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ABSTRACT Parkinson’s disease (PD) is a progressive neurodegenerative motor system disorder. Early
diagnosis of PD is important to control the symptoms appropriately. Recent voice and speech recogni-
tion techniques provide alternative solutions for PD screening. In this paper, an optimal support vector
machine (SVM) based on bacterial foraging optimization (BFO) was established to predict PD effectively.
The effectiveness of the proposed method, BFO-SVM, was validated on a PD data set based on vocal
measurements. The proposed method was compared with two of the most frequently used parameter
optimization methods, including an SVM based on the grid search method and an SVM based on particle
swarm optimization. Additionally, to further boost the prediction accuracy, the relief feature selection was
employed prior to the BFO-SVMmethod, consequently the RF-BFO-SVMwas proposed. The experimental
results have demonstrated that the proposed framework exhibited excellent classification performance with
a superior classification accuracy of 97.42%.

INDEX TERMS Bacterial foraging optimization, disease diagnosis, medical diagnosis, parameter optimiza-
tion, Parkinson’s disease diagnosis, support vector machines.

I. INTRODUCTION
At present, Parkinson’s disease (PD) has become the world’s
second major neurodegenerative disease. Although the cause
of PD remains unknown, its symptoms can be alleviated
significantly if the illness is detected at an early stage [1].
Recent estimates indicate that approximately 90% of patients
with PD exhibit symptoms of dysphonia [2]. Thus, vocal
measurements could be used as an effective diagnostic tool
for PD. In recent years, numerous studies concerning the use
of dysphonic indicators to diagnose and monitor PD have
been conducted [3], [4]. In one study, Little et al. [4] proposed
to use feature selection technique combined with a support
vector machine (SVM) classifier to identify PD patients.
The resulting model detected PD patients with an accuracy
of 91.4%. In another study, Shahbaba and Neal [5] used the
Dirichlet process mixtures for PD diagnosis, the experimen-
tal results have shown that the proposed nonlinear model
yielded a superior classification accuracy of 87.7% compared
to other machine learning methods. Das [6] compared the PD
diagnostic capabilities of artificial neural networks (ANN),
DMneural, and regression and decision trees. The results

have shown that the ANN yielded the most accurate diag-
nostic results with an overall accuracy of 92.9%. In addition,
Sakar and Kursun [7] developed a PD diagnostic tool
with a classification accuracy of 92.75% using a combi-
nation of mutual information and SVM. In another study,
Psorakis et al. [8] proposed an improved multiclass multi-
kernel relevance vector machines (mRVMs) to detect the PD.
It yielded an overall PD classification accuracy rate
of 89.47%. Guo et al. [9] proposed to use genetic program-
ming and the expectation maximization algorithm (GP-EM)
to develop a diagnostic tool for PD with a classification
accuracy of 93.1%. More recently, Luukka [10] employed
the similarity classifier combined with fuzzy entropy
measurements-based feature selection to detect PD; the
resulting diagnostic method achieved a mean classification
accuracy of 85.03% using only two dysphonic features.
Li et al. [11] developed a PD diagnostic tool with a classi-
fication accuracy of 93.47% using a fuzzy-based non-linear
transformation method and SVM classifier. In another study,
Ozcift and Gulten [12] proposed to use the rotation for-
est ensemble classifier combined with a correlation based
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feature selection (CFS) algorithm to identify patients
with PD; the resulting model has produced a classification
accuracy of 87.13%. In addition, AStröm and Koker [13]
developed a parallel feed-forward neural network with a
PD classification accuracy of 91.20%. Spadoto et al. [14]
employed evolutionary-based techniques and the Optimum-
Path Forest (OPF) classifier to identify PD patients.
The resulting method exhibited a classification accuracy
of 84.01%. Emary et al. [15] proposed a diagnostic tool
for PD by combining the fuzzy k-nearest neighbor (FKNN)
approach and a principle component analysis (PCA). The
resulting PCA-FKNN approach yielded a classification accu-
racy of 96.07%. Zuo et al. [16] devised an effective PD aided
diagnostic system based on PSO enhanced FKNN with a
mean accuracy of 97.47%. Hariharan et al. [17] proposed a
hybrid method by combining several feature pre-processing
methods with several classifiers including a least-square
SVM, probabilistic neural networks, and general regression
neural network to diagnose the PD; the resulting method
resulted in a classification accuracy of 100%. Furthermore,
Gök et al. [18] developed a discriminative model with a clas-
sification accuracy of 98.46% using a rotation forest ensem-
ble KNN classifier. Peker et al. [19] proposed to combine a
minimum redundancy maximum relevance attribute selection
algorithm with the complex-valued artificial neural network
to detect the PD, the classification accuracy of 98.12% has
been obtained by the proposed methodology. Chen et al. [20]
has proposed to use the extreme learning machine (ELM) and
kernel extreme learning machine (KELM) for early diagnosis
of PD. The experimental results have shown that the pro-
posed KELM in combination with feature selection method
can achieve very promising classification accuracy with the
highest accuracy of 96.47% and average accuracy of 95.97%
over 10 runs of 10-fold CV.

As shown above, SVM is one of the most popular and
effective machine learning methods used to diagnose PD.
However, comparatively few studies concerning the use of
SVM as a diagnostic tool for PD have been conducted.
SVM [21], [22], is used to identify the tradeoff between
training set error minimization and margin maximization
in order to achieve optimal generalization ability while
preventing over-fitting. Additionally, convex quadratic pro-
gramming is used in SVM to prevent the selection of
local minima. Due to these properties, SVM has been
applied to many classification problems [23]–[27]. SVM has
been proven to be particularly useful in medical diagnostic
problems [26]–[31]. However, SVM classifiers could still
be drastically improved. For example, selecting the proper
parameters can significantly improve the classification accu-
racy of SVM [32]. Thus, the values of certain parameters,
such as the penalty and kernel function parameters, should be
carefully selected before applying an SVM to any practical
problem. SVMs with radial basis function (RBF) kernels
have been reported to be well-suited for classification prob-
lems and are often the first techniques to be applied [33].
Therefore, this study primarily focused on identifying the

optimal parameter values of an RBF kernel function
(i.e., C and γ ). Traditionally, these parameters have been
selected with the grid-search method [33] and gradient
descent method [34]–[36]. However, these methods are
all easy to be stuck into local optima. In recent years,
research has shown that metaheuristics, such as genetic algo-
rithms [37], particle swarm optimization (PSO) [38]–[40],
fruit fly optimization [41], whale optimization algo-
rithm [42], differential flower pollination [43], are more apt
at identifying global optimum solutions than the aforemen-
tioned traditional methods. The bacterial foraging optimiza-
tion (BFO) method, a relatively new swarm-intelligence has
been successfully applied to many real-world optimization
problems, such as optimal controller design [44], artificial
neural network learning [45], stock market index predic-
tion [46], automatic circle detection in digital images [47],
harmonic estimation [48], aluminum electrolysis production
process [49], structural learning of Bayesian networks [50]
and active power filter design [51]. Therefore, in this paper,
the maximum classification performance of an SVM was
explored by using the BFO strategy to simulate the foraging
behavior of E. coli bacteria and its interactions with the
surrounding environment. The primary target of this study
was to investigate the maximum generalization capabilities
of SVM to effectively identify the PD patients. Additionally,
in order to further improve the diagnostic accuracy, we have
performed the feature selection using Relief prior to the
BFO-SVM prediction model. In the proposed RF-BFO-SVM
method, an objective function was designed using the cross
validation (CV) classification accuracy of an SVM in order
to analyze its generalization capabilities. The experimental
results indicated that the established RF-BFO-SVM can
result in a higher diagnostic accuracy than two other com-
monly usedmethods, including the SVMbased on grid search
(Grid-SVM), SVM based on PSO (PSO-SVM), KELM [52]
and random forest (RF) [53]. It should be noted that this
work is an elaboration of our previously published conference
paper [54] and that further details regarding the underlying
mechanisms of the proposed method and experimental pro-
cess have been provided.

In summary, the main contributions of this study are as
follows:

a) First, in order to fully exploit the potential of the
SVM classifier, we introduce BFO strategy to adap-
tively determine the two key parameters of SVM.

b) The resulting model combined with feature selection,
RF-BFO-SVM is applied to discriminate the persons
with PD from the healthy ones for the first time on the
two commonly used PD datasets.

c) The proposed RF-BFO-SVM manages to achieve bet-
ter classification performance, and offers more stable
and robust results when compared to other advanced
machine learning methods such as PSO-SVM,
Grid-SVM, KELM and RF.

The remainder of this paper is structured as follows. Back-
ground information regarding SVM and BFO is presented in
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Section 2. In Section 3, the detailed implementation of the
proposed diagnostic system is described. The experimental
design is discussed in Section 4. In Section 5, the experi-
mental results and a discussion on the proposed method are
provided. Lastly, in Section 6, the conclusion and future work
are summarized.

II. BACKGROUND
A. SUPPORT VECTOR MACHINES (SVM)
This section gives a brief description of SVM. More details
can be referred to literature [21], [55], which provides a
complete description of the SVM theory. SVM is a kind
of classification algorithm, which is devoted to improving
the generalization ability by seeking the minimum struc-
tural risk in the learning machine. The core idea lies in
the fact that it is the maximum margin strategy, which
can be finally transformed into solving a convex quadratic
programming problem. Owing to this outstanding prop-
erty, SVM has found its applications in a wide range of
fields [26–27,56–63].

In a binary classification task, the samples are separated
with a hyperplane wT x + b = 0, w is a d-dimensional
coefficient vector that is normal to the hyper plane, and b is
the offset from the origin, x are data points. The main task of
SVM is to get the results of w and b. In linear case, w can
be solved by introducing Lagrangian multipliers. The data
points on the maximum border are called support vectors.
As a result, the solution of w takes the following form: w =
n∑
i=1
αiyixi, where n is the number of SVs, yi are the labels

corresponding samples x. After then b can be derived from
yi(wT xi + b) − 1 = 0, where are support vectors. After w
and b are determined, the linear discriminant function can be
given by Eq. (1).

g(x) = sgn

(
n∑
i=1

αiyixTi x+ b

)
(1)

In non-linear cases, a general idea of kernel trick is intro-
duced. And then the decision function can be expressed as
follows:

g(x) = sgn

(
n∑
i=1

αiyiK (xi, x)+ b

)
(2)

Generally, any positive semi-definite functions that satisfy the
Mercer’s condition can be used as kernel functions [64], such
as the polynomial kernel (K (x, xi) = ((xT xi) + 1)d ) and the
Gaussian kernel (K (x, xi) = exp (−γ ‖x − xi‖2) ) as shown
in Table 1.

B. BACTERIAL FORAGING OPTIMIZATION (BFO)
BFO consists of three principle mechanisms, including
chemotaxis, reproduction, and elimination-dispersal [44]. In
this section, BFO is briefly described. For more detail of BFO
refer to the [44], [65].

TABLE 1. Four common kernel functions

1) CHEMOTAXIS
An E.coli cell moving with its flagella is simulated in this
step. An E.coli bacterium can move in two different ways,
including moving and tumbling. The bacterium can move in
a randomly-selected direction for a period of time or adjust
the parameters of its movement, namely the direction and step
length of the next movement, in order to adjust its position.
The bacterium can alternate between these two operations
for the duration of its lifetime. Swaying corresponds to the
evaluation of an individual bacterium’s current surrounding
environment and cell-to-cell signaling process. Suppose that
θ i(j,k,l) represents the ith bacterium at the jth chemotactic,
kth reproductive, and lth elimination-dispersal steps. In addi-
tion, assume that C(i) is the size of a step taken in a random
direction (dcti) specified by the tumble (unit of step length).
The computational chemotactic movement of the bacterium
can be expressed as

θ i (j+ 1, k, l) = θ i (j, k, l)+ C (i) ∗ dcti

dcti =
1(i)√

1T (i)1 (i)
(3)

where1 denotes a vector in a random direction with elements
that lie within the range of [−1, 1].

2) SWARMING
During chemotactic movement, a bacterium releases an
attractant in order to remain distant from the best individual
within its population. In addition, the bacterium releases a
repellant in order to maintain population diversity. The cell-
to-cell signaling of an E. coli swarm can be expressed as

Jcc (θ,P (j, k, l))

=

S∑
i=1

Jcc
(
θ, θ i (j, k, l)

)
=

S∑
i=1

[
−datt exp

(
−watt

p∑
m=1

(
θm − θ

i
m

)2)]

+

S∑
i=1

[
hrepe exp

(
−wrepe

p∑
m=1

(
θm − θ

i
m

)2)]
(4)
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where Jcc(θ,P(j, k, l)) denotes the fitness function value to
be added to the actual fitness function in order to present
a time-varying fitness function, S denotes the swarm size
of the population, p denotes the number of dimensions to
be optimized in each bacterium, and θ = [θ1, θ2, . . . , θp]T

denotes a point in the p-dimensional search domain. The coef-
ficients datt, watt, hrepe, wrepe must be properly selected.
In 2002, Liu and Passino [65] incorporated a new function
(Jar(θ )) into BFO in order to represent any environmentally-
dependent cell-to-cell signaling, such that

Jar (θ) = exp (M − J (θ)) Jcc (θ) (5)

whereM is a tunable parameter, and Jcc(θ ) is given in Eq. (4).
The minimal value of J (i, j, k, l) + Jar(θ i) was considered
during swarming.

3) REPRODUCTION
After a period of chemotactic movement, the BFO algorithm
performs the reproduction step. First, the BFO ranks all
of the individuals according to the sum of the evaluation
results within the period of chemotactic movement. Then,
the last half of the individuals is eliminated, and each of the
remaining half are copied in order to maintain the size of the
population. The individuals in the new generation are allowed
to engage in chemotactic movement for another period. After
several reproduction steps, the bacteria gather into several
clusters, decreasing the diversity of the population.

4) ELIMINATION-DISPERSAL
In order to prevent the occurrence of premature phenom-
ena, the BFO performs an elimination-dispersal step. In the
step, some bacteria are randomly reinitialized with a minute
probability of survival, while others are randomly initialized
throughout the search space. Then, the individuals in the new
generation of bacteria are allowed to engage in chemotactic
movement for another period.

C. RELIEF METHOD
Relief is a well-known multivariate filtering feature selection
algorithm proposed by Kira and Rendel [66] in 1992. It is also
a feature weighting algorithm based on sample learning. The
Relief algorithm selects the neighbors that participate in the
weight calculation by calculating the distance between two
samples. Because the features involved in the calculation of
the distance will affect the relative distance of the samples,
thus affecting the choice of neighbors, and ultimately playing
a role of the evaluation of the feature weight. Therefore,
the interaction between features is realized in the process of
calculating neighborhoods. Relief measures the distinguish-
ing ability of a feature by examining the difference between
a similar neighbor sample and a heterogeneous neighbor
sample. If the difference between the similar samples is small,
while the difference between the heterogeneous samples is
large, the variable has a strong ability to distinguish.

Given the sample set S = {s1, s2, · · · , sm}, each sample
contains n features, si = {si1, si2, · · · , sin}, 1 ≤ i ≤ m.

The values of all features are scalar or numeric. The class
label of si is ci, ci ∈ C , is a set of class labels. The difference
between the two samples si and sj(1 ≤ i 6= j ≤ m) in the
kth(1 ≤ k ≤ n) feature is defined as following.
If the kth feature is scalar,

diff (k, si, sj) =

{
0 sik = sjk
1 sik 6= sjk

(6)

If the kth feature is numeric,

diff (k, si, sj) =

∣∣∣∣ sik − sjk
maxk −mink

∣∣∣∣ (7)

where maxk and mink are respectively the maximum and
minimum values of the kth feature in the sample set.

The Relief algorithm first randomly selects a sample si
from the sample set and two samples closest to si from each
of the two-class samples. Samples of the same type with si
are represented by Hit, and samples of the different type with
si are represented by Miss, using Hit and Miss to update the
weight of the kth (1 ≤ k ≤ n) feature according to the
following formula:

wk = wk − diff (k, si,Hit)/t + diff (k, si,Miss)/t (8)

where wk represents the weight of the kth feature, t is the
sampling times.

III. THE DEVELOPED HYBRID FRAMEWORK
The RF-BFO-SVM framework was developed to effec-
tively discriminate the PD patients from the healthy con-
trols by combing feature selection with the BFO based
SVM. A flowchart of the proposed RF-BFO-SVM is shown
in Fig. 1. In the proposed framework, firstly, the vocal data
was normalized by scaling to the range [−1,1], and the
redundant and nonrelevant features was removed using Relief
method, a well-known filtering feature selection algorithm.
Secondly, the parameters of an SVMwere optimized dynam-
ically by BFO. Then, the optimal parameters were fed into
SVM to train an optimal diagnostic model. The developed
framework primarily consisted of parameter optimization
procedure and performance evaluation procedure.

In the parameter optimization procedure, the main objec-
tive is to evaluate the performance of each set of can-
didate parameters via using the BFO algorithm. The
average predictive accuracy over the 5-fold cross vali-
dation was set to be the fitness function. The pseudo-
code of the parameter optimization procedure is presented
below.

While in the performance evaluation procedure, the main
aim is to evaluate the overall performance of the SVM classi-
fier with the obtained optimal parameters. The pseudo-code
of the performance evaluation procedure is presented below.

IV. EXPERIMENTAL DESIGN
A. DATA DESCRIPTION
The Parkinson’s disease data set was created by
Little et al. [4] and is online at the UCI machine learning
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Algorithm 1
step 1. Initialize the parameters p, S, Nc, Ns, Nre, Ned, Ped,

and θ i

where
p: number of dimensions in the search space,
S : swarm size of the population,
Nc: number of chemotactic steps,
Ns: swimming length,
Nre: number of reproduction steps,
Ned: number of elimination-dispersal events,
Ped: elimination-dispersal probability, and
C(i): size of a step taken in a random direction

specified by the tumble.

step 2. Elimination-dispersal loop: l = l + 1.
step 3. Reproduction loop: k = k + 1.
step 4. Chemotaxis loop: j = j+ 1.

(a) For i = 1, 2, . . . , S, perform a chemotactic step
for bacterium i as follows.

(b) Train the SVM and compute the
fitness (J (i, j, k, l))
Let, J (i, j, k, l) = J (i, j, k, l)+ Jar (θ ), where Jar
is defined in Eq. (5).

(c) Let Jlast = J (i, j, k, l). Save this value since a
cost better than a run may be identified.

(d) Tumble: generate a random vector (1 (i) ∈ Rp)
using each element of 1m(i),m = 1, 2, . . . , p,
a uniformly distributed random number on[−1,
1].

(f) Move: let

θ i (j+ 1, k, l, di) = θ i (j, k, l, di)+ C (i)

×
1(i)√

1T (i)1 (i)

(g) Train the SVM and compute the fitness (J (i, j +
1, k, l)). In addition, let

J (i, j+ 1, k, l) = J (i, j, k, l)+ Jar(θ ).

(h) Swim.
i) Let n = 0;
ii) While n < Ns
iii) Let n = n+ 1;
iv) If J (i, j+ 1, k, l) < Jlast , let Jlast = J (i, j+

1, k, l), and let

θ i (j+ 1, k, l, di) = θ i (j, k, l, di)+ C (i)

×
1(i)√

1T (i)1 (i)

Use θ i(j + 1, k, l) to train the SVM. Then,
computer the new fitness (J (i, j + 1, k, l)) as
shown in (g);

v) Else, let n = Ns.
(i) If i 6= S, move to the next bacterium (i+ 1).

step 5. If j < Nc, go to IV.

Algorithm 1 Continued.
step 6. Reproduction:

Rank all of the individuals according to the sum
of the evaluation results in this period. Then,
eliminate the last half of the individuals and
copy each of the remaining individuals.

step 7. If k < Nre, go to step 3.
step 8. Elimination-dispersal:

For i = 1, 2, . . . , S with a probability of Ped,
eliminate and disperse each bacterium.
If l < Ned , go to step 2; otherwise, end.

Begin
For j = 1 : k
Training set: k − 1 subsets;
Testing set: remaining subset;
Train the SVM classifier on the training set using the
parameters and feature subsets obtained during the
parameter optimization procedure;
the trained SVM classifier to the testing set;

End For;
Return the average predictive accuracy of the SVM over
the j testing set;
End.

repository. The aim of this data was to discriminate patients
with PD from healthy controls by identifying differences in
their vowel vocalizations. The voice recordings of a total
of 31 subjects, including 23 patients with PD (16 males and
7 females) and 8 healthy controls (3 males and 5 females)
were used for the purposes of this study. In addition, the sub-
jects ranged from 46 to 85 years of age, with a mean
age of 65.8 years. Each subject provided an average of
six 36-second-long phonations of a vowel, yielding a total
of 195 samples. Each recording was subjected to various
measurements, such as vocal perturbation and other nonlinear
measurements, resulting in the identification of 22 real-value
features. Table 2 lists the 22 vocal features and the statistical
parameters.

The distribution of the two classes including the
PD patients and the healthy controls in the subspace given by
the three first principal components is shown in Fig.2. From
the figure, we can see that there is a strong overlap between
the two class distributions.

B. METHODS FOR COMPARISON
The proposed BFO-SVM classification scheme was com-
pared to other parameter optimization techniques to validate
its effectiveness.

The developed BFO-SVM was first compared to the grid-
search method (Grid-SVM herein), the most frequently used
conventional parameter optimization technique. In the grid-
search method, the SVM selects the pair of parameters (C, γ )
with the highest CV accuracy as the final RBF kernel. Com-
paring various pairs of exponentially growing sequences of
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FIGURE 1. Flowchart of the proposed hybrid framework.

C and γ is considered to be a practical means of identifying
optimal parameters for an SVM with RBF kernels [33].

The proposed BFO-SVM classification scheme was also
compared to the PSO-based parameter optimization tech-
nique (PSO-SVM herein), a global optimization-based
methodology. PSO [67] is a population based algorithm
inspired by the social behaviors of natural swarms, such as
flocks of birds and schools of fish. In PSO, the search space
is explored by a number of particles, which are updated based
on the optimum performance of each particle. In this study,
a linearly decreasing inertia weight [68], [69] was adopted
in order to promote the global and local search capabilities
of the PSO at the beginning and end of the search process,
respectively.

In order validate the effectiveness of the developed
BFO-SVM approach, we have also compared the proposed
method with other advanced machine learning methods
including KELM and RF.

FIGURE 2. Distribution of the two classes in the subspace formed by the
three principle components.

FIGURE 3. Illustration of the 5-fold CV process.

In Section 5, the BFO-SVM, Grid-SVM, PSO-SVM,
KELM, and RF approaches are compared.

C. EXPERIMENTAL SETUP
The involved classification models and Relief feature selec-
tion were implemented in MATLAB. The LIBSVM package
was used to construct the SVM model [33]. For KELM,
the code was implemented inMATLABwhich were available
from http://www3.ntu.edu.sg/home/egbhuang. For RF, the
software package at http://code.google.com/p/randomforest-
matlab/ was used.

Normalization was performed before the classification
process. The data was scaled into the interval [0, 1].
The computational analysis was conducted on a Windows
Server 2008 R2 operating system with Intel (R) Xeon (R)
CPU E5-2660 v3 (2.60 GHz) and 16GB of RAM.

In order to get the unbiased results, k-fold CV [70] was
used to evaluate the performance of relevant methods. The
5-fold CVprocess is illustrated in Fig. 3. The datawas divided
into five subsets; each iteration, one of the five subsets was
applied to the test set and the other four subsets were used
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TABLE 2. The 22 vocal attributes of PD data set.

for training. Then, the average of the classification accuracy
values was computed. One of the advantages of this method
was that all of the test sets were evaluated independently,

TABLE 3. Common BFO parameters.

TABLE 4. Confusion matrix.

improving the reliability of the results. The experimental
process was designed using a two-loop scheme, which is
commonly used to prevent over-fitting [68], [71]. The inner
loop was used to determine the optimal parameters of the
SVM classifier, while the outer loop was used to determine
the performance of the SVM classifier. For the purposes
of this study, a 10-fold CV scheme was used for the outer
loop, and a 5-fold CV scheme was used for the inner loop,
respectively.

The detailed parameter settings of a BFO are shown
in Table 3. The number of iterations and particles in the
PSO-SVM were defined as 250 and 8, respectively. In addi-
tion, c1 = 2, c2 = 2. The searching ranges C ∈ {2−5,
2−3, . . . , 25} and γ ∈ {2−5, 2−3, . . . , 25} were used for the
SVM methods and KELM method. The searching ranges for
the two parameters of RF including ntree (number of trees)
and mtry (the number of variables) were chosen from the
range of {50, 100, 150, . . . , 500} and {1, 2, 3, 4, 5}, respec-
tively. The experimental results show that RF achieved the
best performance when ntree = 500, mtry = 4.

D. PERFORMANCE METRICS
The performance of the three methods were validated
via the classification accuracy, sensitivity, and speci-
ficity measurements. Table 4 displays an illustration of
a confusion matrix, wherein TP denotes the number of
PD patients correctly classified as such (true positives),
FN denotes the number of PD patients classified as healthy
controls (false negatives), TN denotes the number of healthy
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TABLE 5. Results of BFO-SVM on the PD data set with different
values of C(i ).

controls classified as such (true negatives), and FP represents
the number of healthy controls classified as PD patients (false
positives).

The accuracy, sensitivity, and specificity can be defined as
follows

Accuracy =
TP+ TN

TP+ FP+ FN + TN
× 100% (9)

Sensitivity =
TP

TP+ FN
× 100% (10)

Specificity =
TN

FP+ TN
× 100% (11)

V. EXPERIMENTAL RESULTS
A. EXPERIMENT I: CLASSIFICATION WITHOUT
FEATURE SELECTION
The performance of BFO can be influenced by the chemo-
taxis step size C(i) parameter, which plays an essential role
in controlling the search abilities of BFO. Thus, in this
study, the effects of C(i) on the performance of the proposed
BFO-SVM method were firstly investigated. Although C(i)
can be initialized with a biologically motivated value, that
value may not be optimal for certain applications [44]. The
detailed relationship between different values of C(i) and the
performance of the BFO-SVM is shown in Table 5. The aver-
age results and their standard deviations (in parentheses) are
presented in the table. As shown, the BFO-SVM performed
best when C(i) = 0.1. Therefore, a value of 0.1 was assigned
to C(i) for the purposes of this study.

To evaluate the effectiveness of the proposed method,
the BFO-SVM was applied to the PD data set. Table 6 dis-
plays the confusion matrix with different performance

TABLE 6. Results obtained by the proposed BFO-SVM when applied to
the PD data set.

FIGURE 4. Classification performance comparison among the five
methods.

metrics and optimal pairs of parameters obtained by the
BFO-SVM in each fold. As shown, confused results primarily
occurred in the 1st, 2nd, 4th, and 7th folds. Two PD patients
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FIGURE 5. CPU cost comparison among the five methods.

FIGURE 6. 3D view of parameters selection of the Grid-SVM for several
folds.

FIGURE 7. 3D view of parameters selection of the KELM for several folds.

were misclassified as healthy controls, while four healthy
controls were misclassified as PD patients. The classification
results and CPU costs obtained by the five methods are illus-
trated in Fig. 4 and Fig. 5, respectively. 3D view of parameters

FIGURE 8. The weight of each feature obtained by the relief algorithm.

FIGURE 9. The relationship between different feature subsets and the
classification accuracies of BFO-SVM.

selection of the SVM and KELM by applying the grid search
method to the PD data set for several folds are illustrated
in Fig.6 and Fig. 7, respectively.

As shown in Fig. 4, the performance of the proposed
BFO-SVM outperformed the other four methods in terms
of ACC, sensitivity and specificity. The average predictive
accuracy of the BFO-SVMwas approximately 96.89%, while
the average classification accuracies of the PSO-SVM, Grid-
SVM, KELM and RF were approximately 94.89%, 93.87%,
93.34% and 90.32%, respectively. As shown, the BFO-SVM
also achieved a higher sensitivity and specificity than those
of the PSO-SVM, Grid-SVM, KELM, and RF. The average
sensitivity of the BFO-SVM over all ten folds was approx-
imately 98.75%, while those of the PSO-SVM, Grid-SVM,
KELMandRFwere approximately 97.41%, 96.83%, 95.33%
and 96.62%, respectively. The average specificity of the
BFO-SVM over all ten folds was approximately 90.83%,
while those of the PSO-SVM, Grid-SVM, KELM and RF

17196 VOLUME 5, 2017



Z. Cai et al.: New Hybrid Intelligent Framework for Predicting PD

TABLE 7. Feature subsets produced by relief algorithm.

were approximately 87.42%, 79.40%, 87.50% and 71.00%,
respectively.

As shown, we can find that the performance of the
BFO-SVM and PSO-SVM is superior than the Grid-SVM.
This indicated that swarm intelligence based optimization
methods, such as BFO and PSO, are significantly more

TABLE 8. Results of the RF-BFO-SVM model with the best features.

effective at SVM parameter tuning than the grid search tech-
nique, likely due to the susceptibility of the grid search
method to local optima. Moreover, the standard deviations of
the three performance metrics of the Grid-SVM were higher
than those of the BFO and PSO based models. It reveals
that the swarm intelligence optimized SVMmodels can offer
much more stable results than the grid search optimized
SVM model. We can also find that the standard deviations
of the BFO-SVM on the three performance metrics were
lower than or comparable with those of the other four meth-
ods. It indicates that the proposed BFO-SVM has resolved
the PD diagnostic problem more effectively than the PSO-
SVM and produces much more robust results. However,
it should be noted that the proposed BFO-SVM is much more
time-consuming than other four methods as shown in Fig.5.
RF performs the fastest among the five methods, followed by
Grid-SVM, KELM, PSO-SVM, and BFO-SVM.

B. EXPERIMENT II: CLASSIFICATION WITH
FEATURE SELECTION
To investigate the best feature subset for the diagnosis of
PD, we have implemented the proposed method combined
with feature selection. The Relief method was implemented
in order to rank the features. The weight of each feature is
computed as displayed in Fig. 8. According to the weight
of the feature, we can obtain 22 different feature subsets by
adding features one-by-one from higher to lower rank. The
BFO-SVM classifier can be constructed on each feature sub-
set in an incremental manner. As we can see that it produced
22 different incremental feature subsets as shown in Table 7.
Additionally, we studied the relationship between
RF-BFO-SVM’s classification performance and the different
features. As shown in Fig.9, we can see that as the number
of features increases, RF-BFO-SVM’s performance changes.
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When the number of features arrived at 5, the mean accu-
racy obtained the highest value with a minimum standard
deviation.

Table 8 lists the results of RF-BFO-SVM constructed on
the best feature subset with the best five features in terms
of three different performance metrics. The table shows
that BFO-SVM classification performance has been further
improved by Relief feature selection. As shown, after applied
feature selection, the ACC, sensitivity, and specificity were
further improved by 0.53%, 0.54% and 0.67%, respectively.
It indicates that there is lot of redundant and irrelevant infor-
mation existed in the data. It is also interesting to find that
the standard deviation of the proposed method is also smaller
than that on the original data. It indicates that the feature
selection can aid the classifier to achieve more stable results.

VI. CONCLUSION AND FUTURE WORK
In this study, a new diagnostic method for PD, RF-BFO-
SVM, was developed. In the proposed approach, the gener-
alization capabilities of an SVM classifier were maximized
by implementing a swarm intelligence technique in order
to identify the parameters optimal for the diagnosis of PD.
The results of the experiments, in which the BFO-SVM was
applied to a PD data set, indicated that the proposed method
outperformed PSO-SVM and Grid-SVM techniques in terms
of classification accuracy, sensitivity, and specificity. Thus,
the proposed RF-BFO-SVMmethod could be used as a viable
decision support tool for PD.

In this study, the classical BFO algorithm was employed
for parameter optimization, and the chemotactic step size
parameter C(i) was selected as the fixed step height. How-
ever, the search capabilities of a BFO algorithm signifi-
cantly depend upon C(i). Thus, an adaptive BFO algorithm
in which the value of C(i) could be adapted based upon a
bacterium’s surrounding environment could be developed in
future studies. In addition, the computational efficiency could
be improved by parallel computing methods, and the pro-
posed method could be applied to other medical diagnostic
problems in future studies.
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