In this paper, we
consider an automatic coding method for table constraints.
Here, the word table has the same meaning as extensional,
except that table constraints are usually non-binary. A table
constraint is simply a list of the allowed combinations of
values for a particular subset of variables and is particularly
suitable for expressing relations between actions during plan-
ning. For example, an orbiter switches its direction to a new
target domain, {Sun, Earth, Mars}. It is a simple matter to list
all possible assignments, {<orbiter, Sun>,<orbiter, Earth>,
<orbiter, Mars>}, in the form of a table constraint, but it
would be an awkward task to use other types of constraints to
express these relations.

To build a domain-dependent constraint-programmed
planner, we use table constraints to express the action rela-
tions in the planning domain. The most important thing is to
identify all possible assignments in the constraints, specifi-
cally, the variables and values. First, we analyze the domain
file for a planning problem and abstract several characteristic
atoms from the predicates as the variables. Then, for each
action in the planning problem, the corresponding variables
will be selected according to the action’s parameters. Finally,

VOLUME 5, 2017 17259



X. Jiang, R. Xu: Constraint-Programmed Planner for Deep Space Exploration Problems With Table Constraints

every table constraint will be instantiated with the possible
assignments according to the information contained in the
planning problem files. After the model has been specified,
we propose a method of constructing a dynamic constraint
set, which is used to solve the problem that these table con-
straints (converted from the actions of the planning problem)
cannot be satisfied simultaneously. Based on this dynamic
constraint set, a planning-domain-dependent filtering algo-
rithm is proposed. In this algorithm, we adopt the unique data
structure of table constraints, as described above, to prune the
redundant assignments in the list.

Experimental results from previous IPC planning problems
and several classic instances of deep space exploration are
used in the evaluation of the proposed algorithm for table
constraints and demonstrate which domain is suitable for the
algorithm and that the time spent for coding the actions into
the table constraints is a worthy trade-off for the improve-
ment in efficiency. We also compare our approach with a
specialized planner for deep space exploration. The results
demonstrate that DSPlan is much faster on most problematic
instances; however, since our method treats the planning
domain in a limited manner, there are many aspects of the
planner that need to be improved.

The remainder of this paper is structured as follows:
Section Two introduces background on the planning process,
the CSP formulation, and table constraints; Section Three
introduces the technique for automatically converting the
actions in a planning problem into the form of table con-
straints; Section Four proposes the corresponding dynamic
constraint set and filtering algorithm; and the experimental
results and conclusions are presented in Section Five.

II. BACKGROUND
Planning is a human decision-making process that seeks to
achieve a given outcome using a set of predictable operations
in sequence [37]. An Artificial Intelligence (AI) planning
problem is defined by a triplet consisting of an initial state,
a goal state, and a set of possible actions. An action modifies
the current state and can only be applied if certain conditions
are met. The purpose of planning is to organize a sequence
of actions to cause a transition from the initial state (also
denoted by S0) to the goal state (Sw), which includes every
element of the goal set G. This action sequence is called the
solution to the planning problem. To manage the complexity
of the real world, in AI planning, the information described is
restricted, and much unnecessary detail is abstracted. In this
paper, we consider classical planning problems that include
only deterministic actions and assume complete information
about the planning states.
Definition 1 (AI Planning): Aplanning problem is defined

by a triplet 5 = 〈A, I ,G〉 consisting of the following:

- A set of initial states I = {i1, i2, · · · , il}.
- A set of actions A = {a1, a2, · · · , am} such that each
action is a tuple 〈pre (a) , eff (a)〉, where pre(a) is the
set of preconditions for action a and eff (a) is the set of
effects of action a.

- A set of goals G = {g1, g2, · · · , gt } that need to be
satisfied.

Therefore, the state that results from executing action a in
state s can be expressed as Result(s, a) = (s − del(a)) ∪
add(a). Finally, the goal G is a set of planning states satis-
fying a propositional property specifying the final states of
the plan. Therefore, a plan p is a finite sequence of actions
〈a0, a1, . . . , an〉 such that the execution of p yields a state
s ∈ G. A PDDL model consists of two types of files for
describing a problem, i.e., the domain file and the problem
file. The former gives the domain description of the problem,
such as the types, predicates, and behavioral actions involved
in the model; the latter simply defines the problem to be
solved in terms of the objects used, the initial states, and the
final goal states.

FIGURE 1. Dock Worker Robots planning problem.

The example shown in Figure 1 is a classic plan-
ning problem from previous instances of the International
Planning Competition (IPC) [38], [39]. The Dock Worker
Robots (DWR) problem [40] is a state transition system
involving goods on a pile, a truck that can carry the goods
and move them from one location to another, and a crane that
can pick up and put down the goods. As listed in Figure 1, the
set of states is {s0, s1, s2, s3, s4, s5}, and the set of actions is
{take, put, load, unload,move}. The state of the world will
change according to the different actions executed, as the
example shows.

When planning is begun, a planner attempts to choose
actions and construct an action sequence to change the current
state of the problem until the goal state is achieved. If a
partial action sequence proves inconsistent, the planner will
backtrack to the last choice and change it to another action.
The key to accelerating the search procedure is to find the
correct order of actions while reducing or even preventing
backtracking. In the DWR problem, we assume that the start-
ing state is s0: the goods are at loc1, and the truck is at loc2.

17260 VOLUME 5, 2017



X. Jiang, R. Xu: Constraint-Programmed Planner for Deep Space Exploration Problems With Table Constraints

The goal state is s5: the goods are at loc2, loaded on the
truck. For the planning procedure introduced above, we need
to construct a sequence of actions to cause the world state to
transition from s0 to s5. In state s0, the candidate action set
is {move, take}, and each action will transform the starting
state into a different state. Thus, we iterate the action selection
procedure until the state s5 is reached (Figure 2).

FIGURE 2. Planning procedure for the DWR problem.

For the action selection stage, heuristics have been shown
to be an effective method [41]–[44]. An action selection
heuristic is a method of ranking a set of actions in the order of
their relative desirability. Usually, such a heuristic is modeled
as a function h, which can be used to compute a numeric
evaluation h(ai) for each candidate action in the action set,
with a convention that says that the preferred action ai ∈ A
is the action for which h(ai) is smallest, i.e., Select(A) =
argmin {h(ai) | ai ∈ A}.
Many heuristic approaches to planning have been pro-

posed in recent years. Shivashankar et al. [45] proposed
Hierarchical Goal Network (HGN) Planning, which is a new
hierarchical planning formalism for developing the Hierar-
chically Optimal Goal Decomposition Planner (HOpGDP),
an HGN planning algorithm that computes hierarchically
optimal plans. In the cited paper, HOpGDP is guided by hHL,
a new HGN planning heuristic that extends existing admis-
sible landmark-based heuristics from classical planning to
compute admissible cost estimates for HGN planning prob-
lems. In the work of Erdem et al. [46], as in the work of
Burgard et al. [47], a task planner that is based on explicit
causal reasoning is augmented with the ability to check for
the existence of paths for a robot. Garrett et al. [48] showed
how the heuristic ideas underlying one of the most successful
symbolic planners, the FastForward (FF) planner [49], can be
extended to motion planning and efficiently computed. They
used a multi-query roadmap structure that can be condition-
alized to model different placements of movable objects.

Constraint programming (CP) is a powerful paradigm for
solving combinatorial problems [37]. CP originated as a
multidisciplinary research area that incorporates techniques
and concepts from many other areas, among which AI,
computer science, databases, programming languages, and
operations research play an important role. Constraint
programming is currently applied with success in many
domains, such as scheduling, planning, vehicle routing [50],

configuration [51], networking [52], and bioinformatics [53].
A constraint satisfaction problem and table constraint can be
defined as follows:
Definition 2 (CSP): A constraint satisfaction problem

consists of the following:
- A set of variables X = {x1, x2, · · · , xn}.
- A set of domains D = {D1,D2, · · · ,Dn} such that, for
each variable xi, there is a domain Di.

- A set of constraints C = {c1, c2, · · · , ck} such that each
constraint defines a predicate that is a relation over a
particular subset of X .

Definition 3 (Table constraint): A table constraint con-
sists of the following:

- An ordered subset of variables, denoted by scp(ci).
- A subset of Cartesian products that specify the allowed
combinations of values for the variables in scp(ci).

Figure 3 shows a typical constraint satisfaction problem,
with the variables and values shown in Table 1. The constraint
of this CSP is that two adjacent variables cannot be assigned
the same value. For example, if variable A is assigned the
value green, then its adjacent variables D and B can only be
assigned the value red .(Figure 4)

FIGURE 3. An example of a typical CSP.

TABLE 1. Variables and values for the example CSP.

When a CSP solver starts, it attempts to iteratively extend a
consistent partial assignment of the variables in the problem.
This procedure will continue until a consistent assignment of
all variables is made. If a partial assignment proves incon-
sistent, in other words, if the algorithm reaches a dead end,
backtracking will be performed. The important aspects of this
procedure are the order in which the variables are selected,
the order in which the values are assigned to the variables,
the method by which the assigned variables are propagated

VOLUME 5, 2017 17261



X. Jiang, R. Xu: Constraint-Programmed Planner for Deep Space Exploration Problems With Table Constraints

FIGURE 4. Two different results for the example CSP.

through the constraints, and the means by which the search
procedure backtracks.

Usually, variable selection is the first part of a CSP algo-
rithm, and the ordering of the selection can be either static or
dynamic. In the former, the order is selected before the search
begins, whereas in the latter, decisions are made based on the
current states of the variables. An example of a computation-
ally inexpensive variable ordering heuristic is the Minimum
Remaining Values (MRV) heuristic [54], or the first-fail-
variable-picked-first method. In this approach, the variable
with the lowest number of remaining values is chosen because
this variable can soonest be identified as being consistent or
not. Consequently, the branching factor is minimized for the
longest possible time. The MRV heuristic has been shown to
work well on a large number of CSPs [55].

After a variable is chosen to be instantiated, the next step
is to assign a value to that variable. A good choice of value
will reduce the amount of backtracking required. It should
be noted that if the correct choice of value is made at each
point in the search, it is possible to obtain a solution with no
backtracking. In contrast to the strategy for variable ordering,
the strategy for value selection is to choose the value that
is most likely to succeed because failure would cause the
search to backtrack. An example of a value ordering heuristic
is the min-conflict heuristic [56]–[58]. In this method, the
values are ordered based on the number of conflicts with the
unassigned variables in which they are involved.

Once a variable has been selected and a value assigned,
constraint inference can be applied based on this latest assign-
ment. There are many propagation methods available, includ-
ing forward checking and k-consistency strategies [59]. One
commonly used technique is arc consistency [60]–[62]. Here,
the algorithm guarantees that any allowable value in a vari-
able’s domain is consistent with a permitted value in the
domain of any other single variable.

If an inconsistency is found in the propagation step, it
is necessary to backtrack. A simple backtracking technique
steps back to the last-made assignment and attempts an alter-
native value from that variable’s domain. More advanced
methods can pinpoint the variable responsible for the fail-
ure and will backtrack accordingly. These include back
marking [63], back jumping [64], and conflict-directed back
jumping (CBJ) [65], [66].

Among the various differences between an AI planning
problem and a CSP, one key distinction is that, in an AI
planning problem, the plan length is unknown before the
search begins, whereas the size of a CSP is static. A typical

solution to this incompatibility is to set a fixed bound k on
the horizon of an AI problem and translate the problem into
a CSP with k layers. If a solution is found, it is extracted;
otherwise, a new horizon bound k + 1 is attempted. In this
paper, we use k steps to denote this bound. Generally speak-
ing, the number of steps is positively correlated with the plan
size.

Another key issue is that the action constraints of an
AI planning problem are different from the traditional con-
straints in a CSP. For example, the instance shown in Figure 1
is a typical CSP. When a solution to the CSP has been
found, all constraints must be satisfied (in the example above,
the constraint is that no two adjacent elements may be the
same). However, the situation is different in a constraint-
programmed planner with action constraints. For a simple
data download model, there are two actions, download and
pointing − transition, which have already been coded as
action constraints. The download constraint requires that the
probe hold its direction relative to the ground station, whereas
the pointing − transition constraint requires the probe to
change its direction. Obviously, these two constraints cannot
be satisfied simultaneously. In the next section, a dynamic set
of constraints is proposed to solve this problem.

III. AUTOMATICALLY CONVERTING FROM A PDDL
MODEL TO A CSP
Following common practice in many planning approaches,
we consider a bounded planning problem; i.e., we restrict our
target to finding a plan with a length of at most t , where
t is an integer that is given a priori. In the following, we
explain how the planning domain is encoded into a CSP with
a horizon length parameter t ≥ 0. Every variable var in
the CSP is converted into a time-tagged form expressed as
var@T . Correspondingly, for every action a = 〈pre, eff 〉,
we have the following formulas for t ∈ {0, . . . ,T − 1}:

a@t → pre@t (1)

for expressing the preconditions for an action and

a@t → eff@(t + 1) (2)

for expressing the effects of an action. If the value of a state
variable var changes, we have the following frame axioms:

(var@t ∧ ¬var@(t + 1))

→ (a1 ∧ pre(a1)) ∨ . . . ∨ (an ∧ pre(an)) (3)

From the above formulas, we can see that the actions
are specific local relations of variables between two adja-
cent levels with domain information. Thus, they can be seen
as domain-dependent constraints, unlike general CSP con-
straints. Here, we consider the download action constraint
as an example. The download action constraint describes
a situation in which, before the data are downloaded, the
memory of the probe stores the data, the observer of interest
holds its direction with respect to the ground station, and the
ground station has not yet received any of the data. After the

17262 VOLUME 5, 2017



X. Jiang, R. Xu: Constraint-Programmed Planner for Deep Space Exploration Problems With Table Constraints

data are downloaded, the data in memory are cleared, the
observer continues holding its direction with respect to the
ground station, and the ground station has received the data.
The variables involved in this constraint and their values are
as follows:

download(memt (1), observert (Earth), groundstationt (0),

memt+1(1), observert+1(Earth), groundstationt+1(1))

(4)

The problem space for a complex deep space probe always
consists of many actions constructing the relations among
different payloads. These actions can be helpful for guid-
ing efficient variable or value selection; however, coding
this domain-dependent information by hand is an extremely
tedious task. For this reason, we consider how to automat-
ically encode actions as constraints. In the above example,
we can extract the features of the action constraint based on
the following three considerations.

1) The variables in the action constraint appear in pairs,
with a symmetric structure, and are divided into two
adjacent time steps.

2) Some variables change in value in the latter time
step; we call these variables changeable variables of
this constraint. Some variables maintain their values
between the former and latter time steps; we call these
variables unchangeable variables of this constraint.

3) Apparently, the variables in time step t represent the
preconditions for planning, whereas the variables in
time step t + 1 represent the effects. We can naturally
adopt the paradigm of conditional CSP (or dynamic
CSP) to present the action constraint as follows:

download(memt (1), observert (Earth),

groundstationt (0)⇒ memt+1(1),

observert+1(Earth), groundstationt+1(1)) (5)

The variables that represent the preconditions for plan-
ning are also called driving variables, and the variables
that represent the effects are called response variables.

To transform a planning problem into a CSP, we need to
be able to automatically code the domain-dependent condi-
tional action constraints. Here, we adopt table constraints for
convenience because action constraints can be expressed in a
universal tabular form. An action constraint written as a table
constraint consists of two types of components: variables and
feasible assignments. The variables can be extracted from the
domain file of the planning problem, and the feasible assign-
ments can be extracted from the problem file. In the following
subsections, we shall explain the translation process using a
classic planning problem known as the gripper problem as
an example. The gripper problem is described as follows.
In the initial state, several balls are placed randomly in several
rooms. The planning goal is to move these balls to the desired
location using robots. Usually, each robot has two grippers
with which to hold and transport a ball.

A. TYPES AND FILES
A planning model consists of two kinds of files. One is the
domain file, which includes the domain name, the types of
variables and predicates, and all relations between variables
(which are also called actions). The other is the problem file,
which instantiates all elements in the domain file and speci-
fies the initial and goal states. For example, the domain file
for the gripper problem includes the variable type, which has
a special syntax for declaring parameter types. The following
shows the typing declaration for the gripper problem.

(:type room - location

gripper ball robby - object)

The domain file also includes the following predicate:

(:predicates (at-robby ?room)

(at ?ball ?position)

(free ?gripper)

(carry ?ball ?gripper))

Finally, the domain file defines actions, including move,
pick , and drop.

In the problem file, the variables will be specified as
follows:

(:location

room1 room2 room3 room4 room5

objects

left right - gripper

ball1 ball2 ball3 ball4 ball5

robby

Similarly, the initial/goal states are also specified in the
problem file.

These model files provide sufficient information with
which to build a table constraint for each action. For
example, we can store the variable information room =
{room1, room2, room3, room4, room5} for later use.

TABLE 2. Variables and values for the example table constraint.

B. PREDICATES
In PDDL, preconditions and effects are expressed as
logical expressions of predicates. Most predicates are
meaningful for convenience in understanding a statement,
e.g., (at?x?r) or (locked?x). However, for table constraints,
these different logical relations can be simplified as enu-
merated feasible variable-value relations. For example, the
predicate (at?x?r) can be expressed as shown in Table 2.
for x = {robot1, robot2} and r = {room1, room2}. For a

VOLUME 5, 2017 17263



X. Jiang, R. Xu: Constraint-Programmed Planner for Deep Space Exploration Problems With Table Constraints

TABLE 3. Variables for action ‘‘pick’’.

TABLE 4. Simplified variables for action ‘‘pick’’.

TABLE 5. Table constraint for action ‘‘pick’’.

different logical relation such as (move?x?p), the form of the
constraint is still the same.

For a consistent structure, we convert all monadic pred-
icates into binary predicates. For example, the predicate
(locked?x) will be expressed as (islocked?x?state). Here, the
type of ?state can be Boolean or enumeration. Notably, for
most binary predicates of the form pre <?x, ?y > that appear
in planning problems, the atom y is used to constrain or
indicate a certain property of x. For each predicate in the
domain file, we select atoms as the candidate variables and
record them as a set named candiVar[].

C. ACTIONS
In a PDDL domain description, actions are defined to specify
the behavioral aspects of the model in terms of preconditions
and effects. When the object types and predicates are known,
the translation of actions into a CSP is straightforward. Let us
consider the pick action in the domain of the gripper problem
as an example.

First, we check the predicates of the action to obtain the
variables for the table constraint.

(:action pick

:parameters (?ball ?room ?gripper ?robby)

:precondition (and (at ?ball ?room)

(at-robby ?robby ?room)

(isfree ?gripper ?state))

:effect (and (carry ?ball ?gripper)

(not (at ?ball ?room))

(not (isfree ?gripper ?state))))

In the pick action, the variables include {?ball, ?room,

?gripper, ?robby, ?state, ?position}. As mentioned before, an
action connects two adjacent levels that serve as precondi-
tions and effects; therefore, the table constraint is extracted
as shown in Table 3.

Then, we examine the preconditions for and effects of the
action following the three steps listed below:

1) Record the value type for each variable.
2) Record the variation of the variables between the two

levels.
3) Select the unchanged variables and merge.

For the example shown in Table 3, the unchanged variables
are ball, gripper , room, and robby. Therefore, the table
constraint can be further simplified as shown in Table 4 to
save storage space.

D. PROBLEM FILE
In PDDL, the specific conditions of a planning problem are
captured by the problem file. For the example above, the
specific conditions are as follows:

(at-robby room1)

(free left)

(free right)

(at ball1 room1)

(at ball2 room1)

(at ball3 room1)

(at ball4 room1)

(at ball5 room1)

From this problem information and the relations in Table 4,
we can fill out the incomplete table as in Table 5, thereby

17264 VOLUME 5, 2017



X. Jiang, R. Xu: Constraint-Programmed Planner for Deep Space Exploration Problems With Table Constraints

completing the conversion of the action constraint into the
form of a table constraint.

E. GENERAL CONSTRAINTS
In addition to planning-domain-dependent constraints, as
considered above, DSPlan also includes some general con-
straints that are commonly used in domain-independent plan-
ners. These constraints are directly coded in the planner,
and we briefly introduce the general constraints included in
DSPlan as follows:

1) Shortest-path constraints are constraints that restrict
redundant action sequences that achieve the same
result. For example, an action pointing−transition(a, b)
will result in an observer on the probe changing
its direction from a to b, and an action sequence
of pointingtransition(a, c), pointingtransition(c, d),
and pointingtransition(d, b) achieves the same result.
With shortest-path constraints, such redundant action
sequences can be avoided.

2) Symmetric value constraints are constraints that break
symmetries in the values that can be assigned to
variables. For example, suppose that there are two
observers on a probe and two targets that need to be
imaged. The observer variables and their domains are
often symmetric so that, when there is an assignment
for one observer, there can be an equivalent assignment
for the other observer that is simply swapped. Sym-
metric value constraints have been found to be very
important for reducing the symmetric structure of the
domains that we have explored.

3) No-op constraints are inspired by the concept of
no-op actions in GraphPlan. Similar to no-op actions,
no-op constraints transform the value of a variable
Vt to Vt+1 if no other constraint ties this variable or
changes its value. These constraints have been found to
be important for constraint handling and propagation.

IV. MUTEX FILTERING ALGORITHM
After converting the actions into table constraints, we need
to address the problem of action constraints that cannot be
satisfied simultaneously. Here, we construct a dynamic set
of action constraints with multiple layers. The rules for con-
structing this set are as follows:

1) The layer number of a constraint is equal to the selected
variable’s time step, which means that the layer number
starts from one.

2) Action constraints in the same layer cannot be mutually
exclusive.

3) Newly added constraints cannot change the values of
other assigned variables; otherwise, other constraints
would no longer be satisfied.

4) Action constraints in the same layer can be satisfied
simultaneously, which denotes the concurrency of these
actions.

Based on the four rules above, the pseudo code for this
construction process is shown in algorithm 1.

Algorithm 1 The Algorithm for Constructing the
Dynamic Set
Input: current_variable
Output: consistent set of action constraints

1 for every constraint involved current_variable do
2 if layer(current_variable.TimeStep) == Null then
3 Ci.layer = current_variable.TimeStep;
4 end
5 else
6 if

isconsistent(layer(current_variable.TimeStep),
Ci) then

7 Ci.layer = current_variable.TimeStep;
8 end
9 return 0;

10 end
11 end

Layer k is used to denote the k-th layer of the constraints.
Because a variable always has the same data structure at dif-
ferent time steps, in the third phase of the heuristic, a driving
variable will always be selected before its response variable.
Therefore, the layer number of a constraint is always equal to
the time step of the driving variable, thus avoiding confusion
in the constraint hierarchy.

In the construction process, the function isconsistent() is
the core step in determining whether an action constraint
is added to the set or dropped. To make this determination,
the first step is to check whether the constraint is consistent
with other constraints in the same layer. Clearly, if two action
constraints have the same driving variable but different val-
ues, they must be mutually exclusive. Next, if they have the
same value, we list the four different situations in Table 6.

When two driving variables have the same value, we check
whether they are a changeable variable. As situation 1 shows,
if a variable in C1 is changeable while that variable in C2 is
unchangeable, their response variables will obtain different
values, which makes C1 and C2 inconsistent.
We can see that only scenario 3 is consistent. Finally,

we must ensure that newly added constraints cannot change
the values of other assigned variables; otherwise, other con-
straints would no longer be satisfied. Thus, the response
variables of the checked constraint must be unassigned. The
corresponding pseudo code is shown in algorithm 2.

Once the action constraints have been addressed as above,
the constraint process can be applied using the general con-
straints and the selected action constraints. The pseudo code
for the planner is shown in algorithm 3.

Algorithm 3 starts with a currentlevel equal to one. In the
algorithm, the key functions are in steps 4, 5, and 8. Once
the next variable has been chosen, a value in this variable’s
domainwill be selected, and the algorithmwill checkwhether

VOLUME 5, 2017 17265



X. Jiang, R. Xu: Constraint-Programmed Planner for Deep Space Exploration Problems With Table Constraints

TABLE 6. Consistent situations between constraints.

Algorithm 2 Function isconsistent()
Input: Ci, layer(n)
Output: consistent or not

1 for every constraint in layer(n) do
2 for every driving variable in Ci do
3 if var ∈ Cj then
4 if var.value in Ci != var.value in Cj then
5 return 0;
6 end
7 else
8 if situation 3 in table 3 no longer

satisfied then
9 return 0;
10 end
11 else
12 if response variable of var has been

assigned then
13 return 0;
14 end
15 end
16 end
17 end
18 end
19 return 1;
20 end

the consistency of the general constraints and dynamic action
constraints can be satisfied for this value. In the func-
tion ConstraintCheck(), the GAC algorithm [67] is adopted.
If the assignment is consistent, algorithm 3 will continue to
currentlevel + 1; otherwise, algorithm 3 will return to the
current variable, look for another value for this variable, or
even backtrack.

V. SIMULATION EXPERIMENT
The developed solver was written in C/C++ and is called
DSPlan. In the experimental section, we demonstrate that
DSPlan is suitable for deep space exploration modelčwhich
is characterized by more loads and complex load constraints.
To evaluate the performance of the proposed modeling
method and algorithm, we performed experimental compar-
isons with the GP-CSP and Europa planners. GP-CSP is a
GraphPlan-like constraint-programmed planner, and Europa
is a partial order planner that has been widely used in the
aerospace field since the Deep Space 1 (DS1) mission. All the
compared planners are domain-independent planners. In the
comparison experiments, these planners were used to test

Algorithm 3 Complete Algorithm Process
Input: CSP(the problem information), current_level

(started from one)
Output: solution

1 if current_level==1 then
2 obtain constraint number of each variable involved;
3 end
4 current_variable← VarSelection();
5 construct_dynamic_set(current_variable);
6 for every value in the domain of the current_variable do
7 assignValue(current_variable);
8 if ConstraintCheck(CSP,current_variable)==1

then
9 DSPlan(CSP,solution,current_level + 1);

10 end
11 else
12 restore();
13 end
14 end

the domains from previous IPCs, and three deep space explo-
ration missions were also proposed to check the performance
of DSPlan in real problems. The experiments were performed
on a system with an Intel i5-2430 2.4 GHz CPU and 4 GB
of RAM.

A. IPC DOMAINS
The tested IPC domains include: blockworld, gripper, and
logistic. These three domains separately contain different
numbers of actions. For example, the blockworld domain is
described as moving blocks to their desired state. Accord-
ingly, there is only one action, move, in its domain file.
Gripper is an instance of the automated planning of a robot
with two gripper arms to move balls among different rooms,
and there are three actions in the gripper’s domain. Logistic,
which has six actions, is the most complex domain compared
to blockworld and gripper. In logistic, a driver must manage
to move a package to another location. He or she needs to
load the package on the truck, drive to the airport, unload
the package, load the package on the airplane, and finally fly
to the desired location. This domain is very similar to deep
space exploration problems. Figure 5 shows the experimental
result for blockworld and the runtime for generating the table
constraints.

In the figure, we can see that, although the coding time
for table constraints did not take too much of the total
running time of DSPlan, the efficiency was much worse
than EUROPA and GP-CSP. This is because the blockworld
domain is so simple that it only contains one action. Coding it
as table constraints did not obtain sufficient domain informa-
tion to compensate for the time cost. The efficiency of DSPlan
improves with the increases in the problem’s complexity, as
we can see in the planning result in Figure 6 for the gripper
domain.

17266 VOLUME 5, 2017



X. Jiang, R. Xu: Constraint-Programmed Planner for Deep Space Exploration Problems With Table Constraints

TABLE 7. Subsystems and activity of detector.

TABLE 8. Events for orbit adjustment mission.

FIGURE 5. Planning results of blockworld.

There are three gripper actions. Although the coding time
has increased, the total running time decreases, and DSPlan
is faster than the other two planners in some of the instances.

TABLE 9. Events for SLD mission.

FIGURE 6. Planning results of gripper.

FIGURE 7. Planning results of logistic.

Figure 7 further proves that, with more actions in the domain,
the DSPlan has a greater advantage compared to the domain-
independent planner.

B. DEEP SPACE EXPLORATION INSTANCES
In this section, we tested DSPlan with three deep space explo-
ration instances: an SLD mission, orbit adjustment mission,
and observation mission. The domain file for a deep space

VOLUME 5, 2017 17267



X. Jiang, R. Xu: Constraint-Programmed Planner for Deep Space Exploration Problems With Table Constraints

TABLE 10. Ten instances of the observation mission.

FIGURE 8. Planning result for orbit adjustment mission.

FIGURE 9. Planning result for an SLD mission.

detector is built in Table 7. Themodel for the probe consists of
8 subsystems and 26 actions. Part of the systems and actions
are only used for particular missions. For example, subsystem
DetachMechanism is only used for an SLD mission.

An orbit adjustment mission’s purpose is to figure out the
actions before and after the orbit adjustment event, as listed
in Table 8.

We adjusted the initial status and performed 10 tests
respectively. The results are shown in Figure 8. The advantage
of a domain-dependent planner becomes more obvious with
domain-specific action constraints and a means of specific
processing to help guide the search. In addition, it is espe-
cially suitable for deep space exploration planning, which has
complex structures as well as numerous constraints.

Table 9 shows the events in an SLD mission, and the
planning results are shown in Figure 9.

However, the proposed method is not suitable for prob-
lems with increasing size because the method to generate

FIGURE 10. Planing result for observation mission.

table constraints is a combinatorial problem. With larger-
sized problems, the spatial complexity of the problem will
increase dramatically. This can be seen in an observation
mission (Table 10). The purpose of this mission is to adjust
the warmers and attitude to observe the targets, then down-
load the phonos to the ground stations. As we increase the
number of targets, observers, warmers, and ground stations,
the efficiency of planning decreases. For example, in instance
10 in Figure 10, the time spent in the DSPlan has gone
far beyond EUROPA and GP-CSP. Fortunately, the number
of each payload on the detector is relatively small, and the
number is already fixed before the task begins.

VI. CONCLUSION
Domain-dependent planners are usually highly efficient,
unlike domain-independent planners, and this is especially
important in deep space exploration because of the strin-
gent requirements for fast planning for such detectors.
In this paper, we designed a constraint-programmed plan-
ner and coded the actions in the planning problem as
domain-dependent constraints. To overcome the defects of
domain-dependent planners, we proposed a technique for
automatically converting the PDDL model used in planning
into the form of table constraints. Experimental results proved
that the time cost for conversion is a worthy trade-off for the
gain in efficiency.

Based on the formulated table constraints, we also pro-
posed a dynamic constraint set and a corresponding mutex
filtering algorithm to address the problem of action con-
straints that cannot be satisfied simultaneously. Experimental

17268 VOLUME 5, 2017



X. Jiang, R. Xu: Constraint-Programmed Planner for Deep Space Exploration Problems With Table Constraints

results suggest that the more constraints there are in a plan-
ning problem, the more obvious are the advantages of DSPlan
because it can obtain more domain information to help to
prune the relevant branches and guide the search.

However, there are still some deficiencies in the proposed
planner because we have designed it based only on classical
domains and, consequently, some numerical constraints are
not included. In future research, we will incorporate time
constraints and resource constraints into the probe model to
achieve a stronger connection with engineering practice.

REFERENCES
[1] H. Price, R. Manning, and E. Sklyanskiy, ‘‘A high-heritage blunt-body

entry, descent, and landing concept for human mars exploration,’’ in Proc.
54th AIAA Aerosp. Sci. Meet., 2015, pp. 1–5.

[2] P. Cui, X. U. Rui, S. Zhu, and F. Zhao, ‘‘State of the art and development
trends of on-board autonomy technology for deep space explorer,’’ Acta
Aeron. Et Astronautica Sinica, vol. 35, no. 1, pp. 13–28, 2014.

[3] E. C. Ezell and L. N. Ezell,OnMars: Exploration of the Red Planet, 1958-
1978–The NASA History. North Chelm, MA, USA: Courier Corp., 2013.

[4] D. Rubin et al., ‘‘A calibration of NICMOS camera 2 for low count rates,’’
Astronomical J., vol. 149, no. 5, p. 15, 2015.

[5] W. Davies and P. North, ‘‘Estimating aod using a quad-modal size
distribution,’’ in Proc. EGU Gen. Assembly Conf., vol. 15. 2013,
paper EGU2013-3163.

[6] S. Santandrea et al., ‘‘Proba2: Mission and spacecraft overview,’’ Solar
Phys., vol. 286, no. 1, pp. 5–19, 2013.

[7] T. V. Peters, J. Branco, D. Escorial, L. T. Castellani, and A. Cropp,
‘‘Mission analysis for PROBA-3 nominal operations,’’ Acta Astron.,
vol. 102, pp. 296–310, Oct. 2014.

[8] X. Zhao, H. Yang, H. R. Karimi, and Y. Zhu, ‘‘Adaptive neural control
of MIMO nonstrict-feedback nonlinear systems with time delay,’’ IEEE
Trans. Cybern., vol. 46, no. 6, pp. 1337–1349, Jun. 2016.

[9] H. Kautz, D. McAllester, and B. Selman, ‘‘Encoding plans in propositional
logic,’’ Proc. KR, vol. 96, pp. 374–384, Nov. 1996.

[10] W. Carnielli and M. Matulovic, ‘‘Non-deterministic semantics in polyno-
mial format,’’ Electron. Notes Theor. Comput. Sci., vol. 305, pp. 19–34,
Jul. 2014.

[11] X. Zhao, P. Shi, and X. Zheng, ‘‘Fuzzy adaptive control design and
discretization for a class of nonlinear uncertain systems,’’ IEEE Trans.
Cybern., vol. 46, no. 6, pp. 1476–1483, Jun. 2015.

[12] K. Ghédira, Constraint Satisfaction Problems: CSP Formalisms and Tech-
niques. Hoboken, NJ, USA: Wiley, 2013.

[13] P. van Beek and X. Chen, ‘‘CPLAN: A constraint programming approach
to planning,’’ in Proc. AAAI/IAAI, 1999, pp. 585–590.

[14] L. A. Castillo, J. Fernández-Olivares, O. Garcia-Perez, and F. Palao, ‘‘Effi-
ciently handling temporal knowledge in an HTN planner,’’ in Proc. ICAPS,
Jun. 2006, pp. 63–72.

[15] I. Little and S. Thiebaux, ‘‘Concurrent probabilistic planning in the graph-
plan framework,’’ in Proc. ICAPS, 2006, pp. 263–273.

[16] M. Kapadia, J. Falk, F. Zünd, M. Marti, R. W. Sumner, and M. Gross,
‘‘Computer-assisted authoring of interactive narratives,’’ in Proc. I3D,
2015, pp. 85–92.

[17] M. B. Do and S. Kambhampati, ‘‘Planning as constraint satisfaction: Solv-
ing the planning graph by compiling it into CSP,’’ Artif. Intell., vol. 132,
no. 2, pp. 151–182, 2001.

[18] N. Creignou and D. L. Berre, Theory and Applications of Satisfiabil-
ity Testing—SAT (Lecture Notes in Computer Science). Paris, France:
Springer, 2016.

[19] P. Q. Pan, Integer Linear Programming (ILP). Berlin, Germany: Springer,
2014.

[20] B. Zhang, L. Tang, J. DeCastro, M. Roemer, and K. Goebel, ‘‘Autonomous
vehicle battery state-of-charge prognostics enhanced mission planning,’’
Int. J. Progn. Health Manag, vol. 5, no. 2, pp. 1–12, 2014.

[21] S. Chien et al., ‘‘A demonstration of robust planning and scheduling in the
TechSat-21 autonomous sciencecraft constellation,’’ Ear Nose Throat J.,
vol. 86, no. 8, pp. 506–511, 2014.

[22] S. Yin, H. Yang, and O. Kaynak, ‘‘Sliding mode observer-based FTC for
Markovian jump systems with actuator and sensor faults,’’ IEEE Trans.
Autom. Control, vol. 62, no. 7, pp. 3551–3558, Jul. 2017.

[23] N. Muscettola, P. Nayak, B. Pell, and B. C. Williams, ‘‘Remote agent:
To boldly go where no AI system has gone before,’’ Artif. Intell., vol. 103,
nos. 1–2, pp. 5–47, 1998.

[24] S. Yin, H. Gao, J. Qiu, and O. Kaynak, ‘‘Descriptor reduced-order sliding
mode observers design for switched systems with sensor and actuator
faults,’’ Automatica, vol. 76, pp. 282–292, Feb. 2017.

[25] B. Pell et al., ‘‘A remote agent prototype for spacecraft autonomy,’’ Proc.
SPIE, vol. 2810, pp. 74–90, Oct. 1996.

[26] B. Cichy et al., ‘‘Validating the autonomous EO1 science agent,’’ in Proc.
Int. Workshop Planning Schedule Space, Darmstadt, Germany, Jun. 2004,
2010.

[27] R. Knight, C. Chouinard, G. Jones, and D. Tran, ‘‘Leveraging multiple arti-
ficial intelligence techniques to improve the responsiveness in operations
planning: Aspen for orbital express,’’ AI Mag., vol. 35, no. 4, pp. 26–36,
2014.

[28] S. Yin, H. Gao, J. Qiu, and O. Kaynak, ‘‘Fault detection for nonlinear
process with deterministic disturbances: A just-in-time learning based data
driven method,’’ IEEE Trans. Cybern., to be published.

[29] J. Faublee, ‘‘Planning and scheduling for fleets of earth observing satel-
lites,’’ in Proc. 6th Int. Symp. Artif. Intell. Robot. Autom. Space, 2001,
p. 307.

[30] S. Bernardini and D. E. Smith, ‘‘Developing domain-independent search
control for europa2,’’ in Proc. Workshop Heuristics Domain, 2008.

[31] G. Verfaillie and C. Pralet, ‘‘A timeline, event, and constraint-based mod-
eling framework for planning and scheduling problems,’’ in Proc. Knowl.
Eng. Planning Scheduling, 2013, p. 61.

[32] D. Achlioptas, S. Hamed Hassani, N. Macris, and R. Urbanke, ‘‘Bounds
for random constraint satisfaction problems via spatial coupling,’’ in Proc.
27th ACM-SIAM Symp. Discrete Algorithms, 2016, pp. 469–479.

[33] M. Bodirsky. (2012). ‘‘Complexity classification in infinite-domain con-
straint satisfaction.’’ [Online]. Available: https://arxiv.org/abs/1201.0856

[34] C. D. Rosin. (2014). ‘‘Unweighted stochastic local search can be effec-
tive for random CSP benchmarks.’’ [Online]. Available: https://arxiv.
org/abs/1411.7480

[35] K. Stergiou, ‘‘Restricted path consistency revisited,’’ in Principles and
Practice of Constraint Programming. Berlin, Germany: Springer, 2015,
pp. 419–428.

[36] M. Kolombo and R. Barták, A Constraint-Based Planner for Mars Express
Orbiter. Berlin, Germany: Springer, 2014.

[37] E. P. K. Tsang, Foundations of Constraint Satisfaction. London, U.K.:
DBLP, 1993, pp. 188–224.

[38] M. Vallati, L. Chrpa, M. Grzes, T. L. Mccluskey, M. Roberts, and S. San-
ner, ‘‘The 2014 international planning competition: Progress and trends,’’
AI Mag., vol. 36, no. 3, pp. 90–98, 2015.

[39] A. Coles, ‘‘A survey of the seventh international planning competition,’’ Ai
Mag., vol. 33, no. 1, pp. 83–88, 2012.

[40] R. W. Butler, R. I. Siminiceanu, and C. A. Munoz, ‘‘The ANMLite lan-
guage and logic for specifying planning problems,’’ NASA Langley Res.
Center, Hampton, VA, USA, Tech. Rep. NASA/TM-2007-215088, 2008.

[41] E. Karpas and C. Domshlak, ‘‘Cost-optimal planning with landmarks,’’
in Proc. IJCAI, Jul. 2009, pp. 1728–1733.

[42] P. Haslum, ‘‘Admissible heuristics for optimal planning,’’ in Proc. AIPS,
2010, pp. 140–149.

[43] B. Bonet and M. Helmert, ‘‘Strengthening landmark heuristics via hitting
sets,’’ in Proc. Conf. ECAI, 2010, pp. 329–334.

[44] E. Keyder, S. Richter, and M. Helmert, ‘‘Sound and complete landmarks
for and/or graphs,’’ in Proc. Ecai, 2010, pp. 335–340.

[45] V. Shivashankar, R. Alford, M. Roberts, and D. W. Aha, ‘‘Cost-optimal
algorithms for planning with procedural control knowledge,’’ in Proc. IOS,
2016, pp. 1702–1703.

[46] E. Erdem, K. Haspalamutgil, C. Palaz, T. Uras, and V. Patoglu, ‘‘Combin-
ing high-level causal reasoning with low-level geometric reasoning and
motion planning for robotic manipulation,’’ in Proc. ICRA, May 2011,
pp. 4575–4581.

[47] W. Burgard, C. Stachniss, G. Grisetti, and B. Steder, ‘‘A comparison of
slam algorithms based on a graph of relations,’’ in Proc. Int. Conf. Intell.
Robots Syst. (IROS, 2009, pp. 2089–2095.

[48] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, FFRob: An Efficient
Heuristic for Task and Motion Planning. New York, NY, USA: Springer,
2015, pp. 179–195.

[49] J. Hoffmann, ‘‘FF: The fast-forward planning system,’’ AI Mag., vol. 22,
no. 3, pp. 57–62, 2014.

VOLUME 5, 2017 17269



X. Jiang, R. Xu: Constraint-Programmed Planner for Deep Space Exploration Problems With Table Constraints

[50] C. Ratke, H. Hoffmann, and H. Nehring, ‘‘Routing of vehicles using CSP:
Case sudy,’’ in Proc. 9th Int. Conf. Complex, Intell. Soft. Intensive Syst.,
2015, pp. 250–253.

[51] D. J. Geschwender, R. J. Woodward, and B. Y. Choueiry, ‘‘Characteriz-
ing performance of consistency algorithms by algorithm configuration of
random CSP generators,’’ in Proc. 29th AAAI Conf. Artif. Intell., 2015,
pp. 4162–4163.

[52] P. Antonino, A. Sampaio, and J. Woodcock, A Refinement Based Strategy
for Local Deadlock Analysis of Networks of CSP Processes. New York,
NY, USA: Springer, 2014.

[53] M. Sanchez, S. D. Givry, and T. Schiex, ‘‘Mendelian error detection in
complex pedigrees using weighted constraint satisfaction techniques,’’ in
Proc. Conf. Artif. Intell. Res. Develop., 2007, p. 917.

[54] I. P. Gent, E. Macintyre, P. Prosser, and T. Walsh, ‘‘The constrainedness of
search,’’ in Proc. AAAI, vol. 1. 2002, pp. 246–252.

[55] R. Dechter and I. Meiri, ‘‘Experimental evaluation of preprocessing algo-
rithms for constraint satisfaction problems,’’ Artif. Intell., vol. 68, no. 2,
pp. 211–241, 1994.

[56] R. Barták, ‘‘Constraint processing,’’ Acta Autom. Sinica, vol. 17, no. 2,
p. 687, 2007.

[57] H. Li, X. Yang, and Y. Ouyang, ‘‘MCHRC: Min-conflict heuristic based
Web services chain reconfiguration approach,’’ in Proc. Int. Conf. Comput.
Intell. Softw. Eng., 2009, pp. 1–4.

[58] H. Li and X. Yang, ‘‘A min-conflict heuristic-based Web service
chain reconfiguration approach,’’ Intell. Inf. Manage., vol. 2, no. 10,
pp. 597–607, 2010.

[59] E. C. Freuder, ‘‘Synthesizing constraint expressions,’’ Commun. ACM,
vol. 21, no. 11, pp. 958–966, 1978.

[60] A. K. Mackworth, ‘‘Consistency in network of relations,’’ Artif. Intell.,
vol. 8, no. 1, pp. 99–118, 1977.

[61] N. Manthey, P. Steinke, and T. Philipp, ‘‘A more compact translation of
pseudo-Boolean constraints into CNF such that generalized arc consistency
is maintained,’’ in Proc. Adv. Artif. Intell., 2014, pp. 123–134.

[62] M. Siala, E. Hebrard, and M.-J. Huguet, ‘‘An optimal arc consistency algo-
rithm for a particular case of sequence constraint,’’ Constraints, vol. 19,
no. 1, pp. 30–56, 2014.

[63] Y. Jiang, T. Richards, and B. Richards, ‘‘Nogood backmarking with min-
conflict repair in constraint satisfaction and optimization,’’ in Proc. Int.
Workshop Principles Pract. Constraint Program., 1994, pp. 21–39.

[64] R. Dechter and D. Frost, ‘‘Backjump-based backtracking for constraint
satisfaction problems,’’ Artif. Intell., vol. 136, no. 2, pp. 147–188, 2002.

[65] P. Prosser, ‘‘Hybrid algorithms for the constraint satisfaction problem,’’
Comput. Intell., vol. 9, no. 3, pp. 268–299, 1993.

[66] X. Chen, V. Beek, and Peter, ‘‘Conflict-directed backjumping revisited,’’
J. Artif. Intell. Res., vol. 14, no. 1, pp. 53–81, 2011.

[67] K. C. K. Cheng and R. H. C. Yap, ‘‘Maintaining generalized arc con-
sistency on ad-hoc n-ary Boolean constraints,’’ in Proc. ECAI, 2006,
pp. 78–82.

XIAO JIANG born in 1986. He is currently pur-
suing the Ph.D. degree in aerospace engineer-
ing with the Beijing Institute of Technology,
China. His research interests are deep space probe
autonomous operation and autonomous mission
planning.

RUI XU received the Ph.D. degree from the
Harbin Institute of Technology. He is currently a
Doctoral Supervisor and an Associate Professor
of aerospace engineering with the Beijing Institute
of Technology. His work has been published in a
number of different journals. His research inter-
ests are deep space probe autonomous operation,
autonomous mission planning, and autonomous
navigation.

17270 VOLUME 5, 2017


