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ABSTRACT Mobile device and its applications have revolutionized the way we store and share data.
It is becoming a warehouse of users personal information. Unluckily, most of these data are stored in an
unencrypted format, prone to security threats. In this paper, we propose a lightweight, computationally
efficient protocol, called CLOAK, for the mobile device. CLOAK is based on stream cipher and takes the
help of an external server for the generation and distribution of cryptographically secure pseudo-random
number (CSPRN). In order to enhance the security of our protocol, we use the concept of symmetric key
cryptography. We present three versions of the protocol referred as s-CLOAK, r-CLOAK and d-CLOAK,
varying on the basis of the key selection procedure. In CLOAK, the core encryption/decryption operation is
performed within the mobile devices to secure data at its origin. The security of CSPRN is ensured using
deception method. In CLOAK, all messages are exchanged securely between mobile and the server with
mutual identity verification. We evaluate CLOAK on Android smart phones and use Amazon Web services
for generating CSPRN. Additionally, we present attack analysis and show that the brute force attack is
computationally infeasible for the proposed protocol.

INDEX TERMS Cloud computing, mobile cloud computing, mobile device, security, stream cipher,

encryption, decryption.

I. INTRODUCTION

Advancements in mobile technology, innovative applications
and decreasing prices of smartphones, wearable computers
and other Mobile devices (MD) have contributed signifi-
cantly in increasing popularity of mobile devices in our
modern lifestyle. Since, MDs are meant for personal usage,
it is often used as a repository for storing users personal
information, such as user profile, passwords, bank account
information and medical records. More significantly, the data
is stored in a clear text format in a MD, which can be
easily retrieved and lead to serious security complications.
Security threats on MD can be from various sources includ-
ing malwares, third party applications, eavesdropping over
wireless network, theft and lost devices. As a result, many
companies do not allow employees to store corporate data in
smartphones or use the corporate network through personal
devices [1].

Mobile cloud computing (MCC) is an emerging research
area focusing on supplementing the storage and computa-
tional requirement of MD by utilizing the cloud infrastruc-
ture [2]-[4]. By interacting with cloud, MD can deliver
various services to the user, such as healthcare [5], mobile
commerce [6] and online education [7]. Users can upload and
store data (photos, medical records) from their MD to the
cloud and can share them with others. In addition, MD can

offload computation intensive tasks to the cloud to overcome
its resources limitation and for saving battery [4]. However,
security is a major concern in MCC [8], particularly for
mobile applications sending unencrypted personal informa-
tion over insecure wireless medium to the cloud. Data encryp-
tion is also required for protecting users data against external
and internal attacks within the cloud environment [9].

Encryption/decryption algorithms are commonly used for
providing security to user’s personal information [10], [11].
Encryption is a process of converting plaintext (PT) data
into an incomprehensible code called ciphertext (CT) and a
decryption algorithm is used for inverting the CT to original
PT. In this paper, we focus our discussion on the encryption
and decryption of files for the MD. There are three basic
approaches for the same.

o The encryption/decryption operations can be performed
within the MD, which we refer as a mobile cen-
tric approach. Authors in [12] and [13], have studied
the feasibility of implementing the standard symmetric
and asymmetric cryptographic algorithms (DES, AES,
RSA) in the MD. However, due to high computational
complexity, the standard encryption algorithms are not
efficient for the resource constrained MDs [12]. The
performance can be improved by S-Box optimization
and reducing the number of rounds [14], [15] but more
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lightweight encryption/decryption algorithm is required
of the MDs.

o Secondly, the MD can offload files and perform the
computation intensive encryption/decryption tasks to
the cloud or an external server (ES). By offloading
the task, MD can overcome its resource limitations
and can efficiently handle large files in a relatively
short time frame [16]. Researchers have proposed
solutions to address the security concerns associated
with offloading files, such as using a trusted third
party (TTP) [17], secure channel [18], mobile VPN [19],
file splitting [20], [21] and multipath TCP [22]. Most
of these techniques depend upon intermediate server or
infrastructure, which may not be feasible for many MCC
applications, like instant photo uploading.

« An intermediate approach is to share the computa-
tion by encrypting the important parts of a file in the
mobile device and offloading the remaining tasks to the
cloud [23], [24].

In this paper, we propose a protocol for encrypting and
decrypting files within the MDs in a mobile cloud environ-
ment, referred as CLOAK. Our goal is to secure personal
information stored in MD (images, pdf, doc), of size in the
range of 5-10 MBs. The CLOAK protocol is based on stream
cipher and takes the help of a cloud or an external server (ES)
for generating the key-stream or a cryptographically secure
pseudo-random number (CSPRN). The advantage of using
stream cipher as the basis of our protocol, is that it is less
computation intensive compared to block cipher [25] and
can easily be handled by existing MDs. Stream cipher is a
cryptographically secure encryption algorithm, used in vari-
ous protocols (WPA, TLS), applications (Internet Explorer,
Google Chrome, Firefox) and in communication standards
(GSM, 3GPP, LTE) [26]-[28]. The design considerations of
our protocol are as follows:

o To design a lightweight encryption protocol for MD. We
assume that a single file size of 5 to 10 MB is adequate
for images and documents in txt, pdf, doc formats. The
protocol must be able to handle such files on most MDs
that are currently available in the market.

o The encryption/decryption operation must be performed
in an acceptable time frame.

o The users must be able to control the encryption/
decryption operation. This is important for establishing
user’s confidence on the system.

« All operations on the PT must be performed locally on
the MD and the computations on ES should not affect
the security of the protocol.

o Finally, and most importantly, the protocol must be
cryptographically secure.

One of the major challenges of a stream cipher is the
generation and distribution of the key-stream or CSPRN (C).
In CLOAK, we offload this task to an external server (ES)
in the cloud to save resources of the MDs. In addition, the
cloud can be used for sharing the encrypted files with mul-
tiple recipients. To address the security of the CSPRN (C),
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we propose two level CSPRN modification. Firstly, the C is

modified to C” by the ES (i.e., C St C"), before transmitting
it to the MD. This ensures the security of C againsts the
vulnerabilities of unreliable wireless media. Furthermore, we
need to ensure that only the intended recipients should be able
to decrypt the file. For this, we perform another modification
on C in the MD to generate C’. The C’ is used for the

encrypting a file (i.e. C L CandCT =PT ® C’) and can
only be decrypted by the receipients having the key k. We
investigate two randomized (s-CLOAK and r-CLOAK) and a
deterministic approach (d-CLOAK) for generating C’.
Secrecy of the key is the basic requirement of all crypto-
graphic algorithms and adversary may impose various attacks
to retrieve the same. Since we are using C’ for the encryp-

tion process, the generation procedure of C LY C’ plays a
crucial role in the security of the protocol. In the proposed
algorithms, we use the key (k) for generating C’. We show
that, for an unknown k, it is computationally infeasible for an
adversary to generate C’ through a brute force attack. In addi-
tion, we also show that the protocol can resist attacks like
two time pad, known plaintext, algebaric, Man-in-the-middle,
insider, impersonation and DoS. We evaluate the performance
of CLOAK on five different Android-based smartphones and
use Amazon Web services (AWS) for CSPRN and study the
complexity of the algorithm (i.e., time, space, processing
power) by varying the file size.

Rest of the paper is organized as follows. In section-II,
we present the related works. In section-III, we discuss the
basics of the CLOAK protocol, generation of CSPRN and the
security challenges. In section-IV, we discuss the modifica-
tion of CSPRN and secure the message flow. Next, section-V,
analyses the security threats of the CLOAK protocol.
Section-VI, illustrates the important properties of the pro-
tocol and presents the experimental result on various
Android based MDs. Finally, we conclude our discussion in
section-VII.

Il. RELATED WORKS

Encryption is a fundamental operation for securing users
digital information against unauthorized access. A secure
encryption algorithm is needed for the MD, as it is commonly
used for storing and sharing users private and sensitive data,
e.g., photos, videos, medical records. Moreover, encryption is
also essential before offloading data from mobiles to remote
cloud servers. Researchers have proposed various encryption/
decryption approaches for the MD [12], [13], [23], [24].
In this section, we discuss the previous works related to our
proposed protocol.

Stream cipher is a popular cryptographically secure
encryption technique. Communication standards, like GSM,
3GPP, LTE [26] are using stream cipher for encrypting
voice communication. Stream cipher is less computation
intensive and it can easily be handled by existing MD.
In [29] and [30], authors suggested that stream cipher
is best suited for handling large data streams in resource
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constrained MD. Researchers are investigating new stream
ciphers to render its advantages. It can be implemented on
both hardware [31] and software [32], as listed in table-1.
Some of the popular stream cipher includes A5/1, A5/2 used
for voice encryption in GSM networks and RC4 used in
SSL/TLS protocol (until 2015). These implementation of a
stream cipher mainly differ in their key generation phase.
Researchers have studied various key generation strategies,
such as linear feedback shift registers (LFSR) [33], nonlinear
feedback shift registers (NLFSR) [34], AES-CTR [35] for
improving the efficiency of the stream ciphers and to counter
attacks. However, the CLOAK protocol, proposed in this
paper, is different from the above. The goal of our work is
to implement a lightweight encryption protocol for resource
constrained devices. Although, such devices can meet the
computational requirement of a stream cipher, sharing the
keystream can be a challenging task. To address this issue,
we investigate the possibility of offloading the keystream
generation and distribution task to an ES, such that it can
be shared securely with multiple recipients. This is the main
difference between CLOAK and other stream ciphers.

TABLE 1. Various stream ciphers.

Software Implementation
HC-128 [36]

Rabbit [37]

Salsa20 [38]
SOSEMANUK [35]

RC4 [39]

Hardware Inplementation

GrainV1 [40]
MICKEY2.0 [41]
Trivium [42]

In [12], authors explore the feasibility of implement-
ing Advanced Encryption Standard (AES), SERPENT and
TWOFISH algorithms in MD and studied the performance
and computational cost of each algorithm. The analysis shows
that the performance of TWOFISH is better compared to
others in terms of CPU and memory utilization. However, due
to high computational complexity, these algorithms are not
efficient for the MD [12]. Authors in [14] and [15] have opti-
mized the AES/DES encryption algorithm. In AES, the main
functionalists are performed in the S-BOX, which comprises
of two transformations, multiplicative inverse and followed
by an affine transformation. In [15], authors focus on rectify-
ing the S-BOX operations to make the algorithm lightweight
and proposed a modified affine transformation with lesser
time complexity than the original AES. The authors prove that
the proposed optimized algorithm provides similar security as
compare to the original version.

Researchers have proposed selective or partial encryp-
tion schemes to overcome the resource limitations of
MD [23], [24]. In this, the important parts of a file are parsed
for encryption within the MD and the remaining parts can be
transferred to an external server or stored in the mobile in
a plaintext format. Selective encryption can save resources in
MD. In [23] authors eliminate the duplicate data in structured
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files (e.g. pdfs, ppt, docx) before encryption to reduce the
amount of data at its source to save the storage space and
network bandwidth. Similarly, in [24], data is fragmented
both vertically and horizontally to determine the parts of the
data for encryption.

Homomorphic encryption technique allows computational
operations on the ciphertext to produce encrypted output
and is more applicable for mobile cloud computing (MCC).
MD can use homomorphic encryption to offload the
encrypted data to the cloud, perform computational opera-
tions on the same and return the encrypted result back to
the mobile. On decryption, it produces the same output as
can be obtained by performing the operation on the plaintext.
In [13], authors propose a light-weight homomorphic encryp-
tion (LHE) algorithm for the MD. The LHE algorithm has
four essential services, i.e., key generation, data encryption,
data recovery and data evaluation. The data evaluation algo-
rithm allows both the addition and multiplication operations
on the ciphertext.

Hardware based encryption is another approach for
securing data in MD. In [43], authors use the Graphical
Processing Unit (GPU) for handling computation intensive
cryptographic operations. It utilizes the performance of the
GPUs for non-graphical computations. Authors consider the
XTS-AES based encryption algorithm and used the OpenCL
APIs for GPU programming. The C library libc is used for
interacting with the Andriod platform. The user’s data is
encrypted transparently during the read/write operations in
the MD. Other research works related to hardware based
encryption are [44], [45].

Attribute-Based Encryption (ABE) is based on pub-
lic key encryption paradigm. In ABE, the secret key is
defined by a set of attributes or policy on the attributes
(e.g KP-ABE [46], CP-ABE [47]). The data can be encrypted
with respect to subsets of attributes. For decryption, the set
of user attributes must match with the attributes of the
cipher text. In [48], authors propose an ABE scheme for the
mobile cloud environment. The computational overhead of
the mobile is reduced by delegating the part of encryption
tasks to the cloud. There are four entities in [48]: user, Trusted
Key Generator (TKG), Cloud Service Provider (CSP), and
Token Service Provider (TSP). The TKG is responsible for
generation and distributions of keys and the TSP uses token-
controlled public key encryption for efficient key revocation.

Chen et al. [32] proposed an encryption algorithm called
self-encryption (SE) based on stream cipher. In SE, the key
stream is generated randomly within the MD by using user’s
PIN and a nonce. Then, the key is XORed with the plaintext
for generating ciphertext. The ciphertext is stored in the user’s
mobile phone. However, the key stream and other parameters
are stored in a secure external server. For decryption, the user
needs to provide the PIN to the server for authentication.
The server validates the user and forwards the key stream
to the user. On receiving the keystream, the mobile can
decrypt the stored data. In SE, the length of the keystream
depends on the user’s security demand. The SE algorithm
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is similar to our proposed algorithm. However, the differ-
ence is that in SE the keystream is generated inside the
MD, whereas in CLOAK, the keystream is obtained from an
external server/cloud. Moreover, SE uses a trusted third party
server for storing the keystream and in CLOAK we study
the feasibility of utilizing both trusted and untrusted external
servers for the generation and distribution of the keystream.

IIl. IMPLEMENTATION

In this section, we discuss the implementational details of
our proposed protocol. We begin by introducing a general
overview for the generation of CSPRN and the basic overview
of the proposed CLOAK protocol. Then introduce the
security issues of CLOAK.

A. BASIC CLOAK ARCHITECTURE

CLOAK is a light-weight, stream cipher based encryption
protocol for secure data communication between two MDs.
The two fundamental operations of a stream cipher are key
generation and XORing. These are independent operations
and can be performed separately. This is the fundamental idea
of CLOAK. In CLOAK, the key generation operation can
be performed in an ES/cloud and the XORing operation is
performed in the MD to generate the CT.

There are three main components of our protocol are
clients, the external server (ES) and the communication
media (CM), figure-1. A client can be a smartphone, tablet
or a PC interested in performing the encryption/decryption
operation. In MCC, an ES is often used for offloading the
computationally intensive tasks from resource constrained
MD [12]. In CLOAK, we use an ES for generating the
CSPRN. The ES can be specifically configured according
to the requirement of an application and the workload. The
communications between MD and cloud ES can take place
via any wireless communication media such as Wi-fi, 3G,
4G, UMTS, LTE. The commonly used notations in CLOAK
protocol is shown in table-2.

Alice Bob
(Encryption Side) (Decryption Side)

FIGURE 1. Basic architecture of proposed protocol.

Figure-1 shows the basic architecture of the CLOAK pro-
tocol. In this, we consider a scenario where a user say,
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TABLE 2. Notations used in CLOAK.

‘ Notation ‘ Description
MD Mobile Devices
ES External Server
PT Plaintext
CT Ciphertext
CM Comuunication Media
c.o.or Cryptographically Secure Pseudo-random number
T (CSPRN), Key-stream
PRN Pseudo-random number
OTP One Time Password
OOB Out-of-band Channel
fn File Name
cs CSPRN Size
un User Name
uid Unique User ID
s Seed
k Key
Sk Pre-shared key between MD and ES
Ty Token
Ts Time Stamp

Alice, wants to share a file present in her mobile device to
another user, say Bob. We assume that the MDs of both Alice
and Bob are registered with the ES. For secure communica-
tion, CLOAK uses a pre-shared key (Sx ) between ES and MD,
defined during the registration of the MD. For encryption,
Alice first selects the intended file and sends a request to
the ES specifying unique user-id (uid), file-name (fn) and
CSPRN-size (cs). The uid can be a user-defined password,
device-id or IMEI number of the MD. The < uid, fn > is
meant for unique identification of a file originating from an
MD. For the security purposes, the size of the CSPRN (cs)
should be greater then 128 bits [49].

On receiving this request, the ES produces CSPRN using
algorithm-1 and returns the CSPRN back to Alice. To make
the size of CSPRN (cs) equal to PT (say n), a pre-processing
operation, i.e. replication or truncation on CSPRN may be
required. In case, cs < n, the CSPRN can be replicated
(|n|/|cs]) times. Similarly, if the ¢s > n, truncation can be
performed to discard the extra bits. Then Alice can encrypt

Algorithm 1 CSPRN Generation

Function CSPRN_Gen (CSPRN size: cs)
s < random_num() ; /* Key or Seed x/
sn < random_num() ; /+ Seq Num =*/
CSPRN <« NULL ; /x Init. CSPRN */
n < [cs/1287;
while n > 0 do

CSPRN < CSPRN + AES(s, sn),

sn < sn+1;

n<n-—1;

return CSPRN;
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the file using this CSPRN and can either save the CT in SD
card or store it in the ES, which completes the encryption
process. For sharing the encrypted file, Alice sends the <
uid, fn > to Bob. In the decryption phase, Bob sends a request
to the ES specifying < uid, fn >, for the CSPRN. The ES
consults its database with these parameters, generates the
CSPRN of size cs and forwards it to Bob. Finally, Bob can
decrypt the file using the CSPRN.

In CLOAK, XORing is the only operation performed in
the MD. For encryption, the PT is XORed with the CSPRN
to generate the CT and in decryption, the CT is again XORed
with the same CSPRN to retrieve the original PT. In our proto-
col, to handle the memory limitations of the MD, we perform
chunk-wise XORing operation by incrementally reading the
file and CSPRN in chunks of equal sizes. In general, XORing
is a simple operation with less computation and memory
requirement, which can be easily implemented in MD. In our
experiment, we find that the read/write operation for a chunk
size of 512 bytes from an external memory (SD card) takes
more time compared to the XORing operation. Moreover, by
offloading the CSPRN generation task to the ES, the MD can
save resources. So, the CLOAK protocol is mobile centric and
it does not need to exchange data in a PT format.

B. PSEUDO RANDOM NUMBER GENERATION
Pseudo-random number (PRN) is a stream of random or
pseudo-random characters, used for generating the ciphertext
in a stream cipher. It is a set of values or elements that are
statistically random but is derived from a known starting
point, called seed and typically the elements are repeated after
a fixed interval [50]. The PRN is generated using a deter-
ministic process and is reproducible. It is called “pseudo”
random because the generator can reproduce the sequence
for a specific seed value and thus the PRNs are not entirely
random. In addition to cryptography, PRN is also used for
simulations (e.g. for the Monte Carlo method [51], electronic
games (e.g. for procedural generation [52], etc.

However, in stream ciphers, we generally use crypto-
graphically secure pseudo-random numbers (CSPRNs). The
CSPRNSs are unpredictable i.e., for some given output bits of
the key stream it is computationally infeasible to compute the
subsequent bits. Another way of defining CSPRN is that, for
a given ‘n’ consecutive bits of a key stream, no polynomial
time algorithm can predict the next or preceding bits of
the key stream. There is various method for generation of
CSPRN, such as Middle Square Method (John Von Neumann
1946) [53], Linear Congruential generator (LCG) [54], Cubic
Congruential generator (CCG).

In our implementation, we use the Advanced Encryp-
tion Standard (AES) for generating CSPRN [55]. AES is a
secure and widely used symmetric-key based cryptographic
algorithm, published by National Institute of Standards and
Technology (NIST) in 2001 [56]. The encryption algorithm
of AES requires two parameters: plaintext and a secret key.
The main design principle of AES is based on substitution
and permutation, that makes it faster for both software and
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hardware implementation [57]. The core functionality of AES
occurs inside the substitution box or S-Box. By using AES,
128 bits data block can be encrypted by using three differ-
ent key lengths of 128, 192 and 256 bits with 10, 12 and
14 rounds, respectively.

In CLOAK, we implement AES-128 bits for generating
of 128 bits of a CSPRN. The parameters passed to the AES
encryption algorithm, are seed/key (s) and sequence num-
ber (sn), figure-2. The sn is an integer that can be user defined
or can be selected randomly. Similarly, the key (s) can be
a user defined string or an integer chosen randomly by the
system. These are the initial parameters of the AES algorithm,
used for generating the first 128 bits of the CSPRN. The sn is
incremented at each iteration for producing the subsequent
128 bits of the CSPRN (C). Subsequently, the ES needs
to send C to the MD. To secure the transmission, the ES
modifies C by XORing it with a pre-shared secret key Sk,
which is defined the MD at the time of registration with ES.
The ES generate C” < C @ Sg) and transmits C” to the MD,
as shown in Fig-2. If the size of S; < C, the ES can replicate
Sk to make the size equal to C. Notice that, the generation
of multiple C” with the same secret key Si, has no effect on
two-time pad attack. In addition, the generation of C” also
helps CLOAK to avoid other attacks, such as known plaintext
attack and algebraic attack, as discussed in section-V.

8
Sn

—’K B CSPRNG C @ c”
ey . >
Yy »| (AES-128)

FIGURE 2. Cryptographically Pseudo random number generator.

We installed a Linux based server on AWS and imple-
mented AES (128 bit) encryption algorithm on the server.
To fetch the CSPRN, users can send a request to the server
from it’s mobile, mentioning the < uid, fin, cs >, as discussed
above. For simplicity, we used the PHP rand-function() for
generating the key s and sequence number sn in the ES. Since,
we are using 128 bit AES, the size of the CSPRN is the
multiple of 128 bits. In each iteration, the algorithm adds
128 bits to the key stream to make it equal to the requested cs,
shown in algorithm-1. The initial values of s and sn must be
same for both encryption and decryption operations. For this,
the ES stores < uid, fn, cs, sn, s > in it’s database. When the
ES receives a decryption request with < uid, fn >, it retrieves
the corresponding sn and s from its database, generates the
same CSPRN (size cs) and sends it back to the requesting
MD. For more security, the ES can use encryption before
storing the data in the database.

C. SECURITY ISSUES OF CLOAK

The security of CLOAK depends upon the security of its
components (i.e, MD, ES and the communication channels).
In the following, we analyze the security of these components
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in detail. The idea is to explore the vulnerabilities and to
emphasise the security concerns of the CLOAK protocol.

1) Security of MD: Ensuring the security of the MD is
the responsibility of OS and researchers have proposed
various mechanism to overcome the security challenges
of the same [58]-[60]. In CLOAK, we assume that the
XORING and the read/write operation on the PT/CT
can be preformed securely within the MD. This is the
basic presumption of any encryption algorithm, i.e.,
the device on which the cipher is performed should be
secure.

2) Security of ES: In MCC, the use of an ES or cloud is
increasing to overcome the resource constraints of the
MDs. It is performed by offloading the computation
intensive operations to the ES. Providing security of
a shared platform against internal and external attacks
is a challenging task and is currently a major research
issue for the Cloud Service Providers (CSPs). In our
case, security of the CSPRN generator against modi-
fication or deletion of code/data is the responsibility
of the CSPs. However, the protocol must ensure that
the data obtained from a compromised ES (leaked or
modified data) has no effect on the security of the
protocol.

3) Security of CM: One of the basic requirement of a
stream cipher is to protect both the CT and CSPRN
(Key-stream) from the adversary. This is the most
challenging task for the CLOAK protocol since the
communications between MDs and ES can take place
over an unreliable wireless medium in the MCC envi-
ronment. Thus, the CLOAK protocol must ensure that
the adversary retrieves no information about the PT,
from CSPRN and/or CT.

Thus, in the CLOAK protocol, the main security challenge
is to protect the CSPRN and CT pair from the adversary.
Note that, the CSPRN and CT can be compromised in one
of the following ways: (a) by fetching the CSPRN from ES
and CT from the CM or (b) by compromising the two com-
munication channels used for exchanging data between the
ES and MDs, figure-1. We address this issue by modifying C
(i.e. C” <« C @ Si) on ES before transmitting to the MD.
In addition again we modify the the original CSPRN (C) by
using deception techniques within the mobile devices (MDs)

to generate a new CSPRN (i.e. C LY C’) and use C’ to
produce CT. The idea is to deceive the adversary. More-
over, the CLOAK protocol must be immune to other security
challenges, such as two-time pad/reused key attack, Known
plaintext attack, algebraic attack, man-in-the-middle, DoS
and impersonation attacks.

IV. SECURING CLOAK

In this section, we try to address the above security challenges
in detail. We begin our discussion with the deception tech-
nique, whereby we investigate techniques for modifying the

original CSPRN within the mobile devices, i.e. C i) c’,
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for producing CT. Furthermore, to handle other security
attacks, as discussed above, we modify the basic CLOAK
protocol by securing the message communication between
the CLOAK entities.

A. MODIFYING CSPRN

The security of a stream cipher depends on the security of
the key-stream, i.e. CSPRN. Since we consider an unreli-
able communication medium, we investigate two randomized
approaches (s-CLOAK and r-CLOAK) and a deterministic
approach (d-CLOAK) for generating modified CSPRN (C”),
figure-3. In figure-4, we show the block diagrams of all three
approaches. For all approaches, we assume that the MD has
received the CSPRN (C) from ES.

Modifying CSPRN

N

Randomized Deterministic
s-cloak r-cloak d-cloak
FIGURE 3. Approached for modifying CSPRN.
cr LPT
C Selection i CcT
(r:,0/1) _
(@)
LPT

C Permutations| C’ CT
— > () > —

(b)

o LPT

- ¥ c’ CcT
Key : k > e
e

©
FIGURE 4. Block Diagram of s-CLOAK, r-CLOAK, d-CLOAK.

1) s-CLOAK

We begin by introducing a naive approach by logically con-
sidering C to be cyclic of size n, figure-5a. In this, the MD
selects a random number r in the range of (1...n), which
corresponds to a bit location in C. A modified CSPRN C’
can be produced by shifting C by r bits, i.e. C'[i] = C[(n +
i+ r — 1) mod n], Vibits. The shift can either be in the
clockwise (0) or anticlockwise (1) direction, determined by a

random variable. The cipher-text (CT) can be produced by:
CTli]=PT[i]®C[(nxi+r—1) modn], Vibits
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Thus, in naive approach, we use two random variables,
one for determining the number of shifts and other for the
direction, figure-5a. The key-pair (r,0/1) can be shared
between the communicating parties, as in any symmetric key
cryptographic algorithm and can be used by the decryptor for
generating the same C’. The algorithmic complexity of this
approach is O(n). However, notice that, for a given C and CT,
a brute force attack can retrieve the PT in O(n) by shifting
through all bits of C.

(r3,0)
(7"2, 1)1

(r1,0)
(a) (b)

FIGURE 5. s-CLOAK with randomized key-pair k = {r;, 0/1)}.

To increase unpredictability, the above process can be
repeated m times. We refer it as s-CLOAK. For this, the
MD needs to select m pair of random numbers (r;, 0/1),
fori=1tom to generate m modified CSPRNs C’ = Cj,
Cy, ..., Cy, shown in figure-5b, and perform the XORing
operation to generate the CT, as follows:

CT=PToCi®Cr®d...9Cy,

In s-CLOAK, the total size of the key-pair increases by a
factor of m and the complexity of the algorithm as O(nm),
as it performs m XORing operations on n bits. Moreover, if
m is equivalent to n, then the maximum complexity of the
algorithm increases to O(n?). Also notice that the order in
which the random numbers are selected, has no effect on
the CT.

2) r-CLOAK
r-CLOAK is another randomized approach for modifying
CSPRN. In this, we again use a set of m random numbers
(r1, 12, ..., rm), indicating the bit positions in the range of
0...(n — 1). However, unlike s-CLOAK, the order of the
random numbers is important in r-CLOAK, which increase
the randomness of the system. Another important distinction
is that, -CLOAK performs a single XOR operation; whereas
s-CLOAK requires m-XORing to produce the CT, figure-4.
In r-CLOAK, the first m-bits of C’ is obtained from the
initial position of the m-random numbers. Then, the random
numbers are incremented by one to obtain the next m-bits
of C’. All successive bits of C’ can be obtained by the same
procedure, as shown in figure-6. The notation rl/ indicates a
shift of j bits from r; in C. The relationship between the bits
of C and C’ is shown below. Notice that, if we change the
order of the random numbers, the C’ changes.
C'lim+i] = C[r{] =C[(r;£j) modn], Vi=1...m
j=0...[n/m]
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The complexity of the r-CLOAK is O(n), as the pre-
processing of C — C’ requires O(n) and also PT — CT
can be generated in O(n). The key shared between encryptor
and decryptor is (r1, 2, .. ., Iy). In figure-6, the next bit is
obtained by incrementing the random numbers. However, we
can also use the decrement operation or randomly choose
between the two operations for each r;. In the later case,
the -CLOAK generates a sequence of key-pairs, similar to
s-CLOAK.

Tt T3 1 T2 Ta

¢ ¢ ¢
100

M\

001010110

r? rS r%’ i iy iy i v rieg

FIGURE 6. r-CLOAK with randomized key-pair: k = {r;, 0/1}.

Both s-CLOAK and r-CLOAK can be implemented using
a block/chunk-wise, which is important for memory con-
strained mobile devices (MDs). Instead of handling a large
file, the MDs can recursively read a small chunk of its main
memory, apply any of the above algorithms and write the
result back to the secondary storage. The MD can either
use the same set of m-random numbers or it can choose
a different set for each chunk. For both s-CLOAK and
r-CLOAK, the key can be generated by random function [61],
[62] or pseudo-random number generator [53], [54]. The later
is more preferable, as only the seed value needs to be shared
between the encryptor and decryptor. Notice that, secrecy of
C’ depends upon the random numbers. We discuss the brute
force attack for both s-CLOAK and r-CLOAK in section-VI.

3) d-CLOAK

This is a deterministic approach where a predetermined secret
key k is used for generating modified CSPRN C’. In compari-
son with the previous approaches, in d-CLOAK the key k can
either be user defined string or can be generated randomly in
the MD. The C’ is generated by XORing C with the secret
key k, i.e. C’ = C @ k. A pre-processing operation on the
secret key, i.e. replication or trimming, may be required to
make the size of k equal to PT. Finally, the CT is generated by
performing another XORing operation between PT and C’, as
shown in figure-4.

Same as other symmetric key algorithms, the three
approaches discussed above, need to exchange the key/key-
pair between the encryptor and decryptor. Since this is not
the main focus of this paper, we skip the details. However,
popular techniques for exchanging keys include, secure chan-
nel [18], out-of-band channel (OOB) [63] and Diffie-Hellman
algorithm [64]. The secrecy of the keys is the primary require-
ment of all cryptographic algorithms and it is also true for the
above approaches.

The decryption is the inverse of the encryption procedure,
for the above approaches. To retrieve the plain text, decryptor
needs to have the C, key/key-pair and CT. The decryptor
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can obtain C form ES, CT from either ES or MD and the
key from the MD. Then the decryptor generates C’ using the
above approaches and finally can obtain the PT by XORing
CT with C’.

B. SECURING THE MESSAGE FLOW

In MCC, the message exchanges between MD and the ES
takes place over insecure CM and is susceptible to various
security threats. In this section, we address the issue by
securing the messages exchanged in the CLOAK protocol.
The goal is to protect all parameters used for fetching the
CSPRN from the external ES. We assume that, all users are
registered with the ES with user-name un and unique user-
id (uid) for accessing its services. We also assume that the
mobile device and the external ES, use a common one-way
hashed function (e.g. SHA-1 and SHA-2 [65]) for protecting
their respective messages. Figure-7, shows the message flow
of our protocol.

4. <Tk = Hifn, uid, r)>

FIGURE 7. Message Flow in CLOAK.

In figure-7, message 1 and 2 is exchanged between MD
and ES to obtain the CSPRN. The message | includes:
(un, cs, H(uid), H(fn || uid)), where H(fn || uid) is the
hash value of concatenated filename fn and uid. The pair
(un, H(uid)) is the credentials for validating user’s identity.
The parameters H (fn || uid) and cs are the unique file iden-
tifier and size of the CSPRN. On receiving this message, ES
validates the user and on successful verification it generates
C" <« C @ Sg, as discussed in section-1II-B. Then, the ES
stores the unique file name H (fn || uid), H(uid), cs, sn and
s in its database. For more security, the ES can send one
time password (OTP) to users mobile through an out-of-band
channel (OOB) [63], for verifying user authenticity.

Then, the ES generates a hash value i’ = H(C”, H(uid))
to prepare message 2, containing (C”, #’) and forwards it to
the MD. The OTP can also be included in /’. On receiving
this message, the mobile checks the integrity of the message
by calculating /" = H(C"”, H (uid)) by comparing h” with /.
If W’ = I/, then the MD considers C” as valid. Finally, the
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MD retrieves C by XORing C” with its pre-shared key S; and
uses it for the encryption operation in s-CLOAK, r-CLOAK
or d-CLOAK protocol. Notice that, both MD and ES mutually
validate each other before accepting any message.

The encryptor may like to share the file with multiple MDs.
For this, the encryptor generates a token 7} and distributes it
to the intended users. A mobile with a valid token can request
CSPRN form the external ES and decrypt the ciphertext, as
discussed above. Token generation and distribution process
is shown in message 3 and 4 of figure-7. The token T} is
generated by hashing fn, uid and a random number 7 (i.e.
Tir = H(fn || uid || r)). The encryptor creates message 3
containing < H(fn || uid), Ty, T >, associating T} with the
filename for a timestamp 7. Then the message is forwarded
to the ES. The ES stores the information of this message in
its database. The token is forwarded to the intended mobile
users via a secure channel, shown in message 4.

With a valid T, the decryptor can request the ES for
CSPRN. For this, the decryptor sends message 5 contain-
ing Ty, with user credential (un, H(uid)) for its verification.
The ES validates the decryptor and checks the validity of the
token T}. If the T} is found in the database, the sever checks
corresponding timestamp (75) and retrieves the necessary
parameters (sn, k) for generating the CSPRN. Finally, the
CSPRN is forwarded to the decryptor as message 6, which
is similar to message 2.

V. ATTACK ANALYSIS

The security threats on CLOAK can be imposed in two ways.
An attacker may either try to find vulnerabilities in the ES or
on CM. In this section, we consider both issues and perform
the attack analysis on the CLOAK protocol.

A. BRUTE FORCE ATTACK

For Brute force attack, we assume that the adversary has
obtained the CT and CSPRN (C), and wants to find the PT.
In CLOAK, since PT # C & CT, the attacker may either
try to guess the C’ or try to generate C’ from C. The former
case is equivalent to finding the secret key S in d-CLOAK.
So, if the size of C’ or Sis > 128 bits, then a brute-force
attack needs to consider more than 2'?® combinations to find
the PT, which is computationally infeasible [49]. For the later
case, the complexity of generating C — C’ depends on the
number of random numbers (i.e. m). In the following, we
compute m for a given PT of size n (> m), that makes the
brute-force attack computationally infeasible for s-CLOAK
and r-CLOAK.

For s-CLOAK, to compute C — C’, a brute force attack
needs to determine the m random numbers r;’s in the range
of 0...(n — 1). For this, the attacker needs to consider all
() combinations of choosing r;’s, which can be bounded
using Sterlings approximation [66] as: (%)m =) =< (%)m
In s-CLOAK, since each r; is associated with O or 1
with equal probability, the computational complexity of
generating C — C’ greater than (%)m. This can be used
for computing the minimum number of random numbers
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required to make the brute-force attack computationally
infeasible. For example, for a known PT of size n = IMb =
220 bits, the complexity of finding m > 8 random numbers
is more than 2128, Similarly, for a PT size of n = 8 Mb,
similar complexity can be obtained by choosing m > 6. In
r-CLOAK, the generation of C’ depends on the order of the
random numbers. Thus, a brute force attack needs to consider
all permutations of m random numbers. The complexity for
the same is "P,, and it can be bounded as (g)m <"P, < (n)m
Again, associating each r; with 0 and 1 with equal probability,
the complexity of finding r;’s increases by a factor of 2™, i.e.,
(22)™. This can be used to calculate the m for -CLOAK to
make the attack computationally infeasible.

B. TWO TIME PAD / REUSED KEY ATTACK

In a stream cipher, encrypting two different messages, say m
and my using same key k is called a two time pad attack or
reused key attack. That is, if an attacker intercepts both ¢ <«
m1 @k and ¢y < my®k, then it can easily find the plaintext.
For this, the attacker XORs ¢y, ¢; (that is, m@®my < c¢1Hcy)
and then determines mj and my by using frequency analysis
on m1®my. However, this attck is not possible in CLOAK, as
it encrypts each file with a different CSPRN obtained form
a randomly generated sequence number sn and seed s using
AES, shown in algo-1.

C. KNOWN PLAINTEXT ATTACK AND ALGEBRAIC ATTACK
A known plaintext attack tries to determine the secret key
(or key stream in case of a stream cipher) from the known
bits of a plaintext and its corresponding cipher text. Similarly,
in an algebraic attack, an attacker tries to retrieve the secret
key by finding and solving a system of the equation over a
finite field [67]. Both attacks try to determine the secret key
using different methodology. A known plaintext attack is not
possible in CLOAK. This is because, from the known bits of
a PT and CT, the attacker can only determine the correspond-
ing bits of C’. To determine the subsequent bits of C’, the
attacker needs to know the original CSPRN (C). However, as
discussed in section-III-B, the ES modifies C using S; before
transmitting to the MD. Thus, the C can only be determined
if the shared secret (Si) is known to the attacker. Similarly,
an adversary must determine C for a successful algebraic
attack. For this, the attacker must perform the algebraic attack
on the CSPRN generation procedure, i.e. on AES algorithm
in CLOAK. However, according to [68], [69], the algebraic
attack is computationally infeasible on AES-128 using XL,
XSL algorithms [70].

D. MAN-IN-THE-MIDDLE ATTACK

In Man-in-the-middle (MIM) attack, the attacker can eaves-
drop and modify the messages exchanged between two
the communicating parties. Both parties, unaware of the
attacker, think that they are communicating directly with each
other; but an MIM attacker can control this conversation by
changing the original messages. In CLOAK, for MIM attack,
the attacker may try to snoop on messages 1-6, in figure-7. As
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Hashing is used in all the messages, the attacker is unable to
manage, predict or modify any information passed between
the communicating parties. Also, the messages are verified
mutually by checking the user’s credentials and comparing
the hash values.

E. INSIDER ATTACK

In CLOAK, an insider attack can take place to compro-
mise the CSPRN or the user credentials stored on the ES.
However, in our protocol, the ES stores the digest of all
important parameters (H (fin||uid), H(uid), H(fn||uid||r)) in
its database, that can not be used for retrieving any mean-
ingful information. The information stored in the plain text
format (sn, k, cs, Ty) can not be used without meaningful
interpretation of the above parameters. Thus, the insider
attack can not take place in CLOAK.

F. DENIAL OF SERVICE (DoS) ATTACK

In CLOAK, the ES validates the credentials of the user before
providing its services. Also, the mobile checks the integrity
of the message received from the ES by comparing the hash
digest. Due to mutual verification, DoS attack is not possible
in CLOAK.

G. IMPERSONATION ATTACK

For this, we consider two cases, i.e. mobile user imperson-
ation and CSPRN impersonation. In CLOAK, user imper-
sonation attack can happen while the mobile is requesting
CSPRN from the ES. This can be avoided by verifying
the authenticity of the user using OTP, as discussed above.
Similarly, the same OTP can be used for countering the
CSPRN impersonation by an attacker, by hashing the OTP
with the CSPRN.

H. CHOSEN IV ATTACK

In stream ciphers, Initial Vector (IV) is generally used to
generate the pseudo-random numbers using PRNG(K, IV)
function. However, using the same I'V for generating multiple
PRNs is unsafe. A chosen IV attack tries to choose an IV
to generate the PRN with a known key (K). In CLOAK, the
CSPRN is generated using the AES-128 bit and the IVs are
generated randomly for each file. So, Chosen IV attack is not
possible in CLOAK.

VI. PERFORMANCE EVALUATION

In the following section, we discuss some significant proper-
ties of CLOAK. Subsequently to understand the complexity
of our protocol, we present our experimental evaluations on
five MDs.

A. PROPERTIES OF CLOAK

1) CSPRN (C) IS UNPREDICTABLE

As mentioned above, in a stream cipher, the PRN should
be unpredictable. That is, for a given i consecutive bits
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of a PRN sequence, finding the remaining bits should be
computationally infeasible. An unpredictable PRN is a cryp-
tographically secure PRN (CSPRN). Now we show that
algo-1, used for PRN generation is unpredictable. Algo-1,
uses the Advanced Encryption Standard (AES) algorithm
with sequence number (sn) and seed (s) as the input param-
eters, generated by using a random function. The AES algo-
rithm has the confusion and diffusion properties, identified by
Claude Shannon in 1945 [71], required for generating secure
ciphers. In AES, confusion is based on the substitution princi-
ple, whereby the bits of a ciphertext is correlated with several
bits of the secret key. The diffusion ensures that a single bit
change in the plaintext should statistically alter half of the bits
in the ciphertext and vice versa. The confusion and diffusion
properties ensure that, for a given 128-bit output of AES,
the probability that the i bit is 0 or 1 is 0.5. Moreover, since
the sn is incremented at each iteration, each 128-bit output of
the algorithm is distinct. Thus, the entire key stream generated
by the algo-1 is unpredictable and produces cryptographically
secure PRN.

2) FOR UNKNOWN k, GENERATION OF C’ IS
COMPUTATIONALLY INFEASIBLE

In s-CLOAK and r-CLOAK, the generation of C — C’
is directly related to the m random numbers. If the random
numbers are unpredictable and uniformly distributed, then as
shown in the brute-force attack, the generation of C — C’ is
computationally infeasible. In d-CLOAK, C’ is produced by
XORing C with replicated k. The XOR operation on a string
of unknown distribution with a uniformly distributed CSPRN,
is uniformly distributed. Hence, C’ is uniformly distributed
and for k > 128 bits, generation of C’ is computationally
infeasible, as discussed above.

3) CLOAK IS SECURE CIPHER

The CLOAK protocol is similar to One Time Pad (OTP)
encryption. In CLOAK, the length of the key-stream greater
than 128 bits and the key-stream is different for each file, as
shown in algo-1. Moreover, the proposed protocol is designed
by considering the security challenges of the MCC environ-
ment. Thus, CLOAK is a secure cipher.

TABLE 3. Mobile device configuaration.

4) SMOOTH KEY DISTRIBUTION

The distribution of key-stream is a challenging task of a
stream cipher [72], as the same key is used for both encryp-
tion and decryption operations. In CLOAK, the CSPRN
generation and distribution is handled by the ES. The MD
always downloads the CSPRNs from the ES, as required.
It is assumed that the ES infrastructure can easily meet the
demands of multiple users. Thus, the key distribution of
our proposed protocol requires the minimum involvement of
the MD.

5) LESS COMPUTATIONAL OVERHEAD ON MD

In CLOAK, the operations performed by the MD are read,
write, XORing, calculating hash values and communication
with ES. These are basic operations with low computational
complexity and can be performed with limited computational
resources.

B. EXPERIMENTAL RESULTS

The performance of an algorithm depends on the complexity
and hardware capability of the device on which it is exe-
cuted (i.e. processor, memory, cache). The two main factors
affecting the performance of CLOAK are the time required
for downloading CSPRN and the time required to perform
the read, write and XOR operations in MD. To evaluate these
factors we use five MDs of different configurations, shown in
table-3. We place the CSPRN generator on the AWS cloud.
In the following, we show the performance evaluation of
r-CLOAK and d-CLOAK, as they are computationally similar
to each other, i.e. (O(n)) algorithms.

We begin by discussing the performance of r-CLOAK and
d-CLOAK on M-I for different file sizes between 1 MB to
10 MB, as shown in figure-8 and 9, respectively. For each
file size, we repeat the experiment 50 times and present an
average of the total time required for the encryption and
decryption operations. The total time includes the following:

e CSPRN Time: The time required for sending CSPRN
request to the external ES, generating CSPRN in the ES,
downloading and modifying CSPRN in MD.

e XOR Time: Reading the plaintext or ciphertext from
external memory, XORing it with CSPRN and writing
the result back to the external memory.

Mobiles || M-1 M-2 M-3 M-4 M-5
Model name YU Yureka Xiaomi MI3 Samsung GT-I9505 Asus ZOOLD Oneplus A0O1
oS Lollipop 5.1 Kitkat 4.4.4 Jelly Bean Lollipop 5.0 Lollipop 5.1
API level 22 19 18 21 22
CPU Octa-core 1.5 GHz Quad-core 2.3 GHz Quad-core 1.9 GHz Quad-core 1.2 GHz Quad-core 2.5 GHz
Chipset Qualcomm Qualcomm Qualcomm Qualcomm Qualcomm
Snapdragon 615 Snapdragon 800 Snapdragon 600 Snapdragon 410 Snapdragon 801
RAM 2GB 2GB 2GB 2GB 3 GB
GPU Adreno 405 Adreno 330 Adreno 320 Adreno 306 Adreno 330
Battery Li-Po 2500 mAh Li-Ton 3050 mAh Li-Ion 2600 mAh Li-Po 3000 mAh Li-Po 3100 mAh
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FIGURE 8. Encryption/Decryption time for r-CLOAK for M5. (a) Encryption (r-CLOAK). (b) Decryption (r-CLOAK).
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FIGURE 9. Encryption/Decryption time for d-CLOAK for M5. (a) Encryption (d-CLOAK). (b) Decryption (d-CLOAK).

As shown in figure-8 and 9, the total time for encryption
and decryption increases with increasing file size and for all
cases, the CSPRN time is more compared to XORing time.
The CSPRN time depends on various factors, such as the
location of the ES, the bandwidth of the underlay networks
and the workload on the ES. In addition, since the size of
C’ is same as the file size, the CSPRN time is also directly
proportional to the file size. Our experimental result shows
that the total time varies linearly with increasing file size.

With growing demand of efficient and computationally
intensive applications, the hardware specifications of MD are
improving day by day [73], [74]. However, there is a very
big gap between a highly configured mobile device and its
lower counterpart. A resource intensive application may not
have the desired performance on all MD. So, we test the
performance of CLOAK on MD with different configura-
tions. In this experiment, we fixed the file size as 5 MB
and check the performance of both algorithms on five MD
listed in table-3. The time complexity is shown in figure-10.
The experimental result shows that our algorithm can be
executed on a wide range of MD. However, the performance
can vary depending upon the configuration. MD with more
core processors has better performance.
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The installable APK (Android Package Kit) size of
r-CLOAK and d-CLOAK application is 1.3MB and 1.4MB,
respectively. The space occupied after installation may vary
depending on the versions of the Android operating system
running in the MD. We have installed both applications on
all MD is shown in table-3 and found the r-CLOAK and
d-CLOAK applications occupy approximately 3.5 — 4.5MB
storage space after installation in the mobile phones. Hence,
the application is light weight and it can be installed on MD
with less memory.

We used the “GSam Battery Monitor” [75] Android
application to measure the battery performance of our
application on the Xiaomi MI3 mobile device having
Li-Ion 3050 mAh battery. To measure the battery consump-
tion, we launched our application and perform the encryption
operation on five files ranging from 1MB to SMB. We
notice a 1% decrease in the battery level, which includes
the power consumed by the screen, wifi and other back-
ground processes. According to data recorded by GSam
app, the battery consumption of CLOAK is only 5% of
the total 1% battery consumption. Hence, the CLOAK
protocol is efficient and can operate on MD with low
configuration.
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FIGURE 10. Encryption/Decryption time of 5Mb file on different devices. (a) r-CLOAK. (b) d-CLOAK.

VIl. CONCLUSION

In this paper, we present a light-weight, stream cipher based
encryption/decryption protocol for the mobile devices. The
protocol is designed for the MCC environment. We handle
the challenges of insecure wireless media by modifying the
CSPRN and securing the message communication. The three
variants of the proposed protocol are referred as s-CLOAK,
r-CLOAK, and d-CLOAK, varying on the modification pro-
cedure of CSPRN. The s-CLOAK and r-CLOAK are ran-
domized approaches, while the d-CLOAK is deterministic.
We found CLOAK can resist various security challenges
like brute force attack, MIM and Impersonation attacks.
In addition, we studied the security of the messages
exchanged between MD and the ES. To evaluate the protocol,
we developed applications for android mobile phone and used
the Amazon Web Service (AWS) for placing the CSPRN gen-
erator as ES. We have studied the performance of the protocol
on five different MDs. Our experimental result shows that the
proposed protocol can handle large files in an acceptable time
frame.
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