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ABSTRACT This paper presents a fault detection and location (FDL) system for the situation of the
coexistence of faults and health degradation in aeroengines. The FDL is able to locate the faulty sensors
and actuators when the two kinds of faults coexist and avoid the interference of health degradation. The
FDL is formed by a matrix of hybrid Kalman filters, and the different performances of hybrid Kalman filters
can be used to distinguish the different faults. The proposed approach is applied to the nonlinear aeroengine
model, and the ability of the proposed approach to detect and locate the faulty sensors and actuators reliably
is demonstrated. According to the results, the FDL is able to locate the faulty sensors and actuators during
the interference of health degradation.

INDEX TERMS Kalman filter, aeroengine, onboard model, health degradation, sensor fault, actuator fault.

I. INTRODUCTION
When aeroengines are operated in harsh environments with
high temperature, pressure, and speed, the health degrada-
tion is unavoidable. The performance of aeroengine compo-
nents will slowly degrade during regular operations [1], [2].
Unpredictable faults of sensors and actuators may occur
during the operation. The failures of sensors, actuators, or
components may change the behavior of the aeroengine,
and result in the instability of the aeroengine. The faulty
sensors will provide incorrect aeroengine output signals for
the control system, and the faulty actuators will cause the
deviations of the position of actuators, which will cause a
mismatch between actual control inputs and the commanded
control inputs.

To maintain the stability of aeroengines during the opera-
tion, the reliability can be achieved by fault-tolerant control,
which utilizes early detection and location of faults. Fault
diagnosis is an important part of a fault-tolerant system, and
there are various types of tools for fault diagnosis, such as the
Kalman filter, fault observers, and neural networks [3]–[7].
The Kalman filter has been demonstrated to be useful in
fault diagnosis, and in recent years, a number of diagnostics
systems based on the Kalman filter have been developed.

In general, the in-flight fault diagnosis system is designed
at a nominal health condition of the aeroengines. This non-
degraded condition of aeroengines becomes a reference

baseline for the diagnosis system, and the deviations of mea-
sured outputs from the reference outputs may be considered
to be the presence of a fault. However, the health degradation
can cause the outputs of the actual engine to deviate from
the reference health baseline. When the mismatch of outputs
exceeds a certain level, it becomes difficult to distinguish the
faults from the mismatch caused by the health degradation,
merely by observing the measured outputs.

Conversely, the number of actuators and sensors are more
than the measured outputs of aeroengines, which means that
the diagnosis system needs more fault observers or Kalman
filters to detect and locate the faults. In actual situations, there
are two fault observers: a fault observer for sensors and a fault
observer for actuators to accomplish the diagnosis process
based on limited measured outputs [8]. However, once the
faults of sensors and actuators coexist, the two dependent
fault observers will not able to distinguish the two types of
faults because the faults will affect the measured outputs of
aeroengines jointly.

Currently, the onboard aeroengine model (OBEM) is intro-
duced into the advanced control system, health monitoring,
and diagnosis systems to improve the performance and safety
of aeroengines. NASA’s Glenn Research Center (GRC) has
proposed an intelligent engine control system which includes
active control, health management, and fault-tolerant control
technologies [9], [10]. The latest model-based control system
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needs OBEM to compute the unmeasured outputs, such
as the aeroengine thrust, compressor stall, and surge [11].
In 2006, the GRC proposed a hybrid structure, which con-
sisted of the Kalman filter and the OBEM, called a hybrid
Kalman filter (HKF) [12], [13]. The computed outputs of
the OBEM are used as the baseline outputs for fault diag-
nosis. If a large discrepancy between commanded and true
actuator positions exists due to an actuator fault or if there
is a mismatch between the signal of sensors and the actual
outputs, then deviations of measured outputs between the
OBEM and the actual engine can result. The Kalman filter
should provide the corresponding estimated results based
on the deviations. In past years, the diagnosis algorithm
had been used for engine performance estimation and fault
diagnosis [14]–[16].

Recently, a real-time self-tuning OBEM was used for
health management [17]. Simon et al. [17]–[19] presented a
real-time self-tuning model for engine performance monitor-
ing and fault diagnostics, which is a hybrid model including
OBEM and neural networks. Volponi et al. [20], [21] pre-
sented an online tuning engine model that is updated by the
Kalman filter. Liu et al. [22] used a bank of HKFs to identify
the functions of sensor fault locations and on-line OBEM
tuning. Ding et al. [23] instituted an OBEM tuning system
developed from hybrid Kalman filters and took advantage of
the bank of HKFs and the OBEM tuning system to form a
fault-tolerant OBEM tuning structure [24].

In this paper, a fault detection and location (FDL) system
that consists of a matrix of HKFs (MHKF) is proposed for
the diagnosis of the faults in sensors and actuators during the
interference of health degradation. Each HKF in the MHKF
can estimate the variations of certain sensor fault and actuator
fault, and the FDL will locate the faulty ones based on the
performances of the HKFs.

The following contents of this paper include three sec-
tions. Section 2 presents the structure of the FDL. Section 3
includes the simulation results, which are used to demonstrate
the effectiveness of the FDL. The study’s conclusions are
discussed in the last section.

II. DESCRIPTION OF FAULT DETECTION AND
LOCATION (FDL) SYSTEM
The purpose of the FDL is to locate the coexisting faults based
on the variation of measured outputs as quickly as possible.
Considering that the coexistence of health degradation and
different kinds of faults may occur during the engine opera-
tion, the fault diagnosis system should distinguish between
the different factors based on limited measured outputs.
To solve the problem of coexisting of health degradation and
faults, multiple Kalman filters are needed in the diagnosis
system.

The FDL is consisted of a matrix of HKFs. The faults of
actuators and sensor are modeled by zeroing out a matrix of
the state-space matrices of the aeroengines, and each HKF is
designated for a certain sensor and actuator. It is noted that
when only one actuator or sensor is faulty, this approach will

locate the faulty device according to the similar performance
of theHKFs at the related row or column. Once a faulty sensor
and one faulty actuator coexist, the HKF corresponding to
the faulty devices will perform differently from the others.
The relationships between the faults and the HKFs in FDL
are shown in Fig. 1.

FIGURE 1. Relationship between faults and HKFs.

A. HYBRID KALMAN FILTER (HKF) DESCRIPTION
The structure of an HKF in this paper is shown in Fig. 2. The
HKF is a hybrid system consisted of an OBEM and a Kalman
filter. In the HKF, the OBEM is used to provide baseline
outputs for the Kalman filter. The baseline outputs should not
be affected by fault information; therefore, the OBEM should
receive control inputs from the actuator models to avoid the
influence of faults in actuators. However, considering that
the process of health degradation is slow and gradual during
one flight mission in general, the OBEM will receive health
information off-line to minimize the interference of health
degradation [12].

FIGURE 2. Structure of HKF.

The HKF is formulated based on the nonlinear component-
level engine model [25]. The model used in this paper is a
two-spool high-bypass turbofan engine. Linearization com-
putation is completed based on the two-step perturbation
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TABLE 1. Symbol

method [25]. The linear model is{
1ẋ(t) = A1x(t)+ B1u(t)+ L1h(t)+ G1z(t)
1y(t) = C1x(t)+ D1u(t)+M1h(t)+ H1z(t)

(1)

where x represents the state variables of the system, y rep-
resents the outputs of the system, u represents the con-
trol inputs such as fuel and variable bleeding valve (VBV),
h represents the health parameters. The health parameters are
the efficiency and flow capacity of the engine compressors
and turbines. z represents the environmental inputs such as
altitude and Mach number. The operation point of the engine
model is used in this paper with the data

x =
[
NH NL

]T
y =

[
NH NL OTfan OPfan OTHPC OPHPC

]T
u =

[
fuel VBV

]T
.

The health parameters are

h =
[
Efan EHPC EHPT ELPT

]T
.

The description of the symbols and subscripts in this paper
can be found in Tables I and II.

Themodel of faults in sensors and actuators can be added in
this model for fault diagnosis. An actuator fault is modeled as
a bias, which results in an inconsistency between an actuator
command received by the OBEM and a true actuator position
under which the engine is operating. The bias can be shown
by the deviation of control input. A sensor fault is modeled
as the mismatch between the signal from a faulty sensor and

TABLE 2. Subscript

the corresponding measured output computed by the OBEM.
The linear model with both actuator and sensor faults is{
1ẋ(t) = A1x(t)+ B(1u(t)+ fa)+ L1h(t)+ G1z(t)
1y(t) = C1x(t)+D(1u(t)+fa)+M1h(t)+H1z(t)+Vfs

(2)

where fa is used to represent the bias of control
input caused by the actuator fault. fs is used to show
the measurement error of the sensor caused by sensor
fault. In this paper, fa =

[
ffuel fVBV

]T , and fs =[
fNH fNL fOTfan fOPfan fOTHPC fOPHPC

]T . To simplify the fol-
lowing description, the actuator faults are marked as[
ffuel fVBV

]
=
[
1 2

]
and the sensor faults are marked as[

fNH fNL fOTfan fOPfan fOTHPC fOPHPC
]
=
[
1 2 3 4 5 6

]
. The

formula of the Kalman filter can be written as [3]{
1 ˙̂x = Akal1x̂ + B1u+ L1h+ G1z+ Kkal(y− ŷ)
ŷ = Ckal1x̂ + D1u+M1h+ H1z

(3)

where

x̂ =


x
h
fa
fs

, Akal =


A L B 0
0 0 0 0
0 0 0 0
0 0 0 0

, Ckal = [C M D V ].

As has been described in this paper, each Kalman filter con-
tains faults of an actuator and a sensor, and the state variables
of the HKFi,j are x̂ =

[
NH NL fa(i) fs(j)

]T . Kkal is the gain
matrix of Kalman filter, y is the measured output, ŷ is the
estimated measured output of the Kalman filter. The gain
matrix Kkal is calculated based on the literature [3].
The form of OBEM in HKF can be described by{

ẋOBEM = f (xOBEM , umod, href , z)
yOBEM = g(xOBEM , umod, href , z)

(4)

where the OBEM will receive health information href during
the off-line tuning process. The OBEM is used to provide
baseline outputs for the Kalman filter, and the measured
outputs of the OBEM can be tuned to adapt to the degraded
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engine. The control outputs umod of the OBEM are provided
by corresponding actuators models rather than the signals
of actual actuators; therefore, the measured outputs of the
OBEM will not be affected by the signal of the faulty actua-
tors. The structure of HKF is simplified because the variations
of outputs caused by nominal control inputs, environmental
inputs and health parameters are computed by the OBEM.
The structure of Kalman filter in HKF is converted into{

1 ˙̂x = Akal1x̂ + Kkal(y− ŷ)
ŷ = Ckal1x̂ + yOBEM

(5)

To adapt to different situations, a linear parameter-
varying (LPV) structure is introduced into the HKF. The
LPV structure of the HKF is formulated based on the current
literature [26]. The nonlinear engine is viewed as a collec-
tion of linear models corresponding to the measured outputs
and environmental inputs [27]. The LPV model is instituted
based on multiple linear models of the operation points. The
functions between the elements of the linear models and the
scheduling parameters are established, and the scheduling
parameters are chosen from the measured outputs of the
OBEM and environmental inputs. In the LPV structure, the
elements of the matrices will be associated in parallel with the
scheduling parameters. In this paper, NH and environmental
inputs are chosen as the scheduling parameters δ in the LPV
structure of the HKF. There are functions between the fam-
ily of scheduling parameters and corresponding elements of
matrices in the HKF at different operation points. The ele-
ments of the HKF will be tuned in parallel with the variation
of δ. Equation (6) and Fig. 3 show the structure of the Kalman
filter in HKF{

1 ˙̂x = Akal(δ)1x̂ + Kkal(δ)(y− ŷ)
ŷ = Ckal(δ)1x̂ + yOBEM .

(6)

FIGURE 3. Structure of Kalman filter in HKF.

B. MATRIX OF HYBRID KALMAN FILTERS (MHKF)
The number of sensor and actuator faults is more than that of
measured outputs of the aeroengine, and the health degrada-
tion should be considered during the fault diagnosis process.
To solve the coexistence of faults and health degradation, the
matrix of HKFs (MHKF) is designed for the FDL to realize
the function of detection and location of multiple faults.
In the FDL, m × n HKFs are used, where m is the number

of actuators and n is the number of sensors. In addition to
the health parameters, each HKF is designated for a corre-
sponding sensor and actuator. The inputs of each HKF are
the deviations of nmeasured outputs between the OBEM and
the actual engine.

The fault diagnosis function of the MHKF is carried out
based on a weighted sum of squared residuals(WSSR) [1].
There are two kinds of WSSR for the HKF, one is the
WSSRHKF , which represents the deviation of outputs between
the HKF and actual engine. The other WSSR is WSSROBEM ,
which represents the deviation of outputs between the OBEM
and actual engine. The fault location function is formulated
based on the WSSRHKF s. The formula for WSSR is{

WSSRi,jHKF = Wr (e
i,j
HKF )

T ei,jHKF
WSSROBEM = Wr (eOBEM )T eOBEM

(7)

where ei,jHKF = y − ŷi,j, eOBEM = y − yOBEM , and y are the
measured outputs from sensors. yOBEM are the corresponding
outputs from the OBEM used as the baseline outputs for the
HKFs, and ŷi,j are the corresponding estimated outputs of
the HKFi,j, and W i

r represent the weighting factor, W i
r =

(yOBEM )−2. For example, the WSSR1,1HKF is computed by the
HKF corresponding to ffuel and fNH . TheWSSR in this paper is
non-dimensional. The computation of WSSRHKF s are shown
in Fig. 4.

FIGURE 4. Computation of WSSRHKF .

The fault diagnosis logics are designed based on the dif-
ferences of WSSRHKF s of MHKF. If there is no fault, all
WSSRHKF s are lower than the corresponding thresholds and
diagnostics result of MHKF will show that there is no faulty
sensor or actuator. If ith actuator is faulty, the WSSRHKF s of
theHKF in ith row corresponding to the faulty actuator will be
lower than the corresponding thresholds, and the remaining
WSSRHKF s of m − 1 rows are higher than the thresholds.
Therefore, the faulty actuator can be located. The location
logics of the faulty sensor and the coexisting faults are similar
with that of the faulty actuator. The fault location logics are
shown in Fig. 5.

There are m × n thresholds λ(m,n) in diagnosis logic, and
each λ(i,j) is set for the corresponding HKF. Setting the
threshold λ(i,j) at a low value increases the chance of detect-
ing faults but also increases the chance of generating false
alarms. It is reasonable to use different threshold values at
different power settings to achieve an effective fault detection
performance. The setting of thresholds has been discussed in
the literature [12]. The sensors have measurement deviations,

17674 VOLUME 5, 2017



Y. Yuan et al.: FDL System for Diagnosis of Multiple Faults in Aeroengines

FIGURE 5. Fault location logics. (a) Actuator fault location logic.
(b) Sensor fault location logic. (c) Location logic for coexisting faults.

and the mismatch caused by the deviations of sensors is
unavoidable. Thus, the standard deviations of sensors should
be considered in the selection of thresholds. In this paper,
WSSRs have been computed with a dimensionless treatment;
thus, the thresholds of different HKFs should be set at the
same order of magnitude at the same power setting.

III. SIMULATION RESULTS
Considering that the length of this paper is limited, as an
example, the data of only one operation point is shown in this
paper. To show the variations in health parameters directly,
the degradation coefficients (DCs) of the health parame-
ters are used to represent the ratio of the degraded health
parameters to the nominal health parameter. In the model,
the DCs of the health parameters are defined as

DCEfan = Efan,deg radation/Efan,noimal
DCEHPC = EHPC,deg radation/EHPC,noimal
DCEHPT = EHPT ,deg radation/EHPT ,noimal
DCELPT = ELPT ,deg radation/ELPT ,noimal.

(8)

One static-state point is x =
[
8195 4890

]T , and the
corresponding matrices are

A =
[
−1.2367 −0.9043
0.4389 −0.9788

]
,

B =
[
9.4273e3 1.9668
2.8613e3 −1.3856

]
,

C =


1 0
0 1

−2.2447e-4 8.78156e-3
−0.3821 11.9042
−2.9589e-2 −8.7041e-2

3.5740 5.9852

,

D =


0 0
0 0

8.6426e-2 −6.3962e-4
1.4095e2 −1.0873
7.5527e2 0.1931
2.1246e4 −1.6412e1

,

L =
[

3.2868e2 −9.7321e3 −1.3507e4 −3.3982e1
−3.3027e3 8.4198e2 1.0114e3 −3.5716e3

]
,

M =


0 0 0 0
0 0 0 0

2.6656e1 6.68320e-2 5.7655e-2 3.6176e-2
1.5106e3 1.1405e2 9.9133e1 7.0065e1
6.6511e1 2.4102e2 2.6755e2 2.0250e2
−2.1483e3 6.1995e3 7.5072e3 5.8975e3

.

The first simulation shows how the FDL locates the faulty
sensor based on WSSRHKF s and when the faulty sensor and
health degradation coexist. In the simulation, the engine is
working under a static-state condition, and at t = 1 s the sen-
sor of NL is faulty, which means there is a mismatch between
the actual value and the sensor output. The effectiveness of
the fan and the HPC was decreased by 1%, which will cause
the mismatch between the OBEM and the actual engine. The
FDL should locate the faulty sensor during the interference of
health degradation. The estimated results of HKFs are shown
in Fig. 6.

FIGURE 6. WSSRHKF s of different HKFs.

There are sixWSSRHKF s and one threshold λ(1,2) in Fig. 6.
The thresholds λ(m,n) are set at the same order of magnitude.
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The WSSRHKF s of HKF1,2 and HKF2,2 corresponding to the
sensor of NL are lower than their corresponding thresholds,
and the other WSSRHKF s are higher than the thresholds.
According to the differences between the WSSRHKF s, the
senor of NL is faulty and the corresponding signal is false.
The thresholds λ(m,n) are selected based on the standard

deviations of the sensors. In this paper, the thresholds λ(m,n)
are set as the squared sum of standard deviations to avoid a
false diagnosis result. According to the standard deviations of
different sensors in the literature [16], the thresholds can be
computed.

The second simulation demonstrates how the FDL locates
the faulty actuator based on WSSRHKF s when the faulty
actuator and health degradation coexist. In the simulation,
at t = 1 s the fuel input decreases from 0.4 kg/s to 0.36 kg/s
because of fault, and the effectiveness of the fan and the HPC
decrease by 1%. The FDL should locate the faulty actuator
during the influence of health degradation. The performances
of the HKFs are shown in Fig. 7.

FIGURE 7. WSSRHKF s of different HKFs.

The WSSRHKF s of HKF1,1, HKF1,2 and HKF1,3 corre-
sponding to fuel are all lower than the related thresholds, and
the otherWSSRHKF s are higher than the thresholds. Based on
the performances ofWSSRHKF s, the faulty actuator is located.

The last simulation is used to demonstrate the effectiveness
of the FDL when the faulty sensor, faulty actuator, and health
degradation coexist. In the simulation at t = 1 s the fuel
input decreases because of fault, the sensor of NL is faulty,
and the effectiveness of the fan and the HPC both decrease.
The FDL should distinguish the faulty actuator and faulty
sensor according to the deviations of measured outputs. The
estimated results of MHKF are shown in Fig. 8.

TheWSSRHKF s of HKF1,2 corresponding to the actuator of
fuel and sensor of NL is lower than the threshold λ(1,2), and
the other WSSRHKF s are higher than the related thresholds,
which means the senor of NL and the actuator of fuel are both
faulty.

FIGURE 8. WSSRHKF s of different HKFs.

IV. CONCLUSIONS
A fault detection and location system has been represented for
the situation of the coexistence of fault and health degradation
in aeroengines during their operation. In this system, a matrix
of HKFs was used to locate the faulty sensors and actuators
based on the different performances of the HKFs. In the
HKF, the OBEM received control inputs from the actuator
models to avoid the influence of signals from faulty actuators,
and off-line health information is provided for the OBEM
to minimize mismatching measured outputs due to health
degradation. The simulation results have demonstrated that
this system can distinguish faulty actuators and faulty sensors
during the interference of health degradation and can locate
the faulty ones.
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