
Received June 19, 2017, accepted July 27, 2017, date of publication August 24, 2017, date of current version October 12, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2737418

Eyes on the Target: Super-Resolution and
License-Plate Recognition in Low-Quality
Surveillance Videos
HILÁRIO SEIBEL, JR.,1,2, (Member, IEEE), SIOME GOLDENSTEIN1, (Senior Member, IEEE),
AND ANDERSON ROCHA1, (Senior Member, IEEE)
1Institute of Computing, University of Campinas, Campinas 13083-852, Brazil
2Instituto Federal do Espírito Santo, Vitória 29173-087, Brazil

Corresponding author: Hilário Seibel (hsjunior@ifes.edu.br)

This work was supported in part by the National Council for Scientific and Technological Development under Grant 304472/2015-8, in
part by the Coordination for the Improvement of Higher Education Personnel under Grant DeepEyes, in part by the São Paulo Research
Foundation under DéjàVu Grant 2015/19222-9, and in part by Microsoft Research.

ABSTRACT Low-quality surveillance cameras throughout the cities could provide important cues to identify
a suspect, for example, in a crime scene. However, the license-plate recognition is especially difficult under
poor image resolutions. In this vein, super-resolution (SR) can be an inexpensive solution, via software,
to overcome this limitation. Consecutive frames in a video may contain different information that could
be integrated into a single image, richer in details. In this paper, we design and develop a novel, free and
open-source framework underpinned by SR and automatic license-plate recognition (ALPR) techniques to
identify license-plate characters in low-quality real-world traffic videos, captured by cameras not designed
specifically for the ALPR task, aiding forensic analysts in understanding an event of interest. The framework
handles the necessary conditions to identify a target license plate, using a novel methodology to locate, track,
align, super-resolve, and recognize its alphanumerics. The user receives as outputs the rectified and super-
resolved license-plate, richer in detail, and also the sequence of license-plates characters that have been
automatically recognized in the super-resolved image. Additionally, we also design and develop a novel SR
method that projects the license-plates separately onto the rectified grid, and then fill in the missing pixels
using inpainting techniques. We compare the different algorithms in the framework (five for tracking, three
for registration, seven for reconstruction, two for post-processing, and two for the recognition step), and
present discussions on the pros and cons of each choice. Our experiments show that SR can indeed increase
the number of correctly recognized characters posing the framework as an important step toward providing
forensic experts and practitioners with a solution for the license-plate recognition problem under difficult
acquisition conditions.

INDEX TERMS Super-resolution, license-plate, recognition, tracking, video surveillance.

I. INTRODUCTION
Automatic license-plate recognition (ALPR) uses optical
character recognition (OCR) on images to extract and rec-
ognize the characters of a vehicle registration plate [1], [2].
It is usually aided by cameras designed specifically for such
task, since the license-plate recognition may be especially
difficult under poor images resolutions (usually when the car
is too far away from the camera, under adverse atmospheric
conditions, or due to a low-quality acquisition camera) [3].
However, there are a number of low-quality surveillance cam-
eras scattered throughout our cities that could help to identify

a suspect, for example, in a crime scene. Fig. 1 depicts a
situation in which the license-plate characters may not be
easily identified even in a high-resolution video. The OCR
systems and the forensic specialists may fail to recognize the
alphanumerics in such setups, and super-resolution can be an
inexpensive path, via software, to overcome this limitation.

Multi-frame super-resolution, usually referred to only as
super-resolution (SR), is a process of constructing a high-
resolution (HR) image using a set of low-resolution (LR)
images of the same scene. As amatter of fact, there exist some
techniques in the literature that leverage side information

20020 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 5, 2017



H. Seibel et al.: Eyes on the Target: SR and License-Plate Recognition in Low-Quality Surveillance Videos

FIGURE 1. Surveillance cameras scattered throughout the cities could
help to identify a suspect, for example, in a crime scene. But even in a
high-resolution camera (e.g., 1920× 1080 pixels in this frame) it might be
difficult to visually recognize the license-plate characters.

from other sources — the internet, for instance, or from
large collections of images — and can operate with a single
image [4]–[7]. Although effective in different setups, these
techniques are not the focus of this work. Fortunately, in our
setup, a sequence of video frames recording a dynamic scene
may contain different information about the object of interest.
Generally, a moving object in the scene can be recursively
seen at many positions along its moving path in the video.
Due to these recurrences, many self-similar appearances
between different positions can be found throughout a video
sequence. Therefore, in this work, we choose to combine
information from multiple video frames, instead of work-
ing with the recent Single-Image Super-Resolution (SISR)
algorithms.

Consecutive frames in videos may differ not only by rigid
or perspective transformations. Notwithstanding, we do not
aim here at super-resolving features such as human faces, for
example. Rather, we focus on enhancing the details in vehicle
license plates that could help to identify a criminal suspect or
activity in a crime scene. In such forensic setup, it is feasible
to super-resolve only a region of interest (ROI) of a video,
discarding less important parts.

The main contribution of this paper is a free and open-
source end-to-end framework that super-resolves a sequence
of frames containing license-plates in low-quality real-world
traffic videos, captured by cameras not designed specifically
for the ALPR task, aiding forensic analysts and practitioners
in understanding a given event of interest. Additionally, we
also design and develop a novel SR method that projects the
license-plates separately onto the rectified grid, and then fill
in the missing pixels using Inpating [8], [9] techniques. The
framework has two main outputs:
• The first one is a rectified and super-resolved image,
richer in details. The user can simply use such image
for a better visualization of the alphanumerics, or even
as an improved input for a SISR algorithm [4], [5].

• In addition, we apply ALPR to the output image, sug-
gesting a sequence of license-plates characters for the
user.

For a sneak peak showing the potential of the work we
present herein, consider Fig. 2, in which we super-resolve

FIGURE 2. Output examples of the proposed framework. In (a), single
frames with low-quality resolution. In (b), five consecutive frames are
combined into a super-resolved image, richer in details.

FIGURE 3. Our end-to-end framework pipeline. (1) Initialization:
Choosing a starting frame and locating the license-plate; (2) Tracking:
Finding the license plate over the consecutive frames; (3) Registration:
Aligning the frames with respect to the plate positions;
(4) Reconstruction: Combining the frames into a high-resolution grid;
(5) Post-processing: Applying refining image processing operations to the
reconstructed image, to improve the results in the final step; and
(6) Recognition of the alphanumerics in the super-resolved license plate.

only five consecutive frames. The reconstructed image
in Fig. 2a is more easily readable than the single frames
in Fig 2b.

We designed the proposed framework involving six core
steps to perform the license-plate recognition (see Fig. 3).

1) The forensic analyst sets up the initial frame wherein
the suspect vehicle appears, and locate the license plate
in such frame (there might be other moving cars in the
scene, and the specialist identifies the target one).

2) Then, we track the license-plate region through the con-
secutive frames using a series of combined techniques
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including optical flow with sparse and dense features
as well as fast indexing for efficient purposes. In doing
so, we align the frames with respect to the license plate.

3) After tracking, we refine the alignment with subpixel
accuracy using optical flow once again (but more accu-
rately, as the images are now pre-aligned).

4) We produce a super-resolved and rectified license plate
within a fixed-sized grid according to country-specific
specifications, relying on Geometric K-NN Super-Re-
solution (GSR) [10] and a novel Inpaiting-based Super-
Resolution method (ISR) to combine the frames.

5) We apply post-processing operations to the image
(e.g., Otsu’s binarization [11]) to improve the recog-
nition; and

6) Finally, we design an ALPR solution based on Tesser-
act [12] and OCRopus [13] to recognize the characters.

Our experiments compare the quality of the final results by
the number of characters correctly recognized in the last step.
The higher the number of correctly recognized characters
in a license plate, the better the result. For validation, we
consider a dataset of real-world traffic videos with moving
vehicles and the correct alphanumerics in their license plates.
The dataset will be publicly available upon acceptance of this
paper.

II. MULTI-FRAME SUPER-RESOLUTION
A digital image stores and represents information of a real-
world scene by a finite number of samples. Interpolation
(or upsampling) [14] is used to increase the spatial resolution
of a digital image, finding out new samples amongst those
that are already known. Interpolation is an ill-posed problem
since there are infinitely many HR images that may have the
same LR samples. This ambiguity increases as the intended
magnification becomes larger [15], [16].

Although interpolation has been extensively studied since
ancient times [17], the quality of an image magnified from an
aliased LR image is inherently limited. Single-image interpo-
lation cannot recover the high-frequency components lost or
degraded during the sampling process [18]. To achieve further
improvements in this field, it is natural to seek multiple
data sets in which additional data constraints from several
observations of the same scene can be used. The information
fusion of various observations for magnifying an image of the
same scene is referred to as multi-frame super-resolution.

In a multi-frame super-resolution, we assume that a set of n
LR images Ik (∀k ∈ [1, n]) have been downsampled from the
same HR image. While interpolation can be used to increase
the resolution of an image, decimation (or downsampling)
decreases the resolution. As opposed to the interpolation
operation, decimation does entail loss of information. Super-
resolution is then an inverse decimation problem. Each image
Ik is a result of a convolution equation of the formAk∗X = Ik ,
where Ik and Ak (the filter applied to the HR image, including
possible bluring, downsampling, rotation and other operators)
are known vectors, and X is the vector to be determined
(related to the entire HR image). The set of LR images,

then, form a system of linear equations that might be used
to determine the target IHR completely. Nevertheless, SR is
also an ill-posed problem [19] as there might be infinite HR
images that satisfy the reconstruction constraint, the number
of LR images is usually insufficient to solve the system, the
registration of the input images is often ill-conditioned, and
the blurring operators are usually unknown.

Multi-frame super-resolution has been studied since 1984,
when Tsai and Huang [20] pioneered the field and introduced
an algorithm in the frequency domain to super-resolve images
using a set of similar, but globally translated images, of the
same area. Those shifts between consecutive images are taken
into account by the shifting property of the Fourier trans-
formation. Most frequency domain methods have problems
with real-world applications, since they accept only a global
displacement between the images.

The majority of SR algorithms have since been devel-
oped in the spatial domain [21]. Such methods are based
on interpolation over LR images. A single image interpo-
lation does not handle the SR problem well, since it may
not produce those high-frequency components that were lost
during the image acquisition process. However, in multi-
frame approaches, each LR observationmight provide a small
amount of additional information about the scene [22]. Such
methods usually have a registration step, for aligning the LR
images, and a reconstruction step, for producing the higher
resolution image. Optionally, they can also include a deblur-
ring step for enhancing the HR image produced in the second
step.

Iterative Back Projection (IBP) algorithms [23] are among
the first methods for spatial-based SR. In these cases, each
HR image pixel is estimated iteratively as a sum of different
projections of the same LR image area, determined by the
image blurring and displacement. IBP is simple, but might
not yield a unique solution due to the ill-posed nature of the
SR problem. Zomet et al. [24] proposed the Robust Super
Resolution, other version of the IBP algorithm using the
median rather than the mean to calculate each new pixel.
Papoulis [25] and Gerchberg [26], independently, demon-
strated the method of iterative signal extrapolation. The
classical Papoulis-Gerchberg (PG) method may not deliver
good results in presence of blur and noise in the LR image.
Vandewalle et al. [27] extended upon the traditional PG
method to obtain SR images from multiple LR registered
images.

Another group of iterative methods are based on the con-
cept of Projection onto Convex Sets (POCS) [28]. In such
methods, it is assumed that each LR image imposes an a priori
knowledge on the final solution. These algorithms define an
implicit cost function for solving the SR problem, do not
give a unique solution and suffers from high computational
costs.

In addition, the Maximum a Posteriori (MAP) meth-
ods [29] also add some a-priori knowledge about the desired
HR image. As the super-resolution is often an ill-conditioned
problem, the a priori term is used to prefer a specific solution
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when the solutions are not unique. A critical issue of the
MAP-based algorithms is the choice of the prior model for
the desired solution. Suchmethods use regularization to solve
the system of linear equations of the SR problem, and differ-
ent approaches can be used to find the best possible value for
the regularization parameter [21].

Another trend in the spatial domain that is currently
exploited in the literature is the Direct Methods [30]. Such
methods simply align and scale the LR images to an HR grid,
and then choose a filter to combine the LR pixels. Different
filters can be used, such as mean and median filters [31],
Adaboost classifier [32], SVD-based filters [33], and adaptive
normalized averaging [34].

Different from multi-frame super-resolution, image hallu-
cination generates an HR image from a single LR source,
with the help of a database of sample images that is used
as a training set. Hallucination (also known as example-
based, learning-based or single-image super-resolution), has
become a hot research topic since it was first proposed
by Freeman et al. in [35]. These approaches effectively
‘‘hallucinate’’ missing details based on similarities between
the LR image and the examples in the training set [16].
Romano et al. [36] recently proposed a single-image algo-
rithm that uses machine learning and train on pairs of images
(one low quality, one high) to find filters that, when applied
selectively to each pixel of the LR image, will recreate
details that are of comparable quality to the original. In [5],
the authors present a learning-based SR method that uses
deep convolutional neural networks to learn an end-to-end
mapping between low and high-resolution images. Although
promising, those single-imagemethods do not take advantage
of the multiple information from the pool of frames that our
surveillance videos might comprise.

III. SUPER-RESOLUTION OF LICENSE PLATES
Caner et al. [37] seem to have pioneered the alliance of super-
resolution and automatic license-plate recognition. They
super-resolved a region of interest of surveillance videos
recorded by multiple cameras based on POCS (see Sec. II).
Although promising, the solution needed more than one
camera to work. Chang et al. [3] claimed that most of the tech-
niques until 2004 worked under very restricted conditions,
such as fixed illumination, limited vehicle speed, designated
routes, and stationary backgrounds. In their work, they have
favored classification accuracy over efficiency whenever a
choice had to bemade between them. However, in their exper-
iments, they only considered imageswith readable characters,
in which a human could easily identify the alphanumerics on
the plates.

In 2007, Suresh et al. [38] performed SR of moving
vehicles in real-world traffic videos by fusing the informa-
tion derived from multiple, subpixel shifted, and noisy LR
observations. The image to be super-resolved was modeled
as a Markov random field and was estimated from the obser-
vations by a graduated non-convex optimization procedure.
However, they did not consider rotations in the license plates

between the frames, and the results were only qualitatively
compared.

Yuan et al. [39] presented aMAP-based algorithm to super-
resolve license plates and relied upon some license-plate
properties as the a priori knowledge for the regularization.
For example, they claim that the the license-plate background
color and the colors for the license-plate characters are
usually with strong contrast. Hence, when the image is con-
verted into a grayscale image, there remain only two kinds
of intensities: the dark one and the light one, and they might
be easily distinguished by thresholding. However, from our
experience, this claim only holds for ideal or semi-ideal illu-
mination conditions. Furthermore, the authors presented the
reconstruction of only one license plate in their experiments,
and no validation metric was used to compare the results.
They only compared the running time of reconstructing two
HR images.

Camargo et al. [40] investigated the SR mosaicking of
aircraft surveillance videos. They used Scale-Invariant Fea-
ture Transform (SIFT) [41] to find feature points between
frames and RANdom SAmple Consensus (RANSAC) [42]
to estimate an homography between consecutive frames. The
algorithm was tested in the infrared and visible spectra, using
real and synthetic data, but uses a small number of frames
from the video, and the visual results are still relatively
blurred.

Kim and Ko [43] proposed a resolution enhancement
method for regions of interest in surveillance videos using
Bernstein interpolation [44]. They super-resolved images
using stochastic data regularization in real-world surveillance
videos focusing on the license plates as ROIs. Yet the recon-
structed images were only visually compared to other meth-
ods, and the results were very similar to classic algorithms.
Taking a different path, Yoshida et al. [45] proposed an SR
using free-form deformations for low-quality surveillance
videos focusing on face ROIs, including non-rigid deforma-
tions caused by changes of face poses and expressions.

Zarei et al. (2013) [46] developed a super-resolution of
license-plate images by applying an iterative SR method for
license-plate recognition that fused the information from a
set of shifted LR images. The reconstruction problem was
formulated as a system of linear equations that was solved
by using the Simultaneous Algebraic Reconstruction Tech-
nique (SIRT) [47]. The input frames in the dataset were not
extracted from real-world videos. They also considered only
shifts between two frames (not rotations).

Employing a learning-based method, Lina and Ying [48]
proposed a license-plate super-resolution algorithm based
on manifold learning. Although promising, the algorithm
was not validated using real-world low-resolution images
by surveillance cameras as input. Instead, they used only
one high-resolution image to generate a set of downscaled
images, and such lower resolution images have been used as
input for the reconstruction step in their experiment.

According to a recent work of Rajput et al. [49], few
researchers have addressed scenarios such as reading plates
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of fast-moving vehicles. They also claimed that the existing
ALPR approaches assume that the text lies in a plane whose
angles are normal to the sensor’s optical axis, which is not
the case when license plates are skewed. Their work is not
related to super-resolution, but they developed a method to
detect license-plate orientation on tilted plates, and rotate it
to a horizontal perspective. Previously, Tang et al. [50] and
Qing et al. [51] also addressed the problem of rectification of
license plates to correct their inclined distortion.

IV. PROPOSED END-TO-END FRAMEWORK FOR
SUPER-RESOLUTION AND AUTOMATIC
LICENSE-PLATE RECOGNITION
In this work, we investigate two methods for super-resolving
a sequence of LR images (see Sec. IV-D). The first one
has been introduced in our previous work [10] (conference
paper). It has been only validated with general static scenes
gathered by mobile devices. To perform the registration step
in such preliminary version, we relied upon finding rep-
resentative points in two consecutive images using Scale-
Invariant Feature Transform (SIFT) [41], Speeded Up Robust
Features (SURF) [52], and Oriented FAST and Rotated
BRIEF (ORB) [53]. The found keypoints were then matched
to allow the estimation of the best possible transformation
matrix between the frames.

This methodology for the registration step has worked
properly for the setup we presented in [10], but it is not appro-
priate for fast-moving vehicles captured by static cameras
as we have in the present work. Fig. 4 depicts and example
of two frames extracted from a real-world traffic video. The
red points in the figure are keypoints detected by SIFT, and
each colored line connects a keypoint in the first image to
its correspondent keypoint in the second image. Note that
the pairs of keypoints found by SIFT are not appropriate to
calculate a transformation between the license plates in the
two consecutive frames. Most of the keypoints belong to the
environment around the car and do not contribute to map
one license plate onto the other. Therefore, we need another
methodology to align the license plates when dealing with
videos of fast-moving vehicles.

FIGURE 4. Matches between pairs of keypoints found by SIFT.

In addition to the need of dealing with fast-moving vehi-
cles, we still have two key problems to address in this new
setup:
• First, we should not expect a forensic analyst to manu-
ally crop the vehicles in each video frame, every time
she needs to identify the characters in a suspect license
plate.

• Moreover, even if we automatically find and crop the
target car in each frame, we still may not have an

appropriate homography among the images. An homog-
raphy assumes that all the points belong to a planar
surface. Nonetheless we cannot claim that all represen-
tative points found in a region of interest will always
belong to a plane. As amatter of fact, most of the aliasing
issues that we can visually identify in super-resolved
images occur due to the misalignment between frames,
whose keypoints do not belong to a planar surface. Even
if we crop only the region of the license plate (very
similar to a plane), we may not find enough keypoints to
calculate the transformation between the images and this
should be taken into account by any proposed approach.

Besides such issues, there are a number of image-
processing methods to improve the quality of the recognition
step, including rotation / deskewing / rectification (making
the lines of the text to be perfectly aligned with respect to the
borders of the image), binarization (converting the image to
black andwhite) and noise removal. Fig. 5 depicts an example
of a rectified and binarized image, to improve the results in
the recognition step.

FIGURE 5. Example of a rectified and binarized license-plate image.

The framework that we propose in this article is designed to
cope with the aforementioned problems regarding the super-
resolution of license plates and the automatic recognition of
their alphanumerics. We investigate a novel methodology to
locate, track, align, super-resolve, and recognize the alphanu-
merics of a license plate in low-quality surveillance videos,
as Fig. 3 depicts. The framework performs the super-
resolution and recognition of the license-plate characters in
six steps, as we discussed in Sec. I: Initialization, Tracking,
Registration, Reconstruction, Post-processing, and Recogni-
tion. We describe each step in Secs. IV-A through IV-F.

FIGURE 6. The initialization step. The user (e.g., a forensic analyst) selects
the initial frame, and the system opens a window with a zoomed in
version of the plate. The user selects four points and creates a bounding
box around the characters to be identified. This step is done only once
(for the initial frame).

A. INITIALIZATION
The framework starts with a graphical interface playing the
traffic video (c.f., Fig. 6). The user can interact with the
system by alternating between playing and pause mode, for-
warding the video frame by frame or by selecting the initial
frame wherein the license plate is fully shown.
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To select the initial frame, the user clicks in the middle
of the suspect license plate, and then the system opens a
window with a zoomed in version of the region around the
license plate upon which the user can click to select the four
corners of the license plate, creating a bounding box around
the characters to be identified. As the user selects the points,
the interface automatically shows the lines of the bounding
box. After selecting the points, if the region was not correctly
created, the user can click again in the middle of the license
plate and reselect the four points.

The interaction with the forensic analyst is required only in
this first step. This is reasonable, since she needs to identify
which of the moving vehicles in the video is the suspect
one. The execution of all the additional steps are transparent
to the user, who sees only the super-resolved image and its
recognized characters at the end of the process. If a com-
pletely automatic solution is intended, a license-plate detector
can be used in this first step. The system is designed in
such a way that integrating a license-plate detector would be
straightforward. We do not include such feature in this paper
because our focus is to aid the forensic analyst with specific
unresolved cases (in which other simpler solutions have been
unhelpful, and the interaction with the user is desirable). The
outputs of this step are: (1) the identifier of the initial frame,
and (2) the points of the ROI around the plate.

FIGURE 7. Tracking step: the objective is to find re-occurrences of the
license plate over the consecutive frames.

B. TRACKING
Fig. 7 illustrates the tracking step. The inputs of this step are:
(1) the initial frame identifier (defined in the previous step),
(2) the ROI around the license plate (also calculated in the
initialization step), and (3) the original video frames.

In this work, we examine five different solutions to track
the license plates, as detailed in Secs. IV-B.1 through IV-B.3.

1) PYRAMIDAL LUCAS-KANADE OPTICAL FLOW (PyrLK)
The first method is based on the Lucas-Kanade optical
flow [54]. Given a set of n input frames F1,F2, . . .Fn (from
the initial frame until the end of the video), we first find
good features to track in the license plate of F1 using
Shi-Tomasi corner detector [55]. Then, we use the Lucas-
Kanade optical flow to track the points fromF1 toF2, creating
an homography that allows us to find the position of the
license-plate in F2. Finally, we iteratively use optical flow to
track the points from Fk to Fk+1 for each k ∈ [2, n).
The Lucas-Kanade method can deal with small pixel dis-

placements between consecutive frames. As we do not want
to constrain our framework just to videos with slow-moving
vehicles, we use a pyramidal and iterative implementation of

the Lucas-Kanade optical flow (PyrLK) [56]. When we go up
in the pyramid, the images are downscaled, the small motions
are removed, and the large motions become small motions.

The Lucas-Kanade method assumes that the flow is essen-
tially constant in a local neighborhood of the pixel under
consideration, and solves the basic optical flow equations for
all the pixels in that neighborhood. Fig. 8 shows a piece of an
original frame and one example of the optical flow calculated
by PyrLK (red dots are Shi-Tomasi points, and green lines
represent the motion of the points throughout the frames).

FIGURE 8. PyrLK feature tracker to estimate the optical flow.

It is worth mentioning that the Shi-Tomasi corner detec-
tor might not find enough points to create an homography
between the images in a very small and low-resolution license
plate. To handle this problem, the feature points are found
inside a region slightly larger than the license plate. As we
discussed in Sec. IV, we need to find points inside a planar
surface in order to create an homography between images.
This expanded region around the license plate might still be
similar to a planar surface. Even if it is not entirely planar, we
do not need a precise alignment in the tracking step, but only
an estimation of the license-plate position frame-by-frame.
The subpixel accuracy (with the appropriate refinement) will
be further obtained in the registration step.

2) PYRAMIDAL FARNEBACK’s DENSE OPTICAL
FLOW (PyrDense)
In the second method, instead of computing the optical flow
only for the Shi-Tomasi corner points, we use the Gunner
Farneback’s algorithm [57], also with pyramids, to compute
the grid-based optical flow for the whole frames (PyrDense).
We do not create the homography matrix here, since the algo-
rithm calculates the motion of each pixel in the image. There-
fore, we first track the known position of the license plate
in F1 to F2, then we iteratively track the points from Fk to
each Fk+1. Fig. 9a illustrates an example of the grid (red dots)
and the flow motion (green lines). Fig. 9b uses HSV to
visualize the same flow as in Fig. 9a (hue shows the flow
direction, and value shows the flow magnitude).

FIGURE 9. Dense optical flow as a result of the Farneback’s algorithm.
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In both PyrLK (Sec. IV-B.1) and PyrDense solutions, the
tracked points in a frame Fk are used as previous points in the
frame Fk+1. For a robust tracking, we also run a backward-
check [58] of the optical-flow points to select only good ones,
and we verify if the dimensions of the license plate in Fk+1
are proportional to its dimensions in Fk . Therefore, the last
tracked frame may not be the last video frame if the vehicle
disappears before the end of the video.

3) SIFT, SURF AND ORB DETECTORS
In the third method for tracking, we use SIFT to find
keypoints in the initial frame. This is possible as the user
previously annotated the region describing the license plate
of interest in the first step. As in the first tracking solu-
tion (PyrLK), we expand the bounding box to include a region
slightly larger than the license plate in F1, but now we match
them with the SIFT points found in the entire F2 image
(see Fig. 10). The points are matched using k-NN and Fast
Library for Approximate Nearest Neighbors (Flann) [59].
The best matches are used to estimate an homography matrix
mapping F1 onto F2, and then we iteratively track the points
in the consecutive frames (mapping each Fk onto Fk+1).

FIGURE 10. Tracking using SIFT. The white polygon is the region around
the license plate in Fk . Yellow dots are the SIFT keypoints inside the small
region in Fk and in the entire image Fk+1. Green lines are matches
between the frames. The red line is an incorrect match that will not be
used.

In addition to the SIFT-based matching solution for track-
ing, we also exploited the feature detectors SURF and ORB,
instead of SIFT. Their rationale and operational conditions
are the same as the ones described above for SIFT.

After finding the re-occurrences of license plates, we also
align them with respect to the initial frame’s license plate.
The outputs of this step are: (1) the set of aligned frames in
which the license plate was successfully tracked, and (2) the
four points of the license plate’s bounding box in each frame.

C. REGISTRATION
To track the license-plate in the previous step, we search its
re-occurrences over consecutive frames. Since the framework
does not limit the vehicle speeds and routes, we use pyramids
and a large enough search window for the optical-flow-based
solutions. Larger values increase the algorithm robustness
to fast motion detection, but yield less accuracy. Therefore,
since the license-plates have already been tracked and the
frames have previously been aligned in the tracking step,
we now refine this alignment with subpixel accuracy. From
this point forward, instead of working on the video, the inputs
of the registration step are: (1) the frames in which the
license plate was successfully found and tracked, and (2) the

license-plate bounding box in each frame. There are three
available possibilities for the realignment in our framework:

a) Using Lucas-Kanade Optical Flow, as in the first track-
ing solution (see Sec. IV-B.1), without pyramids, since
the frames were pre-aligned with respect to the license
plate in F1, and we need to find a subpixel motion of
the license plate from Fk to Fk+1.

b) Using Farneback’s Dense Optical Flow (Dense), also
without pyramid decomposition.

c) In the last possibility, we consider that the tracking
had performed a good alignment of the frames, and
we do not realign them. We refer to this possibility as
‘‘None’’, since we do not use any further refinement
method.

Fig. 11 illustrates this step. In both LK and Dense methods,
we start with a small window size, and increase it until the
registration is successfully performed through a given num-
ber of frames. Larger window sizes increase the algorithm
robustness to image noise and give more chances for fast
motion detection but, at the same time, lead to a more blurred
motion field. The outputs are: (1) the set of realigned frames
and (2) the license plate’s bounding box in each frame.

FIGURE 11. The registration step. Green dots in (a) are the corners in the
initial frame, and yellow dots are the corners that were tracked in the
subsequent frame. The red dots in (b) represent the new bounding box
found in the registration step. In (c), we use the new points to realign the
second license plate with respect to the first one.

D. RECONSTRUCTION
After aligning the input frames in the previous step, we turn
our attention to the multi-frame super-resolution. Different
from traditional SR algorithms, we do not create here a high-
resolution image of (s × w, s × h) pixels. Instead, we define
a fixed spatial resolution to the HR grid, which is propor-
tional to country-specific specifications for vehicle registra-
tion plates (e.g., 400×130mm inMercosurmember countries
and 12 × 6 inches in U.S.A. and Canada). Therefore, the
super-resolved image is similar to a rectified license plate (see
Fig. 5), and contains only the region inside the license-plate
ROI. We fixed the size of the HR grid because in addition
to generating a good visual HR image, we focus on creating
HR images amenable to a better character-recognition task
in the super-resolved license plate, and this rectification may
improve the results in the recognition step. To combine the
license-plate images, we use two super-resolution methods:

1) THE GEOMETRIC k-NEAREST NEIGHBORS
MULTI-FRAME SuPER-RESOLUTION (GSR)
We first introduced GSR in [10]. In this previous work,
n LR images Ik (k ∈ [1, n]) of size (w, h) pixels generated
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a super-resolved image of size (s×w, s×h) pixels for a scale
factor s. The algorithm in [10] was validated using only planar
and static scenes. Following the categorization discussed in
Sec. II, GSR falls within the category of direct methods,
which are known to be simple and fast [21].

The core idea of GSR is illustrated in Fig. 12. Blue
squares and red dots in Fig. 12a represent pixels from two
input frames Fk and Fk+1, aligned in the registration step.
In Fig. 12b, we see projections of both Fk and Fk+1 on a
HR grid (black triangles are the pixels of the HR grid, whose
valueswe need to calculate). In Fig. 12c, we choose each pixel
in the grid to be the value of its nearest neighbor among all
pixels in the LR images. Finally, the ultimate SR image is
composed by pixels from both Fk and Fk+1 in Fig. 12d.

FIGURE 12. The GSR algorithm for super-resolving a sequence of frames.
(a) Blue squares represent pixels of the frame Fk , and red dots are the
pixels of Fk+1 that were aligned with respect to Fk . (b) The two frames
are projected onto an HR grid (black triangles are the pixels of the grid).
(c) For each grid pixel, we find its geometric nearest neighbor among all
pixels in the input frames. (d) The resulting HR image, comprising pixels
from Fk and Fk+1.

As there are different possible policies to choose from
and combine nearest neighbors geometrically, we exploit five
variations of GSR in our framework. Such variations differ
from each other in the choice of the best candidates for each
pixel in the HR grid (Fig. 13). Let p be a pixel in the HR grid
(for example, the black triangle in Fig. 13a) and qk (red dots
in Fig. 13a) be the nearest pixel from p in each frame Fk :

FIGURE 13. Variations of GSR. Let p be a pixel in the HR grid that we need
to calculate, and qk be the nearest pixel from p in each frame Fk (a). In
GSR1 (b), the HR pixel is the value of its nearest qk ; (c) Both GSR2 and
GSR3 find 3-NN among all available qk ; (d) all available qk are used to
calculate the value of the HR pixel in GSR4; and (e) all qk inside a circular
region of a given radius are combined in GSR5.

• In the first algorithm variation (GSR1), the value of p is
exactly its closest neighbor among all possible values of
qk . In Fig. 13b, such closest neighbor is highlighted with
a blue square. Thus, we use here a k-NN with k = 1 to
find qk in all LR images, and then another 1-NN to find
the qk that is closest to p.

• In the second variation (GSR2), we use 3-NN to find
the three best values (such as the three blue squares
in Fig. 13c) among all qk . The resulting pixel p is the
average among the three closest neighbors.

• ForGSR3, in a similar way, we find the three best values
of qk , but we combine them as a weighted average.

We use static weights (60% for the nearest one and 20%
for each other), but we could also set them to be an
inverse proportion to their distances.

• InGSR4, p is the average among all qk (the nearest pixel
from p in each Fk ). If we have 30 input frames, for
example, qk is the nearest pixel from p in each of the
30 frames and p is the average among all of them.

• Finally, for GSR5, we set a maximum radius distance
with respect to p (Fig. 13e), which is calculated as
the weighted average among all qk within this circular
region (the weights are inversely proportional to the
distances between p and each qk ).

It is important to mention that we do not apply rectifi-
cation or any other transformation to the LR input frames,
because it would cause loss of information. Instead, we use
the matrices calculated in the registration step (that map each
Fk onto Fk+1), to know exactly the xy position where each qk
is with respect to the grid. Each input image is individually
processed, hence there will not be more than one LR image in
memory at the same time. For an HR image of w× h pixels,
the memory consumption of all five variations is O(w × h).
Basically, the algorithms need to store, in memory, the fol-
lowing information during each step: (1) the w×h pixels p in
the HR grid and the distances to their nearest pixels qk (GSR4
and GSR5 do not store such distances); (2) the w

r ×
h
r pixels

of the current LR image, for a resizing factor of r ; and (3) the
positions of the w

r ×
h
r LR pixels with respect to the grid.

FIGURE 14. In (a), the first frame is projected onto the HR grid. The blue
region highlights a pixel Fk (x, y ) and its closest pixel p in the grid. The
intensity value of Fk (x, y ) contributes only to such closest grid neighbor,
so p receives the intensity value of Fk (x, y ). In (b), the grid contains
information from the first frame (the blue triangles), and another frame is
projected onto the grid. Similarly, in (c) a third frame is projected onto the
grid, which already contains information from the two previous LR
images. Finally, the gray triangles in (d) are the missing pixels of the grid,
whose values we want to calculate using Inpainting techniques.

2) THE INPAINTING-BASED SUPER-RESOLUTION (ISR)
In this novel method, we start projecting each frame Fk ,
separately, onto the HR grid. The beginning of the algorithm
is illustrated in Fig. 14. In Fig. 14a, the first frame is projected
onto the grid. For each pixel Fk (x, y), we calculate the posi-
tions (x ′, y′) of its pixels with respect to the grid. The intensity
value of each pixel Fk (x, y) contributes only to the grid pixel
that is closest to (x ′, y′). In Fig. 14b, we project a second frame
onto the grid, and the blue triangles are grid pixels that have
already been calculated using the information from the first
frame. Similarly, in Fig. 14c, a third frame is projected onto
the grid, which already contains information from the two
previous LR images. Finally, some pixels in the grid might
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not be filled with the intensity values of any frame. We use
Inpainting [8], [9] techniques to calculate such unknown grid
pixels (the gray triangles in Fig. 14d).

Now, we must fill in the unknown pixels, onto which no
LR pixel has been projected. To calculate such information,
we use a technique for restoration of degraded photos called
‘‘Image Inpainting’’ [8], [9]. The basic idea is simple: it fills
in part of an image using information from surrounding areas,
and several algorithms have been designed for this purpose.
Inpainting has already been used to fill in missing pixels of
super-resolved images, as in [60]. However, the technique is
commonly applied to example-based super-resolution, which
uses only one LR frame as input and does not take advantage
of situations whenwemight havemultiple observations of the
same scene. In [61], the authors use Inpainting to fill the miss-
ing pixels in shifted LR images (i.e., with only translations
between to input images), and then they use Tikhonov [62]
regularization to solve the optimization problem.

As in GSR, we do not apply transformations onto the
frames, because it would cause loss of information. In addi-
tion, each frame can be individually processed, so there must
not be more than one LR image in the memory at the same
time.

We implemented two variations of the method, each one
using a different Inpainting technique to fill in the missing
grid pixels. The first one draws ideas from classical fluid
dynamics to propagate isophotes (lines of equal gray value)
continuously from the exterior into the region to be inpainted,
based on the work of Bertalmío et al. [9]. Their method
is directly based on the Navier-Stokes equations for fluid
dynamics [63], which has the immediate advantage of well-
developed theoretical and numerical results. We refer to this
implementation as ISR1.

The second variation uses the work of Telea [8], an Inpaint-
ing algorithm based on propagating an image smoothness
estimator along the image gradient, similar to the work
in [64]. Such algorithm is supposed to be simple to implement
and faster than other inpainting methods, and to produce
similar results as compared to the other methods. We refer
to the second implementation as ISR2.

E. POST-PROCESSING
As we know the bounding box of the license plate (through
the user input for the initial frame), the super-resolved image
has already been rectified with respect to the grid in the
previous step. However, the license plate may have additional
information (e.g., the country and city names) that could mis-
lead or confuse the OCR system. In the post-processing step,
we focus on the region which contains the alphanumerics that
we want to recognize discarding the other areas. Then, we use
Otsu’s binarization [11] to facilitate the recognition process.
The binarization is performed in addition to a Gaussian blur,
to remove possible noisy artifacts. The ultimate output is a
rectified, binarized and super-resolved image.

Otsu’s binarization is designed for a bimodal image
(i.e., an image whose histogram has two peaks – in our

case, the color of the alphanumerics and the color of the
background). The method might fail when heavy occlusion
and shadows are present. Hence, in our solution, the user can
also choose between two possibilities in the post-processing
step: (a) using Otsu’s binarization; or (b) using an adaptive
thresholding to binarize the image. Adaptive thresholding
may be good when the image has different lighting conditions
in different areas. It calculates the threshold for small regions
of the image, leading to different values for different regions
of the same image (which gives us better results for images
with varying illumination). The output of this step is the
rectified and binarized image containing the license plate of
interest.

F. RECOGNITION
We rely upon two OCR systems to identify the license-plate
characters: Tesseract [12] and OCRopus [13]. Both are free
software, released under the Apache 2.0 License. However,
these solutions cannot be used directly and require appropri-
ate training. In the following, we describe how we adapt them
to the license-plate recognition problemwe have in this paper.

Usually, for training traditional OCR systems, we first
define the target language comprising the characters that
might occur in the dataset (in our case, all the possible license-
plate alphanumerics). In doing so, we seek to avoid possible
unnecessary mistakes during recognition. For example, the
letter ‘‘I’’ might be easily confused with the character ‘‘|’’ in
many font types. However, as we do not expect the character
‘‘|’’ in license plates, we do not add it to the target language.

Each OCR system requires several graphical training
examples comprising font styles (such as bold and italic),
and frequency of specific words. As we do not have enough
real-world examples for training the recognition algorithms,
we resort to generating synthetic training examples seeking
to mimicry real-world license plates.

Given that we use Brazilian license plates in our exper-
iments, we trained the Tesseract and OCRopus using the
fonts Mandatory (the standard font since 2008) and DIM
Mittleschrift (most common until 2008). In such font, the
letters ‘I’ and ‘O’ are equals to the digits ‘1’ and ‘0’, so we
divided the license plates in two parts, one for digits and
one for characters (the license plates in Brazil have always
three letters followed by four digits). We created synthetic
imageswith 17, 576 combinations of letters (26×26×26) and
9, 999 combinations of digits (the sequence 0000 is not used
in Brazil) to train the OCR systems. It is worth mentioning
that such training, including the separation between digits and
letters, is specific for our particular setup. The OCR systems
can be easily trained for license-plates from other countries.

We also added, purposefully, small rotations and noisy
artifacts to the synthetic images in order to simulate the
real-world license plates more accurately. For an appropriate
training process, we also annotate the bounding-box coordi-
nates around every character in each image. At the end of the
training process, each OCR is custom-tailored to the prob-
lem of license-plate recognition discussed herein. It is also
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possible to further extend the training data using real-world
license-plates images in addition to the synthetic computer-
generated cases. However, it is advised to rectify and binarize
those images, as well as annotate them properly.

G. FINAL CONSIDERATIONS
The ultimate products of the framework are the super-
resolved image and the sequence of recognized characters.
If the framework does not find an appropriate solution, the
user intervene by:

1) Restarting the video, and re-selecting the license-plate
bounding box. As the choice is manually defined, it
is possible that a new initialization may facilitate the
following steps (especially the tracking step).

2) Alternatively, the user can easily customize the frame-
work and change the methods to use in each step.

The user can choose from five different tracking methods
(PyrLK, PyrDense, SIFT, SURF and ORB), three registra-
tion solutions (LK, Dense and None), seven SR algorithms
(the variations of GSR and ISR), two binarization methods,
and two different OCR methods, but there is one default
method for each step (see in Sec. VI). For implementation
details, the source-code will be freely available on GitHub
upon acceptance of this paper.

V. EXPERIMENTAL METHODOLOGY
In this present work, we focus the evaluation on the number of
correctly recognized characters by the framework in a suspect
license plate. The higher the number of hits,1 the better a
given result. As we previously discussed in Sec. II, most
ALPR methods either do not provide quantitative validations
in their experiments (depicting only a small number of output
examples to verify the accuracy of their methods) or do not
validate the results with real-world traffic videos.

For validation, we gathered a dataset comprising 200 real-
world traffic videos, wherein the movement of the vehicles
is away from the camera (one target license plate per video).
All collected streams are 1080p HD videos @30 fps. As we
have a good resolution of the license plate in the beginning of
each video, we manually annotated the correct characters of
its target license plate and created its ground-truth file. Unlike
the beginning of the video, the license-plate alphanumerics
in the last frames are harder to recognize (see Fig. 15).
We use those LR last frames to super-resolve and recognize
the alphanumerics in our experiments, and then we compare
the results to the annotated ground-truths files.

The videos were captured in different places, with differ-
ent illumination conditions, different vehicle average speeds,
non-stationary backgrounds, non-predictable routes, and con-
taining trees and road signs that may cast different shadows
over the license plates between consecutive frames.

We execute the framework for the 200 videos, using the
five tracking methods, three registration solutions, seven

1We use the term ‘‘hit’’ to refer to the the number of correctly recognized
characters in a given video.

FIGURE 15. The license-plate alphanumerics are easily readable in the
first video frames (a) but not in the last ones (b). We create ground-truth
files with the initial frames, and the last frames are used to be
reconstructed and recognized. The same zoom-in factor was applied to
the license plates in (a) and (b).

variations of the reconstruction algorithms, two binarization
methods, two recognition systems, and from 1 to 10 consec-
utive frames as input. For each video, we have 5 × 3 × 7 ×
2× 2× 10 = 4, 200 possible results (420 for each number of
input frames, and a total of 840, 000 results considering all the
200 videos). This dataset will be freely available online upon
acceptance of this paper (including all videos, ground-truth
files, license-plate annotations, and the OCR training files).

The experiments also include a qualitative evaluation of the
framework. We select visual examples to illustrate that the
super-resolution solution can, indeed, increase the readability
of license plates in real-world traffic videos.

VI. EXPERIMENTS AND RESULTS
We start investigating if our decision of manually selecting
the ROI around each license plate (in the initialization step)
is appropriate for our framework. The chart in Fig. 16 shows
higher recognition rates as we increase the number of input
frames. For each video in the dataset, we calculate the highest
results that the framework could achieve, from 1 to 10 input
frames, using all the available methods.

FIGURE 16. Quality of the initialization step as a function of the number
of input frames. The highest the number of hits, the better is the result.
Each curve is the average of the highest number of hits for all videos in
the dataset, using all the available methods.

Each curve in Fig. 16 is the average of such highest results
for each video. The blue curve shows the recognition rate
using Tesseract, and the green curve uses OCRopus. Since the
number of hits is higher in the reconstructed images, we may
claim that our initialization step is providing an appropriate
ROI for the super-resolution. Moreover, bad choices for the
corners of the license plates would lead to bad tracking, regis-
tration, reconstruction, and so on. Hence, good results for the
other steps might support our claim that this initialization step
is appropriate for the framework. In Secs. VI-A throughVI-E,
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we validate the other framework’s steps. For the tracking,
registration, reconstruction and post-processing steps, from
now on, we plot only the Tesseract recognition rates (later on
we will show it was the best-performing OCR method with a
specific experiment).

A. VALIDATION OF THE TRACKING METHODS
Now, we turn our attention to investigating the tracking
methods. We start with some tracking issues that the frame-
work should overcome. The first challenge is to keep tracking
the license plates while the camera loses focus on the target
license plate, as illustrated in Fig. 17. For these cases, nor-
mally PyrDense, SIFT, SURF and ORB fail to track the plate,
unlike PyrLK. The red dots in the figure depict the bounding
boxes tracked by PyrLK. In Fig. 17a, the camera re-focuses
on the object after a few frames. In Fig. 17b, the license-plate
focus is lost, and not acquired until the end of the video.

FIGURE 17. PyrLK keeps tracking even if the camera loses focus of the
license plate. In (a), the camera re-focuses on the object after a few
frames. In (b), the camera does not re-focus on the license plate even
after some time.

Due to the pyramidal implementation of Lucas-Kanade
and Farneback’s dense optical flow, we did not find track-
ing issues with fast-moving vehicles. In contrast, different
cast shadows over a license plate may mislead or confuse
the alignment. Fig. 18 depicts consecutive license plates
with varying illumination conditions throughout the route
(the red dots show that, even in this case, the tracking could
be performed). PyrLK could track the bounding box through
seven frames of the example, PyrDense tracked it through all
the 10 frames, and SIFT, SURF and ORB could not align any
consecutive images.

FIGURE 18. Cast shadows may impact the tracking step. The red dots
show that PyrLK and PyrDense could track the frames even with a
different lighting condition in each consecutive frame.

FIGURE 19. Examples of an input video tracked by PyrLK (a),
PyrDense (b), SIFT (c), SURF (d) and ORB (e).

Finally, we select another video to illustrate the tracking
performed by each method. Fig. 19 shows the tracked points
by each algorithm in the tenth (and last) frame. Note that

the tracked corners by PyrLK seems more accurate than the
others.

The chart in Fig. 20 depicts that PyrLK flow outperforms
the other tracking methods, on average. The blue curve
in Fig. 20 is the same as the blue curve in Fig. 16, and shows
the best possible values if we alternate among all tracking
available.

FIGURE 20. Quality of the tracking step as a function of the number of
input frames. The highest the number of hits, the better is the result. Each
curve is the average of the highest number of hits for all videos in the
dataset, using each of the tracking methods.

We also investigate the number of videos in which the
framework correctly identified all the seven license-plate
characters (7 is the maximum number of license-plate char-
acters in our dataset) for a given method. We refer to this
accuracy number as Acc7. To find this number, we verify
if the method scored seven hits at least once (using from
1 to 10 input frames), in each video. Table 1 confirms that
PyrLK is the most promising tracking method, and it is also
the fastest solution. Hence, PyrLK results are highlighted in
the table, and PyrLK is the default tracking method of the
framework.

TABLE 1. Accuracy and runtime of the framework’s tracking step. In the
second row, the number of videos in which the framework correctly
recognized all the seven characters (for some number of input frames
among 1 and 10). Then, the runtime (in seconds) to track the license plate
through a pair of frames.

It is worth mentioning that more than one tracking method
may recognize the same number of hits in the same video.

B. VALIDATION OF THE REGISTRATION METHODS
In this section, we investigate the best registration solution
of the framework. The most important in this step is to
improve the result of a bad tracking. Thus, we select an input
video as example to illustrate the quality of each registration.
In Fig. 21a, we see the ROI of the license plate that we
manually defined in the initial frame. In Fig. 21b, we see the
tracked corners in the last frame. Our objective is to refine
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FIGURE 21. Examples of the registration methods. In (a), the ROI in the
initial frame. In (b), the tracked corners in the last frame. In (c), (d) and
(e), the registration results using LK, Dense and None.

this tracking. Then, we see the registration results using LK,
Dense and None in Figs. 21c, 21d and 21e.

We see in Fig. 21 that only the Lucas-Kanademethod could
refine the incorrect tracking for the example. However, there
are cases in which the tracked corners are good enough to
align the images. The chart in Fig. 22 shows that ‘‘None’’
outperforms both the Lucas-Kanade optical flow and the
Farneback’s dense optical flow, on average.

FIGURE 22. Quality of the registration step as a function of the number of
input frames. The highest the number of hits, the better is the result. Each
curve is the average of the highest number of hits for all videos in the
dataset, using each of the registration solutions.

The Acc7 values for the registration methods, in Table 2,
support the claim that ‘‘None’’ outperforms the other reg-
istration solutions, on average (i.e., keeping the previous
alignment calculated in the tracking step might be better
than performing the subpixel realignment). Using None, the
framework correctly recognized all the seven characters in
123 videos (61.5%). The Acc7 for LK it was 57.0% (114
videos), and for Dense it was 51.5% (103).

However, there were videos in which LK performed bet-
ter than using no method in the registration step. If we fix
PyrLK as the tracking method, we see that LK registration
outperformed ‘‘None’’ in 47 videos (and in 40 videos if we
track with PyrDense).

TABLE 2. Accuracy and runtime of the framework’s registration step.

Using no method for registration achieved better results,
on average, that the Lucas-Kanade optical flow because the
LK method cannot overcome a bad tracking (very common

using the ORB tracker solution, for example). We expect
only a subpixel adjustment in the registration step, since we
do not work with pyramidal layers. Hence, even if ‘‘None’’
achieved better results, on average, it may still be useful
to provide the forensic analysts with other methods for the
subpixel adjustment. For this reason, we select LK as the
default method for registration in the framework. In addition,
the runtime for LK is less than 0.01 seconds, while Dense’s
runtime is 0.7 seconds. Note that the runtime of Lucas-
Kanade and Farneback’s optical flow is lower for registration
than for tracking (since we do not use pyramid layers for the
subpixel adjustment).

C. VALIDATION OF THE RECONSTRUCTION METHODS
For a qualitative evaluation of the reconstruction methods, we
also select input videos containing issues with illumination
and shadows, as in Secs. VI-A and VI-B. The first row of
Fig. 23, shows a zoomed version of the initial frame, without
super-resolution, for four input videos. The alphanumerics
are hard to recognize in all the examples. The second row
shows the results for GSR4. The last row shows a frame with
good resolution of the license plate in the beginning of each
video. The GSR4 characters are not perfectly recognized, but
they are more similar to the characters in the last row (in a
good resolution), than those in the first row (without super-
resolution).

FIGURE 23. Quality of the reconstruction applied to frames with
illumination and shadow issues. In (a), the initial frame without
super-resolution. Then, the results for GSR4 (b). In (c), a frame with a
good resolution of the license plate.

The chart in Fig. 24 shows the results for the seven
variations. It is very difficult to identify the best reconstruc-
tion method by the chart (their results are all very similar,
on average). The blue curve depicts that the highest num-
ber of hits alternates between one method and another,
so it is worthwhile to provide different methods for the
user.

The chart in Fig. 24 is not adequate to select a default
solution for the reconstruction step, since the results for each
method are very similar. Therefore, we investigate the Acc7
values for super-resolution in Table 3. The Acc7 values for
the reconstruction methods in Table 3 are also very similar.
We choose GSR4 as the default super-resolution algorithm,
since its result is slightly higher in the table. However, each
variation might be more or less advantageous for each case.
For example, the Inpainting-based variations found results
higher thanGSR4 in 24 videos, and the user can easily change
the method when the result is not appropriate.
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FIGURE 24. Quality of the reconstruction step as a function of the
number of input frames. The highest the number of hits, the better
is the result. Each curve is the average of the highest number of hits
for all videos in the dataset, using each variation of GSR.

TABLE 3. Accuracy and runtime of the reconstruction step.

D. VALIDATION OF THE POST-PROCESSING METHODS
In Sec. VI-A, we showed examples in which the tracking
methods could be performed even under the presence of cast
shadows. However, such issue may impact the binarization
step. In Fig. 18, we showed a license plate with varying
illumination conditions throughout the route. Due to the cast
shadows and to the sunlight reflected on such plate, each
frame might have a different character that is not visible
through the vehicle route. In Fig. 25, we show the visual
difference when we super-resolve only two frames of the
license-plate in Fig. 18. Tesseract could correctly identify
all the characters using Adaptive thresholding (EYG-9890),
but could not recognize any digits when using Otsu’s
binarization.

FIGURE 25. Examples of the post-processing methods. In (a), the Otsu’s
binarization. In (b), Adaptive thresholding. In (c), the super-resolved
image.

In Sec. IV-E, we have discussed that the Otsu’s binarization
is designed for a bimodal image. Usually, a license-plate his-
togram has two peaks (one for the alphanumerics color, and
other to the background color). However, frames containing
issues with illumination or shadows, as in the Fig. 23, may
lead to a bad Otsu’s binarization. Fig. 25 depicts an example
in which the Adaptive outperforms Otsu in such cases.

The chart in Fig. 26 summarizes the results for both
binarization methods, and shows that the results for both

FIGURE 26. Quality of the post-processing step.

binarization methods are similar, if we use Tesseract to cal-
culate the recognition rate.

TABLE 4. Accuracy and runtime of the post-processing step.

To define the default solution for the post-processing step,
we investigate the Acc7 values for the binarization methods
in Table 4. The Acc7 for Otsu is higher than for the Adap-
tive thresholding. In addition, Otsu’s runtime is 0.1 seconds,
faster than Adaptive (4.6s). Based on these values, we
choose the Otsu’s binarization as the default solution for the
post-processing step. However, we strongly recommend the
Adaptive thresholding for the scenes with varying illumina-
tion conditions throughout the license-plate’s route.

FIGURE 27. Quality of the recognition methods for three super-resolved
images, using the defaults methods in each step.

E. VALIDATION OF THE RECOGNITION METHODS
Finally, we investigate the best OCR system in the last
step. First, we select three super-resolved images using the
default methods for the other steps (PyrLK for tracking,
LK for registration, GSR4 for reconstruction and Otsu for
post-processing). In Fig. 27, we show such images and
the recognition rate for each one. Using Tesseract, we
obtain higher number of hits as we increase the number of
input frames, for the three examples. Using OCRopus, the
recognition rate seems more stable as we increase the number
of frames.

As we showed in Figure 16, the Tesseract recognition
rate also outperforms the OCRopus number of hits, on aver-
age, using all the available methods and all the videos in
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TABLE 5. Accuracy and runtime of the recognition step.

the dataset. The Acc7 shows Tesseract is more effective than
OCRopus, almost twice as effective in a significantly lower
runtime (see Table 5).

Due to the results in Fig. 16, Fig. 27 and the Acc7 values,
we choose Tesseract as the default OCR solution.

The charts in Figs. 16, 20, 22, 24 and 26 depict that,
when we increase from 1 to only 2 the number of frames
used as input for the SR, we already have a significant
improvement in the quality of the characters recognition.
The curves grow, on average, until five frames and then
become stable. Therefore, using more input frames than we
used in our experiments may not compensate the consequen-
tial increase in execution time. For these reasons, five may
be a good number when choosing the length of an input
sequence. Notwithstanding, all the available methods in our
framework run in linear time as we increase the number of
input frames to super-resolve.

VII. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
This work presents a free and open-source framework that
relies upon super-resolution and automatic license-plate
recognition to help forensic analysts to identify the license
plate’s alphanumerics of the vehicle of a criminal suspect,
for example in a crime scene. The framework handles the
necessary steps to identify the target license plate, using a
methodology to locate, track, align, super-resolve, and recog-
nize the alphanumerics in low-quality and challenging traffic
videos.

The framework provides a user interface for the forensic
analyst to choose the license plate of interest. The interaction
with the user is required only in the initial step (this is
reasonable, since she needs to identify which of the moving
vehicles in the video is the suspect one). The only input of
the framework is the traffic video, and the ultimate result
is not only a super-resolved image, as in the traditional SR
techniques, but the recognized license-plate alphanumerics.

After this initialization, the framework comprises a series
of methods for tracking, registration, super-resolve, post-
process and recognize the alphanumerics of a detected license
plate. Each method may be more or less advantageous,
depending on a number of situations (e.g, different illumina-
tion conditions through the license-plate’s route, high vehicle
speeds, etc). There is one default solution for each step.
However, if the framework does not find an appropriate solu-
tion, the user can customize the framework and change the
method for any of the framework steps.

The experiments showed that the tracking and the reg-
istration play a key role in the framework. The pyramidal
implementation of the Lucas-Kanade optical flow, com-
bined to Shi-Tomasi corner points, outperformed the pyra-
midal Farneback’s dense optical flow and the classic feature

detectors SIFT, SURF and ORB in the tracking step,
on average. Due to the pyramid layers, we did not have
issues with fast-moving vehicles with both the LK and Dense
tracker. In addition, only PyrLK could properly keep tracking
the license plates in situations when the camera loses focus on
the license plate, and then re-focuses on the object after a few
frames. However, PyrDense outperformed the pyramidal LK
optical flow when there were cast shadows over the license
plate.

The LK method also outperformed Dense optical flow in
the registration step (both without pyramid layers). In addi-
tion, the subpixel adjustment improved the number of hits in
several cases. The LK’s runtime is significantly lower than all
the other methods for tracking and registration.

For the reconstruction step, we considered the Geometric
K-Nearest Neighbors Super-Resolution (GSR) and the novel
Inpainting-based Super-Resolution (ISR). The experiments
show that, indeed, it is possible to increase the number of rec-
ognized characters using our super-resolution method. From
the charts in Sec. VI, we can notice a significant improvement
in the quality of the characters recognition even if we increase
the number of super-resolved frames from 1 to only 2. As a
suggestion, collecting five frames may be a good amount of
input frames to use in the super-resolution step. Furthermore,
all the seven variations that we implemented produced similar
results in the reconstruction step.

In the post-processing step, the binarization methods also
had approximate results (Otsu’s binarization performed better
in bimodal images, whereas Adaptive thresholding helped to
recognize characters in license plates when heavy occlusion
or cast shadows are present). Finally, Tesseract OCR is faster
and could correctly recognize almost twice the number of
characters than OCRopus, on average.

For all these reasons, we suggest PyrLK for the tracking
method, Lucas-Kanade optical flow without pyramid layers
for the subpixel adjustment, and Tesseract to recognize the
alphanumerics. All the seven reconstruction variations per-
formed similarly, on average, in our experiments. Moreover,
they also run in a small execution time. Since the GSR4
recognized all the seven license-plate characters in more
input videos than the other variations, we chose GSR4 as
the default method for the reconstructed step. However, each
variation might be more or less advantageous for each case.
For example, the Inpainting-based variations found results
higher than GSR4 in 12% of the videos (and the results were
equal to GSR4 in 80% of the dataset), so the user can change
the method when the result is not appropriate. In addition, we
strongly recommend the Adaptive thresholding for the post-
processing step for the scenes with varying cast shadows or
illumination conditions throughout the license-plate’s route.
Otherwise, we suggest using Otsu’s binarization.

The collected dataset is another contribution of this work.
We collected real-world traffic videos, containing one target
license plate per video. Each video has an associated ground-
truth file with the annotated characters of the suspect plate.
The videos were captured in different places, under different
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FIGURE 28. In (a), the black triangle is the target pixel p and each red dot
is its nearest pixel qk from an LR image Ik . In (b), 3-NN chooses the blue
pixels to be combined, but they may not be a good choice because they
do not form a region to which p belongs. In (c), a triangulation is
calculated among all qk , and then p belongs to the triangle
formed by the blue squares.

illumination conditions, different vehicle average speeds,
non-stationary backgrounds, non-predictable routes, and con-
taining trees and road signs that may cast different shadows
over the license plates between consecutive frames.

It is worth mentioning that the framework can be extended
upon the user’s need. For future work, one could think of
including other methods for the tracking, registration, recon-
struction, post-processing and recognition steps. For exam-
ple, GSR2 and GSR3 can produce bad results if the three
closest values of qk (the LR nearest pixels) do not form
a region which includes p (the point to be reconstructed).
Fig. 28 illustrates an example of this situation: it is possible
to find a straight line that passes through p such that all the
three nearest points qk are on the same side of the line. In this
case, the second and third nearest qk may not add relevant
information to p.

In [65], the authors propose a Delaunay triangulation for
all available points and combine the vertices of the triangle
to which p belongs (as in Fig. 28c). According to [66], the
triangulation can be build in O(n log n), while GSR1 is O(n)
(for an HR image with n pixels). We did not implement this
option to avoid increasing the algorithm runtime for now,
but one could investigate this and other triangulations in the
future.

The Geometric K-Nearest Neighbor Super-Resolution
algorithm combines pixels in a neighborhood onto the pixels
of the HR grid. Another possible strategy would be projecting
the LR images directly onto the HR grid (using the mapping
matrices calculated during the registration step). Each LR
pixel would contribute to exactly one high-resolution pixel.
However, there might be pixels in the HR grid onto which
no LR pixel has been projected. Then, to complete these
unknown pixels, one might use some noisy-removal tech-
nique or even use some in-painting method [64].

Another suggestion for future work is to automatically
locate the license plate, substituting the user interaction in
the first step. Hence, it might be possible to create a com-
pletely automatic and unsupervised framework, and use it for
real-time applications. In addition, it might be useful to auto-
matically detect and discard blurred frames that may appear
while the camera loses focus, and improve the recognition
training process including real-world license-plate images.
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