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ABSTRACT Currently, the cleaning process for power equipment monitoring data is cumbersome and
often leads to loss of information. To address these problems, a data cleaning method based on stacked
denoising autoencoder (SDAE) networks is proposed in this paper. SDAE networks have a strong ability
to denoise and restore corrupted data and have a strong feature extraction capability. The status monitoring
data of equipment under normal conditions are trained by SDAE to obtain the cleaning parameters and
the reconstruction errors. An upper threshold of the reconstruction errors obtained from training samples is
determined through Kernel density estimation. A tolerance window width is added to achieve rapid anomaly
detection. The abnormal data are classified as outliers, missing data, or fault status data according to the
relationship between the reconstruction error and the threshold and between the duration of abnormal data
and the tolerance window. To verify the effectiveness of the proposed method, the SDAE model is used to
process the data for the dissolved gas concentration in transformer oil and the temperature of the transmission
line. The results show that the proposed method can effectively identify and repair outliers and missing
information. The model can perform rapid anomaly detection when the equipment is running abnormally.

INDEX TERMS Power equipment, status data, data cleaning, stacked denoising autoencoders, anomaly
detection.

I. INTRODUCTION
With improvements in information technology of the power
industry, the status monitoring data for power equipment
have shown a massive growth trend. These data provide
information used for equipment status assessment, fault
analysis and prediction. However, the operating environ-
ments of transformers, transmission lines, gas insulated
switchgears (GIS) and other power equipment are complex
and diverse [1], [2], [3]. The original monitoring data con-
sist of partial abnormal points because of environmental
interference and the limitations of measurement techniques.
Abnormal data can also be caused by equipment defects [4].
These data contain important connotative information and
cannot be treated the same as ordinary noise or missing data.
It is therefore highly desirable to classify and clean abnormal
data [5], [6].

Currently, various methods are used to clean and repair
power data. Neighborhood-based techniques, such as moving

average and smoothing techniques, have been successfully
used to detect and clean power load curve data [7], [8], [9].
Usually, status monitoring data for power equipment are
treated as a time series. Through statistics or data mining,
intervention models have been used to search for anomalous
sequences [10]. Sliding a limited window across time series
data has also been used to identify outliers [11]. However,
in some cases, the length of abnormal data can vary in dif-
ferent periods. Therefore, a proper window size cannot be
determined in advance. Intelligent algorithms such as neural
networks, support vector machines, fuzzy algorithms and
others methods have been proposed to improve data quality
by cleaning outliers or missing data [12], [13], [14]. The
implementation of these methods is complex, and engineer-
ing applications are limited.

The original information often contains different types of
anomalous signals [15], [16]. The data cleaning model should
be able to extract effective information from abnormal data.
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Based on the deep learning idea [17], [18], in 2008, Vincent
and Bengio proposed a denoising autoencoder (DAE) algo-
rithm to reduce noise as one of the criteria for learning [19].
A DAE takes a corrupted version of the original input feed
into the input layer. Thus, the DAE is trained to reconstruct
the input from a corrupted version of it. This approach
enhances the stability and robustness of the disturbance
system. DAEs are stacked to form a hierarchical structure
(stacked denoising autoencoder, SDAE) [20]. An SDAE is
used to obtain more advanced features of the deep network.
In the presence of ‘‘dirty’’ data, the repair ability of SDAE is
particularly prominent.

In this paper, we propose a data cleaning method based
on SDAE. The SDAE cleaning model is able to automati-
cally identify and repair outliers and missing data. When the
equipment is in the abnormal state, the model is applicable
for the state data flow, and the abnormal operating state can
be rapidly detected. This facilitates the status assessment and
fault diagnosis of the equipment.

II. SDAE ALGORITHM
An autoencoder (AE) is a neural network that includes
an input layer, a hidden layer, and an output layer [20].
An AE is structured by its encoder part and decoder part. The
encoder maps an input vector into hidden representation. The
decoder maps the hidden representation back to a reconstruc-
tion vector of the input vector. Training an AE is the process
of minimizing the reconstruction error.

A DAE is very similar to an AE except for the input part.
A DAE takes a corrupted version of the original input feed
into the input layer [20]. The corrupted version x̃ of an input
vector x is obtained by stochastic mapping, and x̃ is fed to the
input and encoded according to (1).

y = fθ (x̃) = s(Wx̃ + b) (1)

where y is the hidden representation, fθ is the encode map-
ping, θ is the encoder parameters containing W and b, W is
the weight matrix between the input and hidden layer, and b
is the bias vector of the hidden layer.

The hidden representation y is decoded according to (2).

z = gθ ′ (y) = s(W ′y+ b′) (2)

where z is the reconstruction vector, gθ ′ is the decode map-
ping, θ ′ is the decoder parameters containing W ′ and b′, W ′

is the weight matrix between the hidden and output layer, and
b′ is the bias vector of the output layer.

The reconstruction vector z cannot reproduce the input x
exactly. The reconstruction error is calculated by the follow-
ing equation.

L(X ,Z ) =

{
H (B(x)|B(z)), x ∈ {0, 1}
||x − z||2, x ∈ R

(3)

where X is a set of input vectors x, Z is the corresponding
set of reconstructed vector z,H represents the Bernoulli cross
entropy [21], andB(x) andB(z) are themean values of x and z,
respectively.

FIGURE 1. Stacking denoising autoencoders. After training a first level
DAE, the learned encoding function fθ is used on the clean input (left).
The resulting representation is used to train a second level DAE (middle)
to learn a second level encoding function f (2)

θ
. From there, the procedure

can be repeated (right).

When the reconstruction error is minimized, the optimal
parameters are obtained. The common characteristic of the
input vector x and the reconstruction vector z is maximized.
However, during the training process, fθ is the feature map-
ping of the corrupted data. Therefore, the DAE model is
trained to achieve the denoising effect.

An SDAE is structured with stacked DAEs, as shown in
Fig. 1 [20]. The SDAE can help to extract features from the
input layer. The training algorithm is summarized as shown
in Algorithm 1.

Algorithm 1 Training Stacked Denoising Autoencoder
Input: data set X = {x}, x ∈ R
Output: reconstruction set Z = {z}, θ and θ ′

Step 1) Set the training network parameters: the number of
network layers L, pretraining iterations κ , learning
rateα, weight-decay λ, number of visible nodes and
hidden nodes and the fine-tuning iterations κ ′

Step 2) Initialize the parameters θ and θ ′, x vectors were
normalized to x̄

Step 3) Pretraining
Stochastic mapping: x̄ → x̃
for j = 1 to κ do
for i = 1 to L do
Perform forward propagation to compute Z
yi is fed to the (i+ 1)th DAE

end for
end for

Step 4) Fine-tuning
for j = 1 to κ ′

Compute the reconstruction error of output
layer δL
for i = L− 1 to 1 do
Compute the reconstruction error δi

end for
for i = 1 to L do
update parameter
∇Wi = δi(f (x̃))

T , ∇bi = δi,
Wi← Wi− α∇Wi − λWi, bi← bi− α∇bi
end for

end for
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In this paper, we use the status monitoring data for power
equipment as the input vector. In the training process, mini-
mizing the reconstruction error is used as the tuning standard.
When the model optimization parameters are used to clean
data, the reconstruction error is a criterion for measuring the
quality of the data. The output of SDAE is the reconstruction
data corresponding to the input.

III. DATA CLEANING METHOD BASED ON SDAE
A. PRINCIPLE ANALYSIS
In normal running conditions, the status monitoring data
of power equipment concentrate close to a non-linear low-
dimensional manifold [20], [22], indicated by (×) in Fig. 2.
Large measurement errors occur due to meter malfunction or
system disturbance. The isolated outliers from the expected
value are presented in the monitoring data. Similarly, due
to communication failure and other unknown factors, some
data are missing. These data deviate from the manifold dis-
tribution of normal data, indicated by (·) in Fig. 2. Parts
of the input status monitoring data are randomly corrupted
in the SDAE training process. For undamaged data xi, the
SDAE model learns through its deep structure and extracts
its distribution characteristics. For the subsets of randomly
corrupted data x̃i, SDAE predicts the real value based on
the uncorrupted value and extracts its implicit distribution
characteristics. Therefore, the SDAE cleaning model has the
ability to satisfy the probability distribution of the training
sample. The SDAE model trained by the normal status data
maps the distribution to the desired manifold or near the man-
ifold. The reconstruction error satisfies the following relation:
||x̃i − z̃i||2 � ||xi − zi||2, where z̃i is the reconstruction
representation of x̃i and zi is the reconstruction representation
of xi.

FIGURE 2. Geometric interpretation of data cleaning.

The incipient fault of the power equipment is usually
reflected by changes in the monitoring status trend. For
example, when the transformer iron core is grounding, the
grounding current of the core gradually increases. As the
fault severity increases, the grounding current increases from
several milliamps to several hundreds or thousands of mil-
liamps [23]. The SDAE parameters θ and θ ′ trained by the
normal status data do not contain the characteristic mapping
of the anomaly. If these parameters are used to clean the data
of the abnormal running state, the reconstruction error will be
too large within a long time range.

FIGURE 3. Flowchart of the proposed method.

According to the above analysis, the SDAE cleaningmodel
is trained on the basis of the normal status data of power
equipment. The reconstruction error and the large reconstruc-
tion error duration of the training samples are used as the
evaluation criterion of the data type. An upper threshold of
the reconstruction error and the tolerance window of large
reconstruction error duration are set.

Samples whose corresponding reconstruction error
exceeds the threshold and the large error duration within
the tolerance window are identified as isolated outliers.
Samples whose values are 0 or a fixed value and have large
reconstruction error duration beyond the tolerance window
are identified as missing data. These two types of data are
considered the corrupted data in the normal status of the
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equipment. The SDAE model performs denoising based on
the implicit distribution characteristics. Therefore, the SDAE
reconstruction representation can be used as the cleaning
value of the isolated outliers and the missing point. The
trend in the samples is determined to be either increasing
or decreasing, and the large reconstruction error duration
beyond the tolerance window is identified. These samples
are then identified as abnormal status data, and the cleaning
model detects the abnormal state. This can be timely feedback
to the maintenance staff, acting as a rapid anomaly monitor-
ing effect. The model is not suitable for abnormal state data
cleaning. Therefore, we keep the original data for follow-up
research.

B. REALIZATION FOR DATA CLEANING
As described above, the SDAE cleaning details are illustrated
in Fig. 3.

1) Perform the SDAE training according to Algorithm 1
for the normal status of the power equipment, and obtain the
parameters θ and θ ′ of the cleaning model.
2) Calculate the reconstruction errors of the training

samples from the cleaning model. Perform kernel density
estimation (KDE) [24], [25] for the reconstruction errors, and
determine the upper threshold of the reconstruction errors Thd
and the tolerance window Tw.
3) Use the SDAE model to clean the monitoring data. The

reconstruction error Re and the error duration Et are obtained
and compared with Thd and Tw. The data type is determined
by the following rules.

¬ Re ≤ Thd: The data are in a normal status and do
not contain ‘‘dirty’’ data. Therefore, this part of the data is
uncorrupted.

 Re > Thd and Et ≤ Tw: The data are in a normal status
and contain ‘‘dirty’’ data, where the ‘‘dirty’’ data are isolated
outliers.

® Re > Thd, Et > Tw and data are 0 or a fixed value: The
data are in a normal status and contain ‘‘dirty’’ data, where
the ‘‘dirty’’ data are missing points.

¯ Re > Thd, Et > Tw and the data show some trend
(increasing or decreasing): The data are in an abnormal status.

4) For the data of cases ¬  ® in 3), the reconstruction
representation of the SDAE model is used as the replacing
value.

5) In case ¯ in 3), the data are kept raw because the
cleaning models are not suitable for addressing this issue.

IV. CASE STUDIES
A. CLEANING DATA FOR THE DISSOLVED GAS
CONCENTRATION IN TRANSFORMER OIL
Oil chromatographic data sets from an on-line monitoring
device in a 220kV substation are used in our experiments.
These data sets are daily observations of the gases dissolved
in the transformer insulation oil for the three years from 2013
to 2015. In September 2015, the total hydrocarbon concen-
tration exceeded the attention value [26], and the growth rate
was high.

The total hydrocarbon data from 2013 to 2014 are used as
the normal status samples Xtrain to train the model. The Xtrain
values are learned by SDAE in accordance with Algorithm 1
to construct the cleaning model. The number of input neurons
is 90. There are three hidden layers with 60, 40 and 60
neurons each. The learning epochs are 1000. The weights
are initialized to small random values chosen from a zero-
mean Gaussian with a standard deviation of approximately
0.01, and the biases are initialized to 0. The learning rate is set
to 0.1, and the weight-decay is 0.0001. Based on experiments,
it is found that when the corruption level is low (less than 5%),
the repairing effect of outliers is excellent. However, the
repairing effect of missing points is poor. When the cor-
ruption level is too high, the overall fitting accuracy of the
sequence data is reduced. By adjusting the corruption level,
we found that the model with a corruption level of 10% has
high fitting accuracy and strong ability of repairing dirty data.
So, the model assumes a corruption level of 10%.

To evaluate the training performance of the SDAE model,
we use the mean absolute error (MAE) to measure the error
of the training data.

MAE =

∑m
i=1

∑n
j=1 |xij − zij|

m× n
(4)

where m is the total number of input vectors and n is the
dimension of each input vector.

The MAE of the measured value Xtrain and the recon-
structed representation Ztrain is 3.97%; thus, the absolute
percentage accuracy is 96.03%.We can think that 3.97% data
in the training set cannot be completely restored because of
the large reconstruction error. Meanwhile, the background
noises affect the accuracy to a certain extent. The confidence
level is increased to avoid misinterpreting background noises
as anomaly, so the confidence interval is set to 0.97. The
cumulative distribution of reconstruction errors using KDE
is shown in Fig. 4. The kernel estimator is a Gaussian type.
The upper threshold Re is 0.005 609 at the confidence level
of 0.97, indicated by (�) in Fig. 4. Based on site visits
and consultation with the onsite maintenance personnel, the
tolerance window is set to 6.

The trained model is used to clean the monitoring data
from 2015. To facilitate the presentation of these data, we
select part of the data from 2015, named as Xtest as an
example.

We use the SDAE model to clean the normalized val-
ues of Xtest, recording the reconstructed representations and
reconstruction errors, as shown in Fig. 5. According to the
cleaning procedure described in section 3.2, the types of
abnormal data are determined as shown in Table 1.

At sample times of 12-13, 45 and 127, the abnormal
data can easily be identified as outliers. At sample times of
85 to 92, the reconstruction errors are greater than the thresh-
old, and Et is beyond of the tolerance window. However,
the data are a fixed value, so the data in this time period
are missing. According to section 3.2, Xtest is determined
to be in a normal operation state, and the ‘‘dirty’’ data use
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FIGURE 4. Distribution of reconstruction errors calculated by KDE.

TABLE 1. Abnormal data types of Xtest.

SDAE reconstruction as a data cleaning value. After the data
are cleaned by the SDAE model, the data are consistent
with the overall distribution characteristics. The background
noises are dramatically reduced, and the data curve shows a
smoothing distribution. The removal of pseudo-information
and pseudo-trends rules can provide more realistic data for
the follow-up state assessment. Compared with the proposed
SDAE model, wavelet and s-transform denoising methods
are used to clean Xtest. In the wavelet transforms method,
the db4 mother wavelet is used to decompose the data into
three levels, and soft thresholding performs to remove the
noise. At sample times of 12-13, 45 and 127, the wavelet
method repairs the outliers to the desired manifold. However,
at sample times of 85 to 92, wavelet transforms method
cannot achieve the goal of data repairing. By s-transform
denoising method, the data trend is cleaned smoothly, but
the denoising effect at or near abnormal points is poor.
S-transform method retains the abnormal information when
the data changes dramatically. So it does not apply to clean
the status monitoring data of power equipment.

The model is also used to clean the data of the total hydro-
carbon concentration of this transformer from September,
2015. The reconstruction error abruptly increases, as shown
in Fig. 6. According to section 3.2, the transformer is in an
abnormal running state at this time.

In fact, during the overhaul of this transformer, the main-
tenance personnel found that the A-phase lead connector of
the transformer on the high-voltage side had a few broken
areas (shown in Fig. 7). When the power equipment is in an
abnormal state, the cleaning model can achieve fault rapid
detection.

FIGURE 5. Cleaning Xtest using the proposed method. (a) The relationship
between the reconstruction errors Re of Xtest and the threshold Thd.
(b) The relationship between Et and Tw through enlarging part of (a).
(c) The cleaning result of Xtest.

B. CLEANING THE TEMPERATURE DATA OF THE
TRANSMISSION LINE
Next, we analyze the average temperature data of a 110 kV
LGJX-300/40 transmission line. We use the temperature data
Xtemp to build the SDAEmodel. The number of input neurons
is 144, and there are three hidden layers with 100, 72 and
100 neurons each. The learning epochs are 1000. The
weights are initialized to small random values chosen
from a zero-mean Gaussian with a standard deviation of
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FIGURE 6. Results of using the model to clean the abnormal running
status data.

FIGURE 7. A-phase lead connector of the transformer on the high-voltage
side.

approximately 0.01, and the biases are initialized to 0. The
learning rate is set to 0.1, and the weight-decay is 0.0001.
Taking the fitting accuracy and reconstruction ability into
account, the model assumes a corruption level of 10% based
on experiments.

The MAE of the measured value Xtemp and the recon-
struction value Ztemp is 3.81%; thus, the absolute percent-
age accuracy is 96.19%. We can think that 3.81% data in
the training set cannot be completely restored because of
the large reconstruction error. Meanwhile, the background
noises affect the accuracy to a certain extent. The confidence
level is increased to avoid misinterpreting background noises
as anomaly, so the confidence interval is set to 0.97. The
cumulative distribution of the reconstruction errors using
KDE is shown in Fig. 8. The kernel estimator is a Gaussian
type. The upper threshold Re is 0.002 456 at the confidence
level of 0.97, indicated by (�) in Fig. 8. Based on site visits
and consultation with the onsite maintenance personnel, the
tolerance window is set to 6.

The temperature data are cleaned based on the SDAE
model according to the steps presented in section 3.2 and
Fig. 9. The types of abnormal data are determined as shown

FIGURE 8. Distribution of reconstruction errors calculated by KDE.

TABLE 2. Abnormal data types of Xtemp.

FIGURE 9. Cleaning results of the transmission line temperature data.

in Table 2. The test data are in a normal operation state.
At sample times of 30, 31 and 32, there are missing data,
and at sample times of 8, 9 and 82, there are outliers. The
SDAE reconstructed representations are used as the cleaning
results. The three points 33.45 ◦C, 33.45 ◦C, 33.45 ◦C at
sample times of 30, 31 and 32 are corrected to 36.43 ◦C,
37.35 ◦C and 38.58 ◦C, respectively. The points 49.28 ◦C,
49.07 ◦C and 35.01 ◦C at sample times of 8, 9 and 82 are
corrected to 37.27 ◦C, 39.08 ◦C and 37.00 ◦C, respectively.
After cleaning the data using the proposed SDAE model, the
data curve matches the actual distribution.

According to [27], the temperature model of the transmis-
sion line can be described as follows:

T = 3.57 ∗ 10(−5)I2 − 0.11727I − 0.003705F

+ 0.13615v+ 85.74814 (5)
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where T is the average temperature of the transmission line,
I is the line load, F is the line tension, and v denotes the wind
speed.

Based on the tension, load, and wind speed data from the
on-line monitoring device, we compute the line temperatures
at sample times of 8, 9, 30, 31, 32 and 82 to be 37.42 ◦C,
39.27 ◦C, 36.18 ◦C, 37.16 ◦C, 38.16 ◦C, 36.85 ◦C, respec-
tively, which match the results of our approach.

V. CONCLUSION
In this paper, we view the cleaning of power statusmonitoring
data as a corrupted data recovery problem. Based on the
ability of SDAE to effectively reconstruct ‘‘dirty’’ data and its
significant abnormal status representation learning ability, we
propose a deep learning model to clean data. A deep network
is first constructed with the normal operating state data using
SDAE. KDE is then used to determine the upper threshold of
the reconstruction errors. A tolerance windowwidth is set and
compared with the abnormal data duration. By comparing the
relationship between the reconstruction error and the upper
threshold and between the tolerance window and the duration
of abnormal data, the abnormal data are classified as outliers,
missing data or abnormal running state data. The outliers
and missing data are repaired by the SDAE reconstructed
representations. When the equipment is defective or fails, the
cleaning model rapidly detects the anomaly. The model not
only cleans series monitoring data but also provides a new
method for detecting anomalies in power equipment.

REFERENCES
[1] R. Hussein, K. BashirShaban, and A. H. El-Hag, ‘‘Denoising of acous-

tic partial discharge signals corrupted with random noise,’’ IEEE Trans.
Dielectr. Electr. Insul., vol. 23, no. 3, pp. 1453–1459, Jun. 2016.

[2] X. Chen, Y. Qian, Y. Xu, G. Sheng, and X. Jiang, ‘‘Energy estimation of
partial discharge pulse signals based on noise parameters,’’ IEEE Access,
vol. 4, pp. 10270–10279, Jan. 2017.

[3] Q.Wang, D. Kundur, H. Yuan, Y. Liu, J. Lu, and Z.Ma, ‘‘Noise suppression
of corona current measurement from HVdc transmission lines,’’ IEEE
Trans. Instrum. Meas., vol. 65, no. 2, pp. 264–275, Feb. 2016.

[4] Y. Yan, G. Sheng, Y. Liu, X. Jiang, X. Sun, and Y. Sun, ‘‘A method for
fast mining abnormal state information of power equipment based on time
series analysis,’’ in Proc. IEEE PES Gen. Meet. Conf. Expo., Jul. 2014,
pp. 1–5.

[5] R. Misra, A. Baral, and A. Lahiri, ‘‘Denoising neutral current of a power
transformer measured during impulse test by framelet technique,’’ in
Proc. IEEE 10th Int. Conf. Properties Appl. Dielectr. Mater., Jul. 2012,
pp. 1–6.

[6] Q. Wang, D. Kundur, H. Yuan, Y. Liu, J. Lu, and Z. Ma, ‘‘Smart trans-
former for smart grid—Intelligent framework and techniques for power
transformer asset management,’’ IEEE Trans. Smart Grid, vol. 6, no. 2,
pp. 1026–1034, Mar. 2015.

[7] J. Chen, W. Li, A. Lau, J. Cao, and K. Wang, ‘‘Automated load curve
data cleansing in power systems,’’ IEEE Trans. Smart Grid, vol. 1, no. 2,
pp. 213–221, Sep. 2010.

[8] R. Weron,Modeling and Forecasting Electricity Loads and Prices: A Sta-
tistical Approach. New York, NY, USA: Wiley, 2006.

[9] Z. Guo, W. Li, A. Lau, T. Inga-Rojas, and K. Wang, ‘‘Detecting X-outliers
in load curve data in power systems,’’ IEEE Trans. Power Syst., vol. 27,
no. 2, pp. 875–884, May 2012.

[10] C. Brighenti and M. Á. Sanz-Bobi, ‘‘Auto-regressive processes explained
by self-organized maps. Application to the detection of abnormal behav-
ior in industrial processes,’’ IEEE Trans. Neural Netw., vol. 22, no. 12,
pp. 2078–2090, Dec. 2011.

[11] E. Keogh, J. Lin, and A. Fu, ‘‘HOT SAX: Finding the most unusual time
series subsequence: Algorithms and applications,’’ in Proc. ICDM, 2005,
pp. 440–449.

[12] M. Yang and J. Ma, ‘‘Data completing of missing wind power data based
on adaptive BP neural network,’’ in Proc. PMAPS, Oct. 2016, pp. 1–6.

[13] W. Shi et al., ‘‘Improving power grid monitoring data quality: An effi-
cient machine learning framework for missing data prediction,’’ in
Proc. HPCC-CSS-ICESS, Aug. 2015, pp. 417–422.

[14] X. Yang, G. Zhang, J. Lu, and J. Ma, ‘‘A kernel fuzzy c-means clustering-
based fuzzy support vector machine algorithm for classification prob-
lems with outliers or noises,’’ IEEE Trans. Fuzzy Syst., vol. 19, no. 1,
pp. 105–115, Feb. 2011.

[15] S. Meng, L.-T. Huang, and W.-Q. Wang, ‘‘Tensor decomposition and
PCA jointed algorithm for hyperspectral image denoising,’’ IEEE Geosci.
Remote Sens. Lett., vol. 13, no. 7, pp. 897–901, Jul. 2016.

[16] C. Varon, C. Alzate, and J. A. K. Suykens, ‘‘Noise level estimation for
model selection in kernel PCA denoising,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 26, no. 11, pp. 2650–2663, Nov. 2015.

[17] G. E. Hinton and R. R. Salakhutdinov, ‘‘Reducing the dimensionality of
data with neural networks,’’ Science, vol. 313, no. 5786, pp. 504–507,
2006.

[18] Y. Bengio, ‘‘Learning deep architectures for AI,’’ Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, 2009.

[19] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, ‘‘Extracting and
composing robust features with denoising autoencoders,’’ in Proc. 25th Int.
Conf. Mach. Learn., 2008, pp. 1096–1103.

[20] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengioand, and P.-A. Manzagol,
‘‘Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,’’ J. Mach. Learn. Res.,
vol. 11, no. 12, pp. 3371–3408, 2010.

[21] I. Sason, ‘‘On the entropy of sums of Bernoulli random variables via the
Chen–Stein method,’’ in Proc. IEEE Inf. Theory Workshop, Sep. 2012,
pp. 542–546.

[22] T. Shnitzer, R. Talmon, and J. J. Slotine, ‘‘Manifold learning with contract-
ing observers for data-driven time-series analysis,’’ IEEE Trans. Signal
Process., vol. 65, no. 4, pp. 904–918, Feb. 2017.

[23] W. H. Kersting and W. Carr, ‘‘Grounded wye-delta transformer bank
backfeed short-circuit currents,’’ IEEE Trans. Ind. Appl., vol. 53, no. 1,
pp. 65–70, Jan. 2017.

[24] S. Wang, J. Wang, and F. L. Chung, ‘‘Kernel density estimation, kernel
methods, and fast learning in large data sets,’’ IEEE Trans. Cybern., vol. 44,
no. 1, pp. 1–20, Jan. 2014.

[25] D. Lu, Z. Bao, and Z. Li, ‘‘Load sampling for SCUC based on principal
component analysis and kernel density estimation,’’ in Proc. IEEE PES
Gen. Meet., Jul. 2016, pp. 1–5.

[26] IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed
Transformers, IEEE Standard C57.104-2008, 2008.

[27] J. L. Ren, ‘‘Dynamic overhead transmission line rating based on tension
measurement,’’ (in Chinese), Ph.D. dissertation, School Electron., Inf.
Elect. Eng., Shanghai Jiao Tong Univ., Shanghai, China, 2008.

JIEJIE DAI was born in Shandong, China. She
received the B.E. degree from Shandong Univer-
sity, Jinan, China, in 2009, the M.E. degree from
Beihang University, Beijing, China, in 2012. She
is currently pursuing the Ph.D. with Shanghai
Jiao Tong University, Shanghai, China. Her inter-
ests include the condition monitoring of power
apparatus.

VOLUME 5, 2017 22869



J. Dai et al.: Cleaning Method for Status Monitoring Data of Power Equipment Based on SDAE

HUI SONG was born in Shandong, China.
He received the B.E. degree from Shandong Uni-
versity, Jinan, China, in 2009, and the M.E. degree
from Shanghai Jiao Tong University, Shanghai,
China, in 2012, where he is currently pursuing
the Ph.D. degree. His interests include condi-
tion monitoring, partial discharge, and insulation
diagnostics.

GEHAO SHENG (M’08) was born in Hunan,
China. He received the B.E., M.S., and Ph.D.
degrees in electric power system and automation
from the Huazhong University of Science and
Technology, Wuhan, China, in 1996, 1999, and
2003, respectively. From 2003 to 2005, he was a
Post-Doctoral Researcher with the Department of
Electrical Engineering, Shanghai Jiao Tong Uni-
versity, Shanghai, China. He is currently a Profes-
sor with the Department of Electrical Engineering,

Shanghai Jiao Tong University. His research interest is the condition moni-
toring of power apparatus.

XIUCHEN JIANG was born in Shandong, China.
He received the B.E. degree in high voltage and
insulation technology from Shanghai Jiao Tong
University, Shanghai, China, in 1987, the M.S.
degree in high voltage and insulation technology
fromTsinghua University, Beijing, China, in 1992,
and the Ph.D. degree in electric power system
and automation from Shanghai Jiao Tong Univer-
sity in 2001. He is currently a Professor with the
Department of Electrical Engineering, Shanghai

Jiao Tong University. His research interests include electrical equipment
online monitoring and condition-based maintenance and automation.

22870 VOLUME 5, 2017


