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ABSTRACT To consider the uncertainty when determining the values of geo-mechanical parameters,
interval values are used to indicate the physical and mechanical parameters of the rockmass. An interval
non-probabilistic reliability model of the surrounding jointed rockmass of an underground opening, which
can be used when the data are scarce, is developed to evaluate the stability of the rockmass in the Jiaojia
gold mine. The calculation results of the interval non-probabilistic reliability are in agreement with the actual
situation. Thus, the interval non-probabilistic reliability is a beneficial complement to the traditional analysis
methods of the random reliability and the safety factor.

INDEX TERMS Underground engineering, jointed rockmass, block theory, interval non-probabilistic
reliability.

I. INTRODUCTION
During the excavation of mines and tunnels, rockmasses are
divided into blocks of different sizes and forms by structural
planes. The blocks that are exposed to the free surface will
slide along the structural planes and will no longer be in a
balanced state, resulting in a chain reaction that causes local
instability. Thus, it is important to investigate the stability
characteristics of a rockmass [1]–[3]. Block theory [1], [3]
was proposed by Goodman and Shi. As one of the most
effective methods to analyze block stability, the theory has
been widely used and discussed in rock mechanics and
engineering.

In the design of a mining system, the stability level of the
surrounding jointed rockmass in underground engineering is
typically expressed by a safety factor, which is defined as
the ratio of the integral of the characteristic shear strength to
the driving forces (gravitational) over the critical failure sur-
face. However, ‘high’ safety factors do not necessarily denote
low probabilities of failure [1]–[7]. Duncan [8] reported that,
through regulation or tradition, the same safety factor was
often applied to conditions that involved varying degrees of
uncertainty; A bootstrap method was proposed by Li et al.

for characterizing the effect of uncertainty in shear strength
parameters on slope reliability [9].

Recent interest and the application of load and resistance
factor design methods have allowed engineers to implicitly
account for uncertainties using statistical methods and ran-
dom field theory [4], [5], [8], [10]–[15]. Orr [16] traced the
changes that have occurred in how the parameter values for
use in geotechnical designs have been defined and selected,
and discussed what changes have been proposed for the revi-
sion of Eurocode 7 to make the selection of characteristic soil
parameter values more objective. Fenton and Griffiths [17]
developed the random finite-element method (RFEM), which
combined nonlinear finite-element methods with random
field generation techniques. Subsequently, the RFEM was
further developed to combine three-dimensional elastoplastic
finite elements and three-dimensional random field theory in
the Monte Carlo framework to directly assess the influences
of the coefficient of the variation of soil strength and the
spatial correlation length on the slope reliability [18], [19].
Jiang et al. [20] developed an approach for efficient evalu-
ation of the system failure probability Pf , of slope stability
in spatially variable soils based on Monte Carlo simulation.
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Li et al. [21] presented one approach to evaluate the uncer-
tainty in safety factor and Pf of slope in the presence of
geological uncertainty using borehole data. Tan et al. [22]
suggested that the utilization of the approximate response
surface functions for a reliability assessment can reduce
the computational costs in structural reliability analysis.
Li et al. [23] reviewed previous literature on developments
and applications of response surface methods in different
slope reliability problems, and identified soil slope relia-
bility analysis problems into four types. Lü and Low [24]
performed a probabilistic analysis of underground rock exca-
vations using the response surface method and the second-
order reliability method, in which the quadratic polynomial
with cross terms was used to approximate the implicit limit
state surface at the design point. Low et al. [25] provided
a short code in the ubiquitous Excel spreadsheet platform
for efficiently calculating the bounds of the system failure
probability. Dadashzadeh et al. [26] proposed an integrated
methodology for probabilistic numerical modeling of rock
slope stability based on response surface method, in which
FORMwas used to develop an explicit performance function
from the results of numerical simulations.

Despite the great achievements reported in the literature
on the reliability analysis method based on probability the-
ory, some difficulties remain in the applications of rock
mechanics and mining engineering. First, for probabilistic
reliability analysis on the stability of the surrounding rock,
the distribution form of the parameter must be ascertained,
which is a difficult task when the exploration of the sampling
points and test data are both scarce. Moreover, presumptions
of the probability distribution forms cannot be applied in
all circumstances, and reliability indexes corresponding to
different forms differ considerably [5], [27]. Second, when
the amount of data is scarce [27], minor errors caused by the
censored data of the distribution function inevitably lead to an
unacceptable analytical result of the reliability index because
the probabilistic reliability analysis model is highly sensitive
to this parameter value. Thus, a method for efficiently analyz-
ing the reliability of surrounding rock, even with scarce data,
must be established.

The calculation parameters in the stability analysis of the
surrounding rock take on different degrees of uncertainty
due to the heterogeneity of the rockmass in underground
caverns, the discreteness of the surveying sampling points and
the randomness of the load. The interval non-probabilistic
reliability analysis methods for structures [28]–[36] based on
interval theory provide a useful approach to evaluate these
uncertainties. Interval values can reflect the uncertainty of a
parameter value when the number of samples is scarce, thus
reducing the demand for data information. In a project study,
it is easier to determine the range of a mechanical parameter
than to determine both the exact value and the probability
distribution of the parameter. Therefore, the paper focuses on
how to evaluate the stability of a jointed rockmass in an under-
ground cavern using the interval non-probabilistic reliability
analytical method and presents a reasonable application of the

interval strength to analyze the stability of the underground
jointed rockmass in caverns.

Consequently, interval values are adopted as the param-
eter values according to interval mathematical theory.
Dong and Li [37] adopted the interval rock strength to reflect
the uncertainty of the reliability based on an analysis of
the characteristics of the parameter values. A comprehen-
sive reliability analysis method of the surrounding rock in
underground caverns was established by investigating the
research method of the interval non-probabilistic reliability.
To further improve and perfect theories and methods of relia-
bility analysis for underground caverns, the calculated results
were compared with the results obtained from the methods of
random reliability and the safety factors.

II. LIMIT STATE EQUATION AND SLIDING
CHARACTERISTICS OF ROCK BLOCKS
Structural planes in a rockmass affect the deformation and
damage of a jointed rockmass. The principles of establishing
a reliability model of a jointed rockmass in an underground
cavern are as follows. First, all of the infinite fractured
blocks should be determined according to stereographic pro-
jection and vector analysis theory; next, all of the removable
and key blocks should be determined; finally, mechanical
analysis of the key blocks should be combined with the
reliability method to obtain the performance function and
establish an analytical model for the reliability of the jointed
rockmass.

It is not difficult to determine the faults and occurrence of
a large-scale structural plane in a practical project; thus, these
parameters can be regarded as a constant value in the calcu-
lation. Reliability modeling only considers the uncertainty of
the mechanical parameters of a rockmass.

FIGURE 1. 2D figure of a block sliding along a single structural plane:
W, R and N indicates the gravity, the resistance force, and the supporting
force, respectively.

A. SLIDING ON A SINGLE STRUCTURAL PLANE
When a block sliding along a single block i, the strained
condition of the block is shown in Fig. 1. To analyze
the state condition of the block, the forces are resolved
into the sliding direction and the direction normal to the
plane.
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FIGURE 2. Sketch of a block sliding along two structural planes (a the sketch map of a block sliding along two structural planes; b the formed
blocks in an actural tunnel).

In the direction normal to the structural plane, the total
force can be expressed as equation (1)

N = W cos θ (1)

Along the sliding direction, the active force S and the
resistance force R are shown in equation (2) and equation (3)

S = W sin θ (2)

R = N tanϕ + cs (3)

where θ , W , N , ϕ, c, and s indicate the angle of the sliding
direction to the horizontal plane, the gravity, the normal force
to the structural plane, the internal frictional angle, the cohe-
sive strength, and the area of the sliding plane, respectively.

While a key block is sliding along a single joint plane,
the limit state equation can be defined as equation (4)

R− S = W cos θ tanϕ + cS −W sin θ (4)

B. SLIDING ON TWO STRUCTURAL PLANES
When a block slides along two structural planes i and j,
except for sliding plane i and j, other structural planes are
all detached from the sliding block. As shown in Fig. 2,
when the block EMNP sliding along two structural planes
EMN and EPN, the sliding direction is the intersection
line EN. Note the dip directions of the two structural
planes as α1, α2, and the dip angles as β1, β2. The nor-
mal vectors of the two structural planes can be expressed
as −→n1 = (sinα1 sinβ1, sinα1 cosβ1, cosα1) and −→n2 =
(sinα2 sinβ2, sinα2 cosβ2, cosα2), therefore, the direction
of the intersection line EN can be noted as

−→
d = −→n1 ×

−→n2 .
The gravity is also projected into the three directions and

shown in equations (5) to (7).

−→
Wd =

−→
W ·

−→
d∣∣∣−→d ∣∣∣ =

∣∣∣−→W ∣∣∣ cos 〈−→W , −→d 〉 (5)

−→
Wn1 =

−→
W ·

−→n1∣∣−→n1 ∣∣ =
∣∣∣−→W ∣∣∣ cos 〈−→W , −→n1

〉
= N1 (6)

−→
Wn2 =

−→
W ·

−→n2∣∣−→n2 ∣∣ =
∣∣∣−→W ∣∣∣ cos 〈−→W , −→n2

〉
= N2 (7)

The active force S and the resistance R along the sliding
direction can be expressed as equation (8) and equation (9),
and the limit state equation can be written as equation (10).

S = Wd =

∣∣∣−→W ∣∣∣ cos 〈−→W , −→d 〉 = W sin θ (8)

R = R1 + R2 =
−→
Wn1 tanϕ1 + c1s1 +

−→
Wn2 tanϕ2 + c2s2

= N1 tanϕ1 + c1s1 + N2 tanϕ2 + c2s2 (9)

R− S = N1 tanϕ1 + N2 tanϕ2 + c1s1 + c2s2 −W sin θ

(10)

where
−→
Wd ,
−→
Wn1 ,
−→
Wn2 indicate the component of the gravity

along the direction of the intersection line of the two structural
planes, and the components of the gravity pointed to the two
structural planes; N1,N2 indicate the normal force to the two
structural planes; ϕ1, ϕ2, c1, c2, s1 and s2 indicate the internal
frictional angle, the cohesive strength, and the area of the two
structural planes, respectively.

III. PROBABILISTIC RELIABILITY METHOD
FOR BLOCK STABILITY
Consider a removable block sliding on two structural planes
to define the random reliability. Suppose the limit state func-
tion of a removable block in the following form:

g (X) = g (c1, c2, ϕ1, ϕ2) (11)

where X = (c1, c2, ϕ1, ϕ2) are the random variables. The
failure surface can be expressed as g(X) = 0 and it divides
the variable space into the failure domain and the safe domain.
The reliability of a block can be defined as

Ps = 1− Pf (12)

where Pf is the failure probability. The reliability index can
be obtained as follows:

β =
µg

σg
(13)
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where µg is the mean of g (X), σg is the standard deviation of
g(X). The random reliability of a block can be expressed as

Ps= 1−8(−β) = 8(β) (14)

where8 is the standard normal distribution function, β is the
reliability index.

The random reliability is used to describe the probability of
a unit to perform its intended functions under stated operating
conditions for a specified period of time. As defined above,
random reliability provides us a standard to evaluate the
reliability of a certain block, i.e. the block is reliable if the
random reliability is near to 1 while the structure is unreliable
if the random reliability is much less than 1, and measures
should be taken to guard against accidents.

IV. SYNTHESIZED INTERVAL NON-PROBABILISTIC
RELIABILITY METHOD FOR BLOCK STABILITY
Uncertainty theory has developed rapidly and has been
widely applied in recent years. Ben-Haim et al. [33] pro-
posed the uncertainty convex model to address the deficien-
cies of the probabilistic model. Subsequently, Guo et al. [34]
established a theoretical interval non-probabilistic reliabil-
ity model for evaluating the reliability of structures. In this
paper, the theory of interval non-probabilistic reliability was
used to analyze the reliability of blocks. The interval non-
probabilistic reliability η of a block is defined as theminimum
distance of the normalized failure surface from origin of Cn,
and the distance is measured in l∞ norms. η = 1 means that
the most probable failure point is located on the boundary
of failure domain, and the reliability of rockmass structure
has reached a critical state. For the case of 0 ≤ η < 1,
some combinations of uncertain parameters may be out of
the reliable domain. The rockmass structure or system cannot
satisfy the reliability requirement. When η > 1, all possible
points of the rockmass structure lie into the reliable domain,
and the rockmass structure is safe and reliable. To guarantee
the safety of rockmass structures and obtain adequate safety
margin, the interval non-probabilistic reliability η can be
chosen to be larger than 1.

The interval values of the shear strength parameters of a
rockmass are [cl, cu], and [ϕl, ϕu]. Suppose that the inter-
val non-probabilistic reliability of the jointed rockmass in
an underground cavern is η. When η > 1, the jointed
rockmass in an underground cavern is reliable; otherwise,
it is unreliable. A larger value of η indicates a higher level
of reliability. An interval non-probabilistic reliability solu-
tion method should be further established using the method
described above to analyze the reliability comprehensively.
The friction coefficient can be written as fi = tanϕi, for
convenience of analysis, according to the interval standardize
method, the interval limit state equation (4) and equation (10)
can be written as the standard form in equation (15) and
equation (16).

Z1 = R− S = W cos θ
(
f c1 + f

r
1 δf1

)
+
(
cc1 + c

r
1δc1

)
S −W sin θ (15)

Z2 = R− S = N1
(
f c1 + f

r
1 δf1

)
+ N2

(
f c2 + f

r
2 δf2

)
+
(
cc1 + c

r
1δc1

)
S1 +

(
cc2 + c

r
2δc2

)
S2 −W sin θ (16)

where (f ci + f ri δfi ), (c
c
i + criδci ) and (f cj + f rj δfj ), (c

c
j + crjδcj )

are the interval shear strengths of structural planes i and j,
δ1 = [δfi , δci ] and δ2 = [δfi , δci , δfj , δcj ] are the standardized
interval value vectors; cci = (cli + c

u
i )/2, c

r
i = (cui − cli)/2,

[cli, c
u
i ] = cci ±c

r
i δci , δc ∈ [−1, 1], and similar parameters are

assigned to the other planes.
According to the non-probabilistic reliability theory, the

equations of the interval non-probabilistic reliability [13]
ηm (m = 1, 2) for the standardized interval performance
functions (15) and (16) can be solved as

ηm = min {‖δm‖∞} (17)

and meet the condition

Zm = g(δm) = 0 (18)

To establish a method for solving the interval non-
probabilistic reliability ηm, based on previous studies,
Jiang et al. [35] proposed an one-dimensional optimization
algorithm that can effectively avoid interval extension when
calculating the complex performance function. The paper
will apply this method to solve the interval non-probabilistic
reliability. The specific analysis process is described below.
(1) Consider a block sliding along a single structural plane

first. List 2 super radiation lines/ultra-rays that pass through
the origin O∞δ1 = {δ1 : δ1k = 0, k = 1, 2} of the
δ1 expansion space C∞δ1 = {δ1 : δ1k ∈ (−∞,+∞),

k = 1, 2} and the vertex Pjδ1 = {δ1 : |δ1k | = 1, k =
1, 2} (j=1,2,3,4) of the symmetric convex domain C∞δ1 =
{δ1 : |δ1k | ≤ 1, k = 1, 2} formed by δ1. These super radia-
tion lines/ultra-rays are marked as δ11 = ±δ12, meeting the
condition δ1 ∈ Cδ1 ⊂ C∞δ1 .
(2) Add δ11 = ±δ12 to Equation 15 to solve the inter-

val non-probabilistic reliability; two linear equations can
be obtained. The interval non-probabilistic reliability set
{η11, η12} can be obtained by solved the two linear equations
using the numerical method.
(3) The complex solutions are abandoned, and the absolute

value of the real solution is selected. The minimum will
be the interval non-probabilistic reliability η1 of the jointed
rockmass in an underground cavern.
In the same manner, when block slides along two struc-

tural planes i and j, as in (1), (2), and (3), the interval non-
probabilistic reliability set can be solved, and the interval
non-probabilistic reliability η2 of the jointed rockmass in an
underground cavern can be obtained from Equation 16.

V. APPLICATIONS IN THE JIAOJIA GOLD MINE
A. BRIEF INTRODUCTION TO THE JIAOJIA GOLD MINE
The Jiaojia gold mine, which is affiliated with the China
National Gold Group Corporation, is a large gold deposit in
China buried underground at more than 500 m and situated
in the northeast of Laizhou City, Shandong Province. A cer-
tain roadway section of sublevel −470 in the Wangershan
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FIGURE 3. Sketch of Jiaojia gold mine: a The location, b The horizontal projection, c The vertical projection of line 120, and d The jointed
rockmass of a certain tunnel.

mining area is a basket handle arch, which has a clear width
of 4.2 m, and the heights of the vertical wall and the arch are
3 m and 1.4 m, respectively. The roadway has complex geo-
logical conditions with faults and developed joints. A large
number of blocks are formed around the roadway because
of the division of the structural planes. Disturbance of the
blasting and excavation process may cause instability of these
blocks. Instability of the blocks is not only a hidden danger
to safety production but also a safety risk for the workers.
The information of Jiaojia gold mine is shown in Fig 3.
The preferred orientation can be divided into four groups
according to the dip direction: the average dip direction and
average dip angle of the first, second, third, and fourth groups
are 13◦ and 76◦, 300◦ and 79◦, 113◦ and 61◦, and 213◦

and 70◦, respectively. The removable blocks under different
joints combination can be assessed using block theory and

the theorem of mobility. The safety factor, volume, weight,
sliding mode, joint area, joint normal force, and sliding direc-
tion of each block can be calculated according to geomet-
ric principles and mechanical principles. These results are
listed in Table 1; the block serial numbers are formed by
the joint combinations and the block number of each joint
combination; e.g., 1233 refers to the lower right block 3 of
joint combination 123. A field investigation indicated that the
sandwichmaterials of each group of structural planes differed
from the other ones; the sandwichmaterials of the four groups
are the intercalated layer, the crushing layer, the broken layer,
and the brecciated broken layer. The interval shear strength
parameters of each group of structural planes were obtained
by consulting the relevant documents and performing statisti-
cal analyses, as listed in Table 2. The contour diagram for the
joints, the rose diagram for the joint dip directions, the rose
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TABLE 1. Relevant parameters of each block.

TABLE 2. Interval shear strength parameters of the preferred planes.

diagram for the joint dip angles, and the cluster analysis
diagram for the joints are shown in Fig. 4.

The relationships between the maximum excavation area
and the dip direction and dip angle of the roadway can be
obtained through block theory; the relationships between the
maximum block weight and the dip direction and dip angle
can also be obtained. For the newly designed roadway, rela-
tion histograms, such as that in Fig. 5, can be drawn to seek
the optimal solutions of the maximum excavation area and
maximum block weight. To analyze the stability of a certain
roadway after excavation, the Jiaojia gold mine is considered.
The dip direction and dip angle of the roadway in this study
is 190◦6 22◦. From Fig. 5, the maximum excavation area is
approximately 40 m2, and the block weight is approximately
820 kN. An excavation area that is sufficiently large can

reduce the cost of the roadway support considerably, and a
block weight that is sufficiently low is better for production
safety. Considering these two aspects, the optimal dip direc-
tion of the roadway is approximately 15◦, and the optimal
dip angle is approximately 85◦; however, this arrangement
of the roadway is impractical, as the dip angle is excessively
high for persons and equipments to pass through. Thus, when
arranging a practical engineering project, the roadway should
be designed to allow persons and equipments to pass through
easily; however, such a design may cause the existence of
many unstable blocks. Thus, all influencing factors should
be considered in practical engineering; i.e., in addition to the
maximum excavation area and block weight being consid-
ered, the interval non-probabilistic reliability should be com-
bined with practical engineering to determine a reasonable
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FIGURE 4. Statistical characteristics of the dip angles and dip directions of the joints: a contour diagram for
the joints; b rose diagram for the joint dip directions; c rose diagram for the joint dip angles, and d cluster
analysis diagram for the jointed rockmass.

orientation of the roadway. This is a complementary aspect of
the case study in this article, aiming at explaining the function
of block theory to analyze the maximum excavation area and
maximum block weight; the focus of this article is to analyze
the interval non-probabilistic reliability indexes of blocks.

B. RESULTS OF RANDOM RELIABILITY FOR KEY BLOCKS
The sliding condition of the key blocks can be divided into
two types of situations according to block theory: sliding
on a single structural plane and sliding on two structural
planes. When a block is sliding on a single plane, the random
reliability index is calculated according to Equation 4 and the
interval non-probabilistic reliability is calculated according
to Equation 15. When a block is sliding on two structural
planes, the random reliability index is calculated according
to Equation 10, and the interval non-probabilistic reliability
is calculated according to Equation 16.

The mean values of c1, c2, c3, c4, f1, f2, f3 and
f4 are 0.0175, 0.04, 0.065, 0.095, 0.194935, 0.34539,
0.544295 and 0.744255, respectively. The variation coef-
ficients of c1, c2, c3, c4, f1, f2, f3 and f4 are 0.238095,
0.166667, 0.179487, 0.192982, 0.093014, 0.056593,
0.034641 and 0.042497, respectively. According to numerous

studies [38], [39], c and f follow the normal distribution.
Supposing that

X1 = c1 ∼ N
(
0.0175, 4.17× 10−3

)
X5 = f1 ∼ N

(
0.194935, 1.81× 10−2

)
X2 = c2 ∼ N

(
0.04, 6.67× 10−3

)
X6 = f2 ∼ N

(
0.34539, 1.95× 10−2

)
X3 = c3 ∼ N

(
0.065, 1.17× 10−2

)
X7 = f3 ∼ N

(
0.544295, 1.89× 10−2

)
X4 = c4 ∼ N

(
0.095, 1.83× 10−2

)
X8 = f4 ∼ N

(
0.744255, 3.16× 10−2

)
First-order reliability method is a method of linear approx-

imation relative to each random variable of interest [40],
a method to be most compatible with prevailing deterministic
design technics [41].Considering that all of the variables
follow normal distributions, the first-order reliability method
can be used to calculate the random reliability. TheMATLAB
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FIGURE 5. Maximum excavation areas and block weights for different dip
angles and dip directions of the tunnels: a maximum excavation areas
and b block weights.

software is applied to write a program to perform the calcula-
tions. The relevant parameters from Table 2 are determined
and substituted into Equations 4 and 10 according to the
different sliding modes. The specific process is listed in the
appendix.

C. RESULTS OF INTERVAL NON-PROBABILISTIC
RELIABILITY FOR KEY BLOCKS
Based on the theory above and the sliding mode of each
block, the relevant parameters of a certain block from Table 2
are chosen and substituted into Equations 15 and 16 to
calculate the interval non-probabilistic reliability separately.
The specific process is also included in the appendix. The
obtained safety factor, probabilistic reliability and interval
non-probabilistic reliability of each block are listed in Table 3
to analyze consistency of the three reliability indexes. Table 3
reveals that the results for the traditional safety factor, random

reliability, and interval non-probabilistic reliability are not
entirely coincident. The results of 8 blocks of different joint
combinations illustrates that the traditional safety factors are
higher than the critical value of 1, indicating that all the
blocks are stable. The results of random reliability are also
greater than 0.96. It means that the stable probabilities are
greater than 90%. With regard to the results for the interval
non-probabilistic reliability, the results of block R4 of joint
combination123 and block R8 of joint combination 234 are
less than the critical value of 1, and the two blocks are in an
unstable condition. Indeed, a roof falling disaster occurred in
the position of the roadway that corresponds with our analy-
sis. Thus, the analysis results of the interval non-probabilistic
reliability indexes are in agreement with an actual situation.
Analysis of the cause of this phenomenon illustrates that
when calculating the random reliabilities, the distributions
of the probability density are hypothetical because of the
lack of field data; i.e., only 5 data points of samples are
used to calculate the mean value and coefficient of varia-
tion, and the mean values are used to calculate the safety
factors. In this case, it is difficult to accurately determine
the parameters to calculate random reliabilities and safety
factors. The uncertainties of the parameters are not fully
considered when calculating the mean value, thus causing the
deviation between the calculation results and actual situation
when calculating the random reliabilities and safety factors.
Therefore, it can be concluded that the proposed interval
non-probabilistic reliability of jointed rockmass has three
advantages. First, the calculated errors caused by uncertain
mechanical parameters in traditional limit balance analysis
can be avoided. Second, a strict data requirement is unneces-
sary because the uncertainty of the parameter value can be
used when there is not a sufficient amount of data. Third,
the sliding direction, sliding area, interval reliability of the
key block and other relevant information can be analyzed
using engineering data (including structural occurrence and
mechanical parameters). The traditional probability reliabil-
ity model includes the set of events as well as the probability
density function of each event. Additional data are needed to
accurately describe the probability distribution of parameters.
In many cases of actual underground engineering, there is
an insufficient amount of available data to determine the
probability parameters of the variables, particularly in the
stage of underground engineering design, because perform-
ing core drilling and a large number of indoor tests is cost-
prohibitive. Under the artificial assumption of a distribution,
the result of the probabilistic reliability calculation may not
be valid, and the calculation is typically complex to perform.
This situation has affected the practical application of the
reliability method in underground engineering practice to a
certain extent. However, the random reliability is undoubtedly
extremely important, and the establishment of the interval
non-probabilistic reliability of the surrounding jointed rock-
mass in underground engineering provides a beneficial com-
plement to the random reliability method and does not mean
to replace it. Random reliability is the preferred method when
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TABLE 3. Safety factor, probabilistic reliability and interval non-probabilistic reliability of each block.

sufficient data are available to describe the uncertainty of the
parameters; the interval non-probabilistic reliability model is
appropriate when there is not a sufficient amount of data to
determine the probability density distribution.

D. SENSITIVITY ANALYSIS OF EACH INTERVAL
PARAMETER ON THE INTERVAL NON-PROBABILISTIC
RELIABILITY
To compare and analyze the sensitivity of each interval
parameter on the interval non-probabilistic reliability, make
the deviation of parameters c and f of joints 1 and 2 of
block 1234 and joint 2 of block 2348 change 0.002 toward
both sides each time based on the previous deviation when
calculating the interval non-probabilistic reliability indexes.
The analysis process for block 1234 can be classified into
4 conditions:

(1) f r1 c
r
2, and f

r
2 are set as constant values, and cr1 is set

to 0.0025, 0.0045, 0.0065, 0.0085, 0.0105, 0.01255, 0.0145,
0.0165, 0.0185, 0.0205 and 0.0205. These values are substi-
tuted into Equation 16; Then, the corresponding interval non-
probabilistic reliability indexes of block 1234 are obtained
according to Equations 17 and 18. The changing regulations
are shown in Fig. 6 a. A slight change in cr1 can change the
block stability considerably.

(2) cr1, c
r
2, and f

r
2 are set as constant values, and f r1 is set

to 0.0444, 0.0464, 0.0484, 0.0504, 0.0524, 0.0544, 0.0564,
0.0584, 0.0604, 0.0624 and 0.0644. With the same solution
as (1), the relationship between f r1 and the interval non-
probabilistic reliability indexes of block 1234 are obtained,
as shown in Fig. 6 a. From Fig. 6 a, the relationship between
f r1 and the interval non-probabilistic reliability indexes is
found to be a nearly linear dependence, and the changes
in f r1 have a minor effect on the interval non-probabilistic
reliability indexes.

(3) cr1, f
r
1 , and f r2 are set as constant values, and cr2 is

set to 0.01, 0.012, 0.014, 0.016, 0.018, 0.022, 0.024, 0.026,

0.028 and 0.03. With the same solution as (1), the relation-
ship between cr2 and the interval non-probabilistic reliability
indexes of block 1234 are obtained, as shown in Fig. 6 b.
Fig. 6 b illustrates that the interval non-probabilistic reliabil-
ity indexes are sensitive to changes in cr2: a minor change in cr2
causes a considerable change in the interval non-probabilistic
reliability indexes

(4) cr1, f
r
1 , and c

r
2 are set as constant values, and f r2 is set

to 0.0486, 0.0506, 0.0526, 0.0546, 0.0566, 0.0606, 0.0626,
0.0646, 0.0666 and 0.0686. With the same solution as (1),
the relationship between f r2 and the interval non-probabilistic
reliability indexes of block 1234 are obtained, as shown
in Fig. 6 b. Fig. 6 b illustrates that the relationship between f r2
and the interval non-probabilistic reliability indexes is nearly
linear and that changes of f r2 have a minor effect on the
interval non-probabilistic reliability indexes.

The analysis process for block 2348 can be classified
into 2 conditions:

(1) f r2 is set as a constant value, and cr2 is set to 0.01,
0.012, 0.014, 0.016, 0.018, 0.022, 0.024, 0.026, 0.028 and
0.03. All of the values are substituted into Equation 15; the
corresponding interval non-probabilistic reliability indexes of
block 2348 are obtained according to Equations 17 and 18.
The changing regulations are shown in Fig. 7. Fig. 7 illustrates
that a slight change in cr2 causes a considerable change in the
block stability.

(2) cr2 is set as a constant value, and f r2 is set to
0.0486, 0.0506, 0.0526, 0.0546, 0.0566, 0.0606, 0.0626,
0.0646, 0.0666 and 0.0686. With the same solution
as (1), the relationship between f r2 and the interval non-
probabilistic reliability indexes of block 2348 are obtained,
as shown in Fig. 7. Fig. 7 illustrates that the relation-
ship between f r2 and the interval non-probabilistic reliabil-
ity indexes is nearly linear, and the changes of f r2 have
a minor effect on the interval non-probabilistic reliability
indexes.
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FIGURE 6. Sensitivity analysis for the block 1234: a Deviation of c1 (cr
1)

and f1 (f r
1), b Deviation of c2 (cr

2) and f2 (f r
2); INR indicates the interval

non-probabilistic reliability.

FIGURE 7. Sensitivity analysis for block 2348: Deviation of c2 (cr
2) and

Deviation of f2 (f r
2); INR indicates the interval non-probabilistic reliability.

Fig. 6 and Fig. 7show that the effects of cr1 and cr2 on the
interval non-probabilistic reliability are greater than those of
f r1 and f

r
2 . Slight changes in c

r
1 and c

r
2 can cause a considerable

FIGURE 8. Box charts for INRs under changes of c and f : a results for
block 1234, b results for block 2348.

difference in the interval non-probabilistic reliability and thus
dramatically affects the state of the block. From this per-
spective, a limitation of the traditional limit balance analysis
is that the values of certain parameters are strictly required
during the calculation process. In fact, it is difficult to obtain
a definite and reliable value, whereas it is relatively easy to
obtain a specific range of the parameter; this ease is one of the
major advantages of the interval non-probabilistic reliability.

The relationship between shear strength (c and f ) and the
interval non-probabilistic reliability can be obtained through
the box charts in Fig. 8. From Fig. 8 a and b, it can be also
clearly seen that the interval non-probabilistic reliability is
more sensitive to the change of c than to the change of f .
It also can be found from Fig. 8 a that c2 has a greater effect
on the interval non-probabilistic reliability than that of c1.
Therefore, it is necessary to firstly focus on supported works
for the specified direction, which is perpendicular to joint 2.
It also gives us an important guidance that the weakest joint
of multiple joints should be given priority to conduct support
works.
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VI. CONCLUSION
A new interval non-probabilistic reliability measurement and
analysis method for a jointed rockmass in underground engi-
neering was proposed based on the interval model and block
theory. This proposed method requires knowledge of the
bounds of the uncertain parameters but not their specific
distributions. As a result, the initial data requirements are
reduced considerably.

The developed interval non-probabilistic reliabilitymethod
was used to evaluate the stability of the rockmass in the
Jiaojia gold mine. The calculation results of the interval non-
probabilistic reliability were found to be in agreement with
an actual situation. It can be concluded that the interval
non-probabilistic reliability method is applicable when the
amount of data is scarce.

The most sensitive mechanical parameters and sliding
direction of the key block can be determined through an anal-
ysis of the sensitivity of the mechanical parameters towards
the interval non-probabilistic reliability, thereby providing
instructions for the excavation and support of the under-
ground cavern.

It is noted that the non-probabilistic reliability method is
not designed to replace the probabilistic reliability method
but instead serves as a useful complement to the probabilistic
reliability and the safety factor methods. The probability reli-
ability method can be used when there is a sufficient amount
of data to describe the probability properties of the uncertain
parameters, and the interval non-probabilistic reliabilitymod-
els can be used when the uncertainty in the data is reduced.

APPENDIX
1 The specific process and the results of random reliability
are as follows:

Substitute the relevant parameters of each removable block
which sliding on a single structural plane into Equation 4,
and the relevant parameters of each removable block which
sliding on two structural planes into Equation 10. Solve the
obtained equations:

For block 1233:

g
(
ϕi, ϕj, ci, cj

)
= Ni tanϕi + Nj tanϕj + ciSi + cjSj −W sinα

= 0.0003 tanϕi + 0.0018 tanϕj + 0.45ci
+ 0.23cj − 0.0033 sin 57◦ = 0

The equation to calculating the random reliability index is
solved, and the result is β = 6.4439.

Ps = 1−8(−β) = 8(β) = 1

For block 1234:

g
(
ϕi, ϕj, ci, cj

)
= Ni tanϕi + Nj tanϕj + ciSi + cjSj −W sinα

= 0.0791 tanϕi + 0.0783 tanϕj + 8.7ci + 22.55cj
− 0.6543 sin 74◦ = 0

The equation to calculating the random reliability index is
solved, and the result is β= 3.0244.

Ps = 1−8(−β) = 8(β) = 0.9988

For block 1248:

g (ϕ, c) = W cosα tanϕ + cS −W sinα

= 2.48× 10−6 tanϕ + 0.01c− 1.28× 10−5 = 0

The equation to calculating the random reliability index is
solved, and the result is β = 5.8197.

Ps = 1−8(−β) = 8(β) = 1

For block 1343:

g
(
ϕi, ϕj, ci, cj

)
= Ni tanϕi + Nj tanϕj + ciSi + cjSj −W sinα

= 0.0438 tanϕi + 0.0503 tanϕj + 2.47ci
+ 3.64cj − 0.0595 sin 30◦ = 0

The equation to calculating the random reliability index is
solved, and the result is β = 5.9997.

Ps = 1−8(−β) = 8(β) = 1

For block 1346:

g (ϕ, c) = W cosα tanϕ + cS −W sinα

= 0.0386 tanϕ + 4.53c− 0.0669 = 0

The equation to calculating the random reliability index is
solved, and the result is β = 4.7025.

Ps = 1−8(−β) = 8(β) = 0.9999

For block 1343:

g (ϕ, c) = W cosα tanϕ + cS −W sinα

= 0.01875 tanϕ + 1.88c− 0.0368 = 0

The equation to calculating the random reliability index is
solved, and the result is β = 4.5184.

Ps = 1−8(−β) = 8(β) = 0.9999

For block 2346:

g (ϕ, c) = W cosα tanϕ + cS −W sinα

= 0.0182 tanϕ + 2.43c− 0.0315 = 0

The equation to calculating the random reliability index is
solved, and the result is β = 4.8093.

Ps = 1−8(−β) = 8(β) = 0.9999

For block 2348:

g (ϕ, c) = W cosα tanϕ + cS −W sinα

= 0.0886 tanϕ + 14.23c− 0.45567 = 0

The equation to calculating the random reliability index is
solved, and the result is β = 1.5190.

Ps = 1−8(−β) = 8(β) = 0.9356
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2 The specific process and results of non-probabilistic
reliability are as follows.

Substitute the relevant parameters of each removable block
which sliding on a single structural plane into Equation 15,
and the relevant parameters of each removable block which
sliding on two structural planes into Equation 16. Solve the
obtained equations:

For block 1233:

Z2

= g(δ2) =
(
cci + c

r
iδci
)
Si+

(
ccj + c

r
jδcj

)
Sj + Ni

(
f ci + f

r
i δϕi

)
+Nj

(
f cj + f

r
j δϕj

)
−W sin θ =

(
0.0175+0.0125δci

)
0.45

+
(
0.065+ 0.035δcj

)
0.23+0.0003

(
0.1949+0.0544δϕi

)
+ 0.0018

(
0.5443+ 0.0566δϕj

)
− 0.0033 sin 57◦ = 0

The equation to calculating the interval non-probabilistic
reliability is solved, and the result is

β = 1.5294

For block 1234:

Z2

= g(δ2) =
(
cci + c

r
iδci
)
Si+

(
ccj + c

r
jδcj

)
Sj + Ni

(
f ci + f

r
i δϕi

)
+Nj

(
f cj + f

r
j δϕj

)
−W sin θ =

(
0.0175+ 0.0125δci

)
8.7

+
(
0.04+ 0.02δcj

)
22.55+0.0791

(
0.1949+0.0544δϕi

)
+ 0.0783

(
0.3454+ 0.0586δϕj

)
− 0.6543 sin 74◦ = 0

The equation to calculating the interval non-probabilistic
reliability is solved, and the result is

β = 0.8225

For block 1248:

Z1 = g (δ1) = W cosα tan
(
ϕci + ϕ

r
i δϕi

)
+
(
cci + c

r
iδci
)
S −W sinα

= 0.000013 cos 79◦
(
0.3454+ 0.0586δϕi

)
+
(
0.04+ 0.02δci

)
0.01− 0.000013 sin 79◦ = 0

The equation to calculating the interval non-probabilistic
reliability is solved, and the result is

β = 1.9385

For block 1343:

Z2 = g (δ2) =
(
cci + c

r
iδci
)
Si +

(
ccj + c

r
jδcj

)
Sj

+Ni
(
f ci + f

r
i δϕi

)
+ Nj

(
f cj + f

r
j δϕj

)
−W sin θ

=
(
0.0175+ 0.0125δci

)
2.47

+
(
0.095+ 0.055δcj

)
3.64

+ 0.0438
(
0.1949+ 0.0544δϕi

)
+0.0503

(
0.7443+ 0.0948δϕj

)
− 0.0595 sin 30◦ = 0

The equation to calculating the interval non-probabilistic
reliability is solved, and the result is

β = 1.7011

For block 1346:

Z1 = g (δ1) = W cosα
(
f ci + f

r
i δϕi

)
+
(
cci+c

r
iδci
)
S−W sinα

= 0.0772 cos 60◦
(
0.5443+ 0.0566δϕi

)
+
(
0.065+ 0.035δci

)
4.53− 0.0772 sin 60◦ = 0

The equation to calculating the interval non-probabilistic
reliability is solved, and the result is

β = 1.5467

For block 2343:

Z1 = g (δ1) = W cosα
(
f ci + f

r
i δϕi

)
+
(
cci + c

r
iδci
)
S −W sinα

= 0.0413 cos 63◦
(
0.7443+ 0.0948δϕi

)
+
(
0.095+ 0.055δci

)
1.88− 0.0413 sin 63◦ = 0

The equation to calculating the interval non-probabilistic
reliability is solved, and the result is

β = 1.4809

For block 2346:

Z1 = g (δ1) = W cosα
(
f ci + f

r
i δϕi

)
+
(
cci + c

r
iδci
)
S −W sinα

= 0.0364 cos 60◦
(
0.5443+ 0.0566δϕi

)
+
(
0.065+ 0.035δci

)
2.43− 0.0364 sin 60◦ = 0

The equation to calculating the interval non-probabilistic
reliability is solved, and the result is

β = 1.5838

For block 2348:

Z1 = g(δ1) = W cosα tan
(
f ci + f

r
i δϕi

)
+
(
cci + c

r
iδci
)
S −W sinα

= 0.4642 cos 79◦
(
0.3454+ 0.0586δϕi

)
+
(
0.04+ 0.02δci

)
14.23− 0.4642 sin 79◦ = 0

The equation to calculating the interval non-probabilistic
reliability is solved, and the result is

β = 0.4973
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