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ABSTRACT An ultra wide band (UWB)-based time-delay indoor human localization scheme is proposed to
provide indoor human localization with time-delay measurements. The human position is localized using the
UWB-based distance data and the extended finite impulse response (EFIR) estimator employing the time-
delay localization model. Only one-step delayed measurements are considered in this paper. We employ
the state augmentation method to combine the delayed and not delayed states. To improve the localization
robustness for the time-delay localization model, we employ the EFIR filter, which does not require the noise
statistics. The experimental results have shown that the EFIR estimator is more robust than the extended
Kalman filter-based one for the delayed data.

INDEX TERMS Indoor localization, ultra wide band, extended FIR filter, extendedKalman filter, time-delay
model.

I. INTRODUCTION
Nowadays, indoor human localization has become one of
the most important topics [1]–[3]. In the localization tech-
nology, the Global Positioning System (GPS) is one of the
most widely used [4]. But even though the GPS can pro-
vide the human position information universally, its signals
may not always be available in indoor environments [5].
In order to provide accurate position information in indoor
environments, some local positioning system (LPS)-based
technologies have been proposed. For example, in [6]–[8],
the WiFi has been used to provided the localization in
complex indoor environment; the radio frequency identifi-
cation (RFID) tag environments were exploited in [9]–[11]
to provide object self-localization. Although the WiFi-based
and the RFID-based LPS technologies are universal for
human location in indoor environments, their localization
accuracy stays at a meter level. To increase the resolution,
the use of the ultra wide band (UWB) technology has been
proposed by some researches. For example, in [12] and [13],
the UWB is used to track the target in indoor environment and
we notice that the use of UWB improves the accuracy from a
meter level to a centimeter level.

The widely used models for single technology-based data
fusion in human localization are the constant velocity (CV)
model [14], the constant acceleration (CA) model [15], and
the singer model [16], [17]. Although thesemethods allow for
the estimation of the target location with a higher accuracy,
they do not account for the delayed data, which can often
be observed in practice [18]–[20]. It is especially true for
the UWB-based localization system, where data derived from
the sensor are transmitted wirelessly with possible delays.
In order to overcome this problem, some estimators have
been developed for time-delay data [21]–[24]. For example,
in [25], the estimation for time-delay data is provided for
robot manipulators; a distributed fusion estimation with miss-
ing measurements, random transmission delays, and packet
dropouts is proposed in [26].

Data fusion is frequently used in accurate localization.
Most often, the fusion filters are designed employing the
Kalman filter (KF) algorithm in view of its optimality, sim-
plicity, real-time operation, and small memory required [27].
Several efficient modifications of the KF were also pro-
posed for nonlinear models. Among them the extended
KF (EKF) [28], the unscented KF (UKF) [29], and the
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cubature KF (CKF) [30] have gained most currency. Let
us notice that the performance of the KF-based filters crit-
ically depends on the noise statistics. If such information
is unavailable, the KF estimate may severely degrade that
can often be observed in practice. A better practical solu-
tion is the finite impulse response (FIR) structure, because
it has been found that the limited memory filter has high-
est robustness [31], [32]. The most well developed iterative
unbiased FIR (UFIR) filtering algorithm does not require
the noise statistics, but its accuracy critically depends on
the averaging horizon of N points, which must be optimal.
For nonlinear models, the iterative extended UFIR (EFIR)
filtering algorithm has been designed in [33].

In this paper, we propose an ultra wide band (UWB)-based
time-delay indoor human localization scheme, in which the
state augmentation method is used to combine the time-
delayed and not delayed states. The EFIR estimator is used to
fuse the distance data and provide the robust human position
information. The EFIR-based time-delay model performance
is compared to that of the EKF. The remaining part of this
paper is organized as follows. Section II discusses the model
for indoor UWB-based human localization with time-delayed
data. Section III presents the EKF and EFIR algorithms.
Experimental testing and discussions are given in Section IV.
Finally, conclusions are drawn in Section V.

II. MODEL FOR INDOOR UWB-BASED HUMAN
LOCALIZATION WITH TIME-DELAY MEASUREMENTS
A detailed structure of the human localization scheme using
UWB-based measurements and discussed in this section
is shown in Fig. 1. Here, the reference nodes (RNs) are
mounted at fixed positions with known coordinates. The
blind node (BN) measures the time of arrival (TOA) between
the BN and the RNs and the distances are calculated via the
TOA-distance model. Then, the distances are united as the
measurement signal and sent to the EFIR filter, which is run
by a computer to estimate the human position.

FIGURE 1. A detailed structure of the human localization system using
UWB-based measurements.

A. STATE-SPACE MODEL WITH NO DELAY
If the transmission of measured data is provided with no
delay, the human state equation can be written at time

index k as
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where ntd means a model with no delay; T is the sampling
time; PE,k and PN ,k are the human position in the east
and north directions, respectively; VE,k and VN ,k are the
human velocity in the east and north directions, respectively;
and wntd

k is white Gaussian noise with zero mean and the
covariance Qntd

k .
With no data delays, the observation equation representing

measurements with fused data (Fig. 1) can be written as
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where P(i)
E,k and P(i)

N ,k (i = 1, 2, 3, 4) are the RN positions
in the east and north directions at time index k , respec-
tively; PE,k and PN ,k are the positions derived from UWB
in the east and north directions, respectively; di,k (i =
1, 2, 3, 4) is the distance between ith RN and BN; and
vntdk is white Gaussian noise with zero mean and the
covariance Rntd

k .

B. STATE-SPACE MODEL WITH TIME-DELAYED DATA
In the UWB-based positioning system, time delays may be
caused by the finite-time data transmission from the sensor
to the receiver. For the time-delayed data, we employ the
method of state augmentation to combine the delayed and not
delayed states. In our particular situation, the measurement is
observed with a delay on one time-step. Therefore, the state
equation for the UWB-based human localization system can
be written as[

xntdk
xntdk−1

]
︸ ︷︷ ︸
xtdk|k−1

=

[
Fntdk−1 0
I 0

]
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[
xntdk−1
xntdk−2

]
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xtdk−1

+wtd
k−1, (3)

where td means ‘‘time-delay’’ and ntd ‘‘no delay’’; the state
vector xtdk is composed by the state vectors xntdk and xntdk−1;
and wtd

k is white Gaussian noise with zero mean and the
covariance Qtd

k .
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Algorithm 1 EKF Algorithm

Data: ytdk , x
td
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td
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td
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td
k

Result: x̂tdk
1 begin
2 for k = 1 : SampleNumb do
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8 end for
9 end
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The observation equation of time-delay model can be writ-
ten as
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where vtdk is white Gaussian noise with zero mean and the
covariance Rtd

k .
Given the state-space model (3) and (4), the EFIR can now

be designed to provide accurate and robust estimation of the
human coordinates as shown in Fig. 1.

III. ALGORITHMS FOR UWB-BASED HUMAN
LOCALIZATION SYSTEM
In this section, applications of the EKF and robust EFIR
algorithms will be discussed for the model (3) and (4).

A. EKF ALGORITHM
For the nonlinear observation equation (4), an application of
the EKF algorithm has no essential specifics and its pseudo
code can be listed as Algorithm 1. Note that the mapping
matrix Htd

k is Jacobian and its computation must be provided
at each time index k . Therefore, this matrix is always time-
varying. An obvious disadvantage of the EKF algorithm is

Algorithm 2 EFIR Filtering Algorithm

Data: ytdk , z
td
k , M , N

Result: x̂tdk
1 begin
2 for k = N − 1 : SampleNumb do
3 m = k − N + 1, s = m+M − 1

4 x̃tds =
{
ztds , if s < N − 1
x̂tds , if s ≥ N − 1

5 Gtd
s = I

6 for j = s+ 1 : k do
7 x̃tdj|j−1 = Ftdj x̃

td
j−1

8 Gtd
j =[
(Htd

l )
THtd

j +

(
Ftdj G

td
j−1(F

td
j )

T
)−1]−1

9 Ktd
j = Gtd

j (H
td
j )

T

10 x̃tdj = x̃tdj|j−1 +Ktd
j (y

td
j − h(x̃

td
j|j−1))

11 end for
12 x̂tdk = x̃tdk
13 end for
14 end
15 † M is the size of the error state vector
16 † N is the averaging horizon
17 † ztdk is a vector of linear measurements of xtdk
18 † Htd

k =
∂h
(
xtdk
)

∂xtdk

∣∣∣∣
x̂tdk

in the required noise covariances Qtd
k and Rtd

k , which may
not be known exactly in practice especially for time-varying
models. If so, the EKFmay essentially lose in accuracy or pre-
cision to mean that it is not a robust estimator. Under the
unknown or not well-known noise statistics, the EKF may
diverge and its performance becomes worse in the presence
of uncertainties and missing data.

B. ROBUST EFIR FILTERING ALGORITHM
A better solution can be the EFIR filter, which does not
require any information about noise and is blind on given
horizons [33]. To produce a suboptimal estimate, the aver-
aging horizon for the EFIR filter must be set optimally. Fol-
lowing [32] and based on the state-space model (3) and (4),
a pseudo code of the iterative EFIR filtering algorithm is
listed Algorithm 2. As can be seen, Algorithm 2 has two main
blocks. The first one computes the initial estimate x̃tds and
generalized noise power gain (GNPG)Gtd

s (lines 4–5), where
M is the size of the state vector. The second block updates
these values iteratively (lines 6–11) by changing an auxiliary
variable j from s+ 1 to k . The output estimate is taken when
j reaches k (line 12). The bias correction gain for the iterative
EFIR algorithm is computed as

Ktd
j = Gtd

j (H
td
j )

T (5)

and we notice that it is not the Kalman gain.
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FIGURE 2. The indoor floorspace experimental environment created to
test the human localization system shown in Fig. 1.

FIGURE 3. Architecture of the experimentally organized testbed for the
proposed human localization system.

IV. EXPERIMENTAL VERIFICATION
In this section, we test the proposed UWB-based indoor
human localization system operating with time-delay data
and using the EFIR filter and the EKF as main estimators.
The investigations were provided in the Machine Building of
the University of Jinan, Jinan, China. The trade-off between
the EKF-based Algorithm 1 and the EFIR-based Algorithm 2
is also investigated. Because the exact knowledge about noise
is unavailable in our experiment, we will consider two groups
of possible noise statistics.

A. PREPARATION STAGE
1) TEST ENVIRONMENT
To test the proposed human localization system and the
proposed data fusion method, the indoor environment was
created as shown in Fig. 2. In our test, four UWB RNs, one
UWBBN, a computer, and a reference systemwere organized
to interact on the indoor floorspace. Firstly, we fixed four
UWB RNs at known coordinates. The UWBBN, a computer,
and a reference system were placed on a human. Secondly,
we have planed a reference path and then ordered a human to
travel along it.

Fig.3 displays the testbed architecture used in this work.
From the figure, we can see that the testbed used in this work
includes three parts: the UWB RNs; one person with one
UWB BN and the computer; and a reference system. In this
work, we employ the DW1000-based UWB positioning

FIGURE 4. The human equipment used to test the proposed localization
system.

system. To organize the UWB RNs, we employ four UWB
RNs in the test (ID from #1 to #4). In Fig.3, we give a detailed
structure of only one UWB RN node, which includes a UWB
sender, a timer, a control processing module, and a power
supply module.

A person equipped with one UWB BN and a computer is
an important part of the testbed. Here, the UWBBNmeasures
distances from the RNs to BN and all information collected
in such a way is submitted to a computer. In order to provide
a reference value, the person carry a reference system, which
includes one encode to measure the distance from the start
point. In this experiment, the sampling time for the UWB
signal was chosen to be 0.3 s. Figure 4 displays the human
equipment used to test the localization system. Provided the
reference trajectory, we next test the human localization per-
formance using two types of estimators: EKF and EFIR.

2) TUNING EFIR FILTER
It follows that Algorithm 2 requires only the size M of
the state vector and the averaging horizon length N to start
computing and updating the estimates using ytdk . In the state-
space model (3) and (4), we have M = 8 and ytdk is provided
by the UWB-based measurements. To specify N optimally
for the reference trajectory, the best way is to consider the
estimation error covariance

Ptdk = E{(xtdk − x̂tdk )(x
td
k − x̂tdk )

T
}, (6)
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FIGURE 5. The reference planned path and trajectory derived from UWB.

TABLE 1. Absolute average localization errors, in m, produced by the
INS and UWB.

where xtdk is the reference planned path, refer to [34], and
estimate Nopt by solving the following optimization problem,

Nopt = argmin
N
{trPtdk (N )}. (7)

Referring to the state-space model (3) and (4), the trace of Ptdk
becomes

trPtdk (N ) = Ptd55k (N )+ Ptd77k (N ). (8)

Note that it needs using all xtdk to find Nopt via (7) and (8)
that faces practical issues, especially in real time system.
Thus, we set N = M + 1 = 9 as Nopt in this work.

3) SYSTEM CHARACTERISTICS
Figure 5 displays the reference trajectory used in this
work and the trajectory derived from UWB. In this test,
the UWB RNs (denote as pink circle) are fixed on the known
coordinations. Then, the person walked along the reference
path (denote as dotted line) from the start point (denote
as triangle) to end point (denote as square). The trajectory
derived from UWB is denoted by a green line.

As can be seen, the UWB is able to provide the human
position. However, the UWB solution is noisy. More details
about errors in the east and north directions is listed in Fig. 6
and Fig. 7, respectively. The absolute average localization
error produced by the UWB is shown in Tab. 1. Note that
the UWB position errors in the east and north directions are
at levels of 0.72 m and 0.19 m, respectively. The east position
error is bigger than that value in north direction.

In order to verify the performance of the proposed method,
we select two groups of feasible parameters:
Group 1: xtd0 =

[
4.78 0 16.25 0 4.78 0 16.25 0

]T ,
Qtd

= diag{ 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 }, and
Rtd
= I4×4, Ptd0 = I8×8.

FIGURE 6. The east localization errors produced by the UWB.

FIGURE 7. The north localization errors produced by the UWB.

Group 2: xtd0 =
[
4.78 0 16.25 0 4.78 0 16.25 0

]T ,
Qtd

= 10−5diag{ 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 },
Ptd0 = I8×8, and Rtd

= I4×4.
Because the coordinates of the start point are known, we set

the initial vector as xtd0 =
[
4.78 0 16.25 0 4.78 0 16.25 0

]T ,
where (4.78, 16.25) is the exact position of start point. Then,
we set the initial error covariance matrix to be identity,
P0 = I. Because exact information about noise covariances
Q and R is commonly unavailable in human localization,
we suppose that both these matrices are identities with
weights separated into Group 1 and Group 2. The EFIR filter
produces the first estimate at k = Nopt− 1 and the last one at
k = SampleNumb, where SampleNumb is the number of the
sample points.

B. LOCALIZATION ERRORS – GROUP 1
In the first experiment, we investigate the performance
obtained for the Group 1 by 1) the UWBmodel using the least
squares (LS) algorithm and 2) the UWB-based time-delay
model employing the EKF and EFIR estimators. Figure 8
shows the trajectories measured by the UWB model using
the LS algorithm and by the time-delay model employing
the EKF and EFIR estimators for the Group 1 of parameters.
From the figure, we can see that the Group 1 of the parameters
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FIGURE 8. The trajectories measured by the UWB model using the
LS algorithm and by the time-delay model employing the EKF and EFIR
estimators for the Group 1 of parameters.

FIGURE 9. The east localization errors produced by the UWB model using
the LS algorithm and by the time-delay model employing the EKF and
EFIR estimators for the Group 1 of parameters.

fits the experiment and all the estimators provide the accurate
human position well consistent with the reference path.

More details about errors in the east and north directions
can be found in Fig. 9 and Fig. 10. From these figures, one can
see that theUWB-based localization error in the east direction
is bigger than that in the north direction. In the east direction,
the UWB-based error ranges from −3 m to about 3 m. It is
also seen that the error function in the north direction is
more stable than in the east direction: it ranges from about
−1 m to 1 m. Compared with the UWB solution, both the
EKF and EFIR filter are able to reduce the localization errors
and, for this group of parameters, errors by the EKF and EFIR
estimators are closely related.

The absolute average localization errors produced by the
EKF and EFIR estimators (Group 1) are listed in Table 2.
It follows from this table that errors produced by both the
EKF and EFIR filter are smaller than in the UWB solution.
It can also be seen that the EFIR filter is more accurate in the
east direction with the error of about 0.54 m. Of importance
is that the EFIR estimator provides a very good performance
with no requirements for the noise statistics.

FIGURE 10. The north localization errors produced by the UWB model
using the LS algorithm and by the time-delay model employing the EKF
and EFIR estimators for the Group 1 of parameters.

TABLE 2. Absolute average localization errors, in m, produced by the EKF
and EFIR estimators (Group 1).

FIGURE 11. The trajectory measured by the UWB model using the LS
algorithm and by the time-delay model employing the EKF and EFIR
estimators for the Group 2 of parameters.

C. LOCALIZATION ERRORS – GROUP 2
In the second experiment, we provide the localization for
the Group 2 of parameters. Here, we set the system noise
covariance matrix Qtd to be gained by the factor of 10−5.
Figure 11 shows the trajectories measured by the UWBmodel
using the LS algorithm and estimated employing the EKF
and EFIR filter. This figure reveals that the EKF diverges
and its estimates becomes unacceptable. Based upon this
observation, we deduce that the Group 2 of parameters does
not fit the experiment. Just on the contrary, the EFIR filter
allows for the human localization with acceptable errors. That
means that the EFIR filter has much higher robustness that
the EKF.
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FIGURE 12. The east localization errors produced by the UWB model
using the LS algorithm and by the time-delay model employing the EKF
and EFIR estimators for the Group 2 of parameters.

FIGURE 13. The north localization errors produced by the UWB model
using the LS algorithm and by the time-delay model employing the EKF
and EFIR estimators for the Group 1 of parameters.

TABLE 3. Absolute average localization errors, in m, produced by the EKF
and EFIR estimators (Group 2).

The localization errors produced by the UWB, EKF,
and EFIR filter in the east and north directions are shown
in Fig. 12 and Fig. 13, respectively. It follows from Fig. 12
and Fig. 13 that the EKF becomes biased when the predicted
Qtd reduces. On the contrary, the EFIR estimator does not
demonstrate any deviation, because this filter ignores Qtd in
the algorithm. The averaged absolute localization errors pro-
duced by the EKF and EFIR estimators (Fig. 12 and Fig. 13)
are listed in Table 3. This table suggests that the EKF perfor-
mance is poor for the Group 2 of parameters, while the EFIR
filter performance is quite appropriate for the localization.

V. CONCLUSION
In this work, the UWB technology is applied to provide
indoor human localization. Because time delays often accom-
pany the measurements, we have developed the UWB-based

time-delay human localization scheme with an augmented
state vector supposing that data arrive at an estimator
with or without the one-step delay. The EKF and EFIR
filter were exploited as main estimators. The experimental
investigations have shown that when the noise statistics are
known more or less accurately (that may not be the case
in many applications), then both estimators produce similar
errors consistent to the UWB solution. Otherwise, the EKF
may diverge and its performance become very poor. On the
contrary, no such effects were observed at the EFIR filter
output. An overall conclusion is that the EFIR filter maybe
a better choice that the EKF for indoor human localization
under the real world operation conditions in not well specified
noise environments.
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