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ABSTRACT Community detection algorithms are important for determining the character statistics of
complex networks. Compared with the conventional community detection algorithms, which always focus
on undirected networks, our algorithm is concentrated on directed networks such as the WeChat moments
relationship network and the Sina Micro-Blog follower relationship network. To address disadvantages such
as lower execution efficiency and higher deviation of precision that current directed community detection
algorithms always have, we propose a new approach that is based on the triangle structure of community basis
and modeled on the local information transfer process to precisely detect communities in directed networks.
Based on the directed vector theory in probability graphs and the dynamic information transfer gain (ITG)
of vertices in directed networks, we propose the novel ITG method and the corresponding target optimal
function for evaluating the partition quality in a community detection algorithm. Then, we combine ITG
and the target function to create the new community detection algorithm ITG-directed weighted community
clustering for directed networks. With extensive experiments using artificial network data sets and large,
real-world network data sets derived from online social media, our algorithm proved to be more accurate
and faster in directed networks than several traditional, well-known community detection methods, such as
FastGN, order statistics local optimization method, and Infomap.

INDEX TERMS Community detection algorithm, information transfer gain, target function optimization,
community detection in directed network.

I. INTRODUCTION
Research into large-scale social networks is becoming
increasingly important. Due to the convenience of connection
to each other, the scale of online social networks is enlarging
at an unprecedented rate. By the end of the last day of 2015,
for example, the number of global Twitter users was more
than 500 million, including 200 million active users. WeChat
users number was more than 600 million, with 400 million
active users.

Community detection in these large-scale social networks
plays an important role in the study of topologies and the
architecture of networks. Because of the huge quantity of
vertices and edges in a large-scale network and its com-
plex structure, common traditional graph analysis approaches

cannot perform the research such as layered architecture anal-
ysis and knowledge attaining within reasonable execution
times. Therefore, the high processing efficiency and accurate
results of community detection algorithms are necessary to
detect potential community structures from the huge directed
complex network.

To solve the problem of traditional community detection
algorithms in large-scale social networks and directional
social networks such as WeChat without accurate simula-
tion models and high algorithm executing efficiency and
precision, this article starts with the triangle group, which
is the basic structure of the community and modelling on
the local impact of vertex in networks. By using directional
vector information spread, probability calculation theory
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and probability graph theory modelling those vertices with
huge influence on directed social networks, this paper con-
structs directed clustering coefficients for vertexes. We also
construct the target function for measuring the efficiency
of community detection and distributed parallel community
detection algorithm of our model for large-scale social net-
works. Ultimately, by conducting experiments on large-scale
artificial network datasets and real network datasets, the pre-
cision and novelty of our algorithm is verified.

In this paper, section 2 shows the current related work
on community detection algorithms in large-scale networks.
Section 3 introduces our ITG model in detail and the
ITG-based directed network community detection algorithm
ITG-DWCC. Section 4 shows the comparison of experimen-
tal results of the ITG-DWCC algorithm and other classical
algorithms in artificial network datasets and real-world net-
work datasets. Section 5 gives the conclusion.

II. RELATED WORK
In networks, communities are divisions composed of vertices
and edges, which are called Groups and Clusters. Commu-
nity structure has the basic characteristic that vertices in
the same community are connected closely with each other
and vertices in different communities are connected sparsely.
Furthermore, information spreads faster inside a community
than among different communities.

Based on different analysis targets, current community
detection algorithms can be divided into four groups: the
hierarchical clustering approach, the matrix spectrum anal-
ysis approach, the edge based approach, and the maximum
clique based approach [1]. Focusing on large-scale networks,
there are three categories of community detection algorithms:
the modularity value optimization based method, the random
walk based method and the overlapping community detection
based method.

A. MODULARITY VALUE OPTIMIZATION-BASED METHOD
This method attempts to bring the idea of small-scale com-
munity detection algorithms, which are based on modu-
larity optimization, into large-scale community detection.
Through the optimization of modularity, a fine-grained
community detection result is obtained. A function of mod-
ularity Q is proposed by Newman and Girvan [2], which is
defined as:

Q =
∑
r

(err − α2r ) (1)

In formula (1), err represents the total internal edge number
of community r , and αr represents the sum of internal edge
numbers and external edge numbers of the community. If we
regard a community as a sub-graph, the edge number of a
corresponding random graph model would be less than the
actual edge number. The better structure a community has,
the larger is the value of the modularity function.

These kinds of approaches are mostly optimization
methods of modularity in large-scale network

community detection. The classical representative algorithm
is FastGN. In 2004, Newman proposed an algorithm named
FastGN (FN) [3] that is based on modularity optimization in
the edge exchanging process. This algorithm makes use of
the Q value gain in each edge exchanging process among
different communities to find the optimal direction of mod-
ularity Q. However, FastGN has low efficiency when the
network scale is very large. Later, Clauset and Newman
used heap structure for improvement and proposed the
CNM algorithm [4]; its complexity is nearly linear to network
scale in large-scale networks.

In 2008, Blondel proposed a fast algorithm named
Louvain [5]. Louvain also used modularity optimization to
process network community detection. When modularity
converged to a maximum value, it would stop the detection
process. By the end of 2014, it was regarded as the fastest
algorithm in community detection in large-scale networks.
An article in WWW 2014 [6] by Arnau Prat-Pérez consid-
ered this algorithm quickly decreasing in performance when
network scale increased, which shows the algorithm needed
more study in 2014.

Another famous algorithm is the LPA (Label Propagation
Algorithm) [7] series-based large-scale community detection
algorithm. The time complexity of LPA is o(n2) where n
represents the node number of the network. Compared to
other complex machine learning algorithms, LPA has lower
complexity and better clustering efficiency. In 2007, Raghvan
improved LPA by providing the RAK algorithm [8], which
was based on community detection operation with an approx-
imate linear direct ratio when network scale increased.
Through the predefined target function, it simplifies the com-
plexity of LPA and uses network structure as a guide to detect
community structure. Its result in the Karate Club network
and the American University football network shows the
good performance of RAK. However, there are some special
drawbacks of the RAK algorithm in experiments in bench-
mark networks, and it needs improvement. In 2010, Gregory
improved RAK by providing COPRA, (Community Over-
lap PRopagation Algorithm) [9] which is an algorithm that
focuses on mining overlapping communities. In the COPRA
algorithm, every single node has a number of community
labels. Furthermore, the propagation process of COPRA
includes multi-information of community, which contributes
to the increase in execution time cost in each iteration process.
While there are lots of overlapping communities, it results in
the random selection of fault labels.

In 2011, Jin et al. [10] proposed the approximate linear
rapid LPA hereditary algorithm FNCA, which was based
on local detection optimization. This algorithm improved
the ending condition of the fifth iteration in LPA, which
saves 20% of iterations. In 2011, Cordasco and Gargano [11]
proposed the semi-synchronous LPA algorithm. It improved
execution efficiency by network vertex parallel colouring
technology with synchronous and asynchronous modelling.
It was useful for large-scale networks but limited in the
solution of modularity calculations. When the graph scale
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is quite large, it cannot find small-scale and well-defined
communities.

B. RANDOM WALK BASED METHOD
Random walk based methods have the characteristic that
information is spread easily in the internal, high-density
community. Different from modularity optimization based
methods, this type of approach focuses on the process of
information propagation or some physical element perme-
ation while it attains the community structure fast and
effectively. Some classical representative algorithms are as
follows.

In 2006, Pons proposed the random walk community
detection algorithm Walktrap [12], which was based on the
similarity of nodes in large-scale networks. By using the
definition of Euclidean distance for the distance among dif-
ferent communities, it has good time complexity; the best
time complexity is o(mn2) and the ordinary time complexity
is o(n2 log n). In 2008, Rosvall summarized the introduction
of random walk based community detection algorithms in
detail and set up a model for the probability of information
flowing in different nodes by using the information entropy
function of Information Theory and presented the Infomap
algorithm [13]. Through the comparison of the experimental
results from many large-scale scientist cooperation networks
and the LFR [14] standard dataset, the Infomap algorithm
has been proven to better perform than some overlapping
community detection algorithms.

C. OVERLAPPING COMMUNITY DETECTION METHOD
The overlapping community detection method has a different
construction than the previous algorithms. The representative
algorithms are as follows. In 2005, Palla proposed the Clique
Percolation Method algorithm (CPM) [15], which was based
on the characteristic that the edge of an internal community
has tight connections and is easy to form a clique, which
finally consists of a community.

However, the CPM algorithm is very strict with the limi-
tation of connections among cliques, which causes high time
complexity. In 2010, Ahn proposed the Link Clustering Algo-
rithm (LCA) [16] by setting up a model based on edges rather
than on nodes. In the calculating process, it used the Jaccard
coefficient to calculate the similarity of connected edges,
which makes the existence of overlapping communities nat-
ural. In 2011, Filippo presented a measuring function, which
used a Q value based significance function as the detection
object function and invented the Order Statistics Local Opti-
mization Method (OSLOM) [17]. The OSLOM algorithm
is the first algorithm for community detection in directed
weighting edge networks. LCA is also constructed based
on an optimization significance function value. In 2013,
Yang and Leskovec improved the LPA algorithm by optimiz-
ing group nodes for community attached relation target func-
tions and presented the BigClam algorithm [1]. By redefining
the overlapping community in different communities, this
algorithm produces good results in large-scale networks.

However, all the algorithms above do not focus on directed
large-scale networks for community detection and have long
execution times and low accuracy, so it is necessary to con-
struct a highly efficient algorithm to make improvements.

III. VECTOR INFLUENCE CLUSTERING-BASED DIRECTED
NETWORK COMMUNITY DETECTION ALGORITHM
In an actual social network relationship, two friends of some-
one can be friends of each other, and this attribute can be
called the clustering characteristic of networks [18]. The net-
work average clustering coefficient reflects the microscopic
clustering characteristics of a network and has become an
important index of adjacent nodes that connect closely. The
node clustering coefficient definition of a network is: In a
network with N nodes, one node i has ki edges connected to
it and other nodes, i.e., node i has ki, neighbours. If among
the ki nodes, there are Ei edges, the clustering coefficient of
node i is:

Ci =
2Ei

ki(ki − 1)
(2)

From a geometric perspective, Ci in formula (2) can be
defined equally as:

Ci =
|TriangleStructure(i)|
|TripleStructure(i)|

(3)

In formula (3), the triple is the structure that connected with
node i, includes node i itself and two other nodes, and there
exists at least two edges among node i and the other two
nodes:

The network average clustering coefficient is defined in
formula (4):

CG=(V ,ε) ≡
1
N

N∑
vi∈V ,i=1

2Ei
ki(ki − 1)

(4)

The network average clustering coefficient is used for
measuring connection density of triangle structures in the
network. While the network has a larger proportion of tri-
angle structures, these triangle structures belong to tighter
community structures in internal connections and the net-
work average clustering coefficient is larger. The cluster-
ing coefficient of the whole network has the value scope
of 0 ≤ CG=(V ,ε) ≤ 1.
In fact, in many types of social networks, the probability

that a friend of user u is a friend of friends of user u verges
to a constant as the network scale N increases [18]. When
N → ∞, CG=(V ,ε) = O(1) is converged to a nonzero
constant, which reflects the characteristic that ‘‘things of one
kind come together.’’

A. VECTOR INFLUENCE-BASED CLUSTERING
COEFFICIENT MODEL
When setting up a model for a traditional social net-
work detection algorithm, network is often processed as an
unweighted and undirected graph, ignoring the direction of
edges. However, in online social networks, edge direction
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always contains important information. Online social net-
works have the characteristic that the important nodes (such
as opinion leaders) are always information propagation origi-
nators. In this paper, based on the classic Probabilistic Graph-
ical Model (PGM) theory from the Turing Award winner
Pearl, we extract the direction of information propagation
edge between different social network nodes to a directed
vector and propose a vector influence clustering coefficient
model with both information propagation direction and infor-
mation propagation probability.

The PGM theory uses graph structure to represent the joint
probability distribution of variables. In recent years, it has
become the research hub for uncertainty reasoning solutions.
The PGM representative theory combines knowledge of prob-
ability theory and graph theory. In graph theory, the relation-
ship of random variable dependency can be represented and
provides an effective representing frame for statistical multi-
variable modelling.

The PGM theory can always be classified by two con-
ditions: (1) edge based directed or undirected attributes,
and (2) abstraction based different levels. Based on
directed or undirected attributes of edges to classify PGM,
there are three classes: (1) a directed graph model called the
Bayesian network (BN) [19], where the network structure
is a directed acyclic graph; (2) an undirected graph model
called the Markov Network (MN) [19], where the network
structure is an undirected graph; and (3)a local directedmodel
including both directed edges and undirected edges, that is
composed of a Conditional Random Field (CRF) and a Chain
Graph (CG). Based on the different levels of abstraction,
there are two classified classes: (1) a random variable based
probability graph model such as BN, MN, CRF and CG,
and (2) a template based probability graph model.

Through analysis and comparison, we are sure that in
the social network nodes studied in this paper, the infor-
mation propagation probability has close relationship with
directed edge relationships and the specific propagation
approach. We chose the random variable probability based
Bayes information propagation network to set up our model.

First, from the traditional undirected clustering coeffi-
cient diagram in Figure 1-(a) and 1-(b), we can deduce the
edge information propagation probability and direction. In an
actual directed social network, the vector influence clustering
coefficient should be deduced from Figure 2.

FIGURE 1. Two triple forms of vertex i in undirected graph.

We suppose that when all edges in Figure 2-(a) and 2-(b)
are bidirectional, they can be equal to Figure 1-(a) and 1-(b)
respectively. When all the edges are bidirectional,

FIGURE 2. Two triple forms of vertex i in directed graph.

the information transfer gain path (ITGP) of all the edges is
equivalent to that of an undirected network. Tracing back to
formula (2), we can split the information contribution (IC) of
each edge in the actual existing Ei edges among ki nodes.

For Figure 2-(a), because there are no edges to connect
node j and k , it is a simple situation to analyse. We assume
the ITG (information transfer gain) of node i to node j and k ,
which can be defined in formula (5-1):

ITGi = α × ITGi↔j + β × ITGi↔k (5)

ITGi↔j =

{
δi→j × ITGi→j + δi←j × ITGi←j, δi→j 6= 0
θi→j × δi←j × ITGi←j, δi→j = 0

(5-1)

ITGi↔k =

{
δi→k×ITGi→k + δi←k×ITGi←k , δi→k 6= 0
θi→k × δi←k × ITGi←k , δi→k = 0

(5-2)

In the above formula, α is the probability coefficient of
ITGi↔j, while β is the probability coefficient of ITGi↔k .
ITGi, ITGi↔j and ITGi↔k are the equal bifurcation accumu-
lation parameters for ITGi. So α and β have the default equal
value of 1. δi→j, δi←j, δi→k and δi←k are the information
transfer probability parameters of i → j, i ← j, i → k and
i ← k , respectively, given that the default equals a value
of 0.5. θi→j and θi→k are the reserve information transfer
gain probabilities while calculating the directed information
transfer gain clustering coefficient of node i in Figure 2, just
like the following relationship in Sina Micro-Blog, Facebook
and Twitter. For the calculation of ITGi↔j and ITGi↔k in
formula (5-1) and (5-2), while there is no edge i→ j, δi→j’s
value is zero which means that j is not a fan of i (i.e., j has
no permission to view and share the WeChat moment status
of node i). In addition, information cannot be transferred
from i to j(i→ j), but there may exist the reserve transferred
information from j to i (i ← j), since we are calculating
the directed information transfer gain clustering coefficient
of vertex i, which is the information transferring source.
Compared with the i→ j, this direction of i← j is a reserve
ITG, so we define θi→j = 0.5 to represent this case with 50%
probability.

For example, in Figure 2-(b), the information transfer gain
path (ITGP) is defined as the information starting from node
i, going through the path of i − j and i − k − j to give infor-
mation gain to node j. Based on the probability graph theory
model, we can calculate the Bayesian network probability by

VOLUME 5, 2017 17109



X. Deng et al.: Efficient Vector Influence Clustering Coefficient-Based Directed Community Detection Method

abstracting a directed no-loop graph into a Bayesian network.
The vertices in the Bayesian network stand for random vari-
ables, while edges stand for the probability relation between
random variables. Therefore, the joint probability distribution
can be represented by the Bayes Chain Rule in formula (6):

P(X1,X2, . . . ,Xn) =
∏

i
P(Xi|ParG(Xi)) (6)

In formula (6),ParG(Xi) is the corresponding random variable
of the parent node of node Xi in Graph G. In the directed net-
work, which we study in this paper, the information influence
of a source node on the other nodes brought by the directed
transmission of information will also influence the forming of
the corresponding community structure. Because of the fact
that in real social networks, fans are always gathering around
an opinion leader to generate community structure, this phe-
nomenon can influence the information transfer model in the
whole network. For Figure 2-(a), we can suppose that node i is
the information transferring source for nodes j and k . Based
on the probability graph theory, the change of information
transferring probability in each edge reflects the information
transfer gain received by the end nodes.

According to the above definition of ITGP, we get the
formula of ITGP in Figure 2-(b):∑

ITGi↔j = ITGi↔j + ITGi↔k↔j

= ITGi↔j + ITGi↔k × ITGk↔j (7)

Based on the directivity of ITG and formula (5-1), we can
divide ITGi↔j such that the formula is ITGi↔j = δi→j ×

ITGi→j + δi←j × ITGi←j. Similarly, by symmetry, the sum
of

∑
ITGi↔k can be found in formula (8):∑

ITGi↔k = ITGi↔k + ITGi↔j↔k

= ITGi↔k + ITGi↔j × ITGj↔k (8)

We can also divide ITGi↔k in formula (8) to ITGi↔k =

δi→k × ITGi→k + δi←k × ITGi←k . Due to the symmetry of
transmission between different nodes, We can suppose the
value of ITGi→k and ITGi←k is the default unit quantity ‘‘1,’’
while the default value of δi→k and δi←k is 0.5. When there
are bidirectional ITG edges between node i and node k , we get
ITGi↔k = 0.5× 1+ 0.5× 1 = 1. By symmetry, we get that
while there are bidirectional ITG edges between node i and j,
ITGi↔j = 0.5× 1+ 0.5× 1 = 1.
By setting up the information transfer gain path (ITGP)

model of the situation in Figure 2-(a) and Figure 2-(b),
we get 9 different ITG sub-figures for Figure 2-(a)
in Figure 3 and 27 different ITG sub-figures of Figure 2-(b)
(i.e., Figures 4 and 5).

According to formula (5-1), (5-1), (5-2), we calculate the
corresponding ITG results in Table 1:

The corresponding ITGi value of each figure can represent
the weight in each type of directed triple. By the statistics
of all directed triple types in the graph and the summation
by weight, we can calculate all the weight distributions of
directed triples in the directed graphs in Table 2 and Table 3.

FIGURE 3. Vertex i based directed triples (all sub-graphs of Figure 2-a).

TABLE 1. All ITG results of sub-graphs in Figure 3.

TABLE 2. Permutation and combination of 27 conditions.

Similarly, by extending the method to ITG calculation of
triangles, we obtain 27 different ITG figures in Figure 4 and
Figure 5. Using Figure 4-(a) as an example, node i, node j
and node k are all connected with bidirectional edges, while
all the edges had been defined as 1 previously. The ITG sum
of node i and k consists of single directional ITG of node i
and node j and the relayed ITG from k to j starting from i.
We see in formula (9) that:∑

ITGi↔j = ITGi↔j + ITGi↔k↔j

= ITGi↔j + ITGi↔k + ITGk↔j (9)
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TABLE 3. All ITG results of sub graphs in Figure 4 and Figure 5.

Additionally, we obtain the summation of ITG between
node i and node k:∑

ITGi↔k = ITGi↔k + ITGi↔j + ITGj↔k (10)

Now, ITG of node i is the summation of ITG from node i to
the other two nodes. We calculate the ITG of the 27 different
figures in Table 2 from Figure 4 and Figure 5:

Because there are three possible directional statuses
for each edge in Figures 2-(a) and 2-(b), the adjacent
edge of node i has three different definitions, which are
friends (i↔ j), following (i → j) and fan (i ← j). At the
same time, the opposite edge i ↔ k of node i also has three
definitions. Furthermore, the edge j ↔ k has three types
of relationships, which are node j and node k are friends,

node j follows node k and node k follows node j. We can
use 0, 1, 2 to stand for the relationships and substitute the
three different definitions, and we obtain the following 27
arrangements in Table 3, in which the same coloured grid
stands for the symmetric figures in Figure 4 and Figure 5:

In the above 27 arrangement cases, because node i is the
source node, we can find some symmetry results. For exam-
ple, Figures 4-(b) and 4-(c) are symmetry results. In Table 3,
we use the same colour blocks as the symmetry results, and
finally we can get 15 independent results; we separated the
sub-graphs into Figure 4 and Figure 5.

The information transfer gain clustering coefficient
(ITGC) of node i in a directed network can be summed by
the 15 different independent results in Table 3 in formula (11)
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FIGURE 4. Vertex i based the first fifteen triangle sub-graphs.

as follows:

ITGCi =

15∑
t=1

ITGi_triangle(t)× Number(t)

6∑
t ′=1

ITGi_triple(t ′)× Number(t ′)

(11)

ITGCi is the ITG value of node i in a directed network.
15∑
t=1

ITGi_triangle(t) × Number(t) is the weighted number of

triangles which use node i as the top vertex (i.e., the infor-
mation transfer source node), and its weight is the ITG
(information transfer gain) contribution ITGi_triangle(t) from
the 15 different types of weighted triangles multiplied by its

counted number Number(t).
6∑

t ′=1
ITGi_triple(t ′) × Number(t ′)

is the weighted number of the triples using node i as the top
vertex; its weight is the weighted sum of the six ITGi_triple(t ′)
values of different types of triples multiplied by its counted
number Number(t ′). Similar to undirected clustering coef-
ficients, ITGC has the same characteristic, measuring the
tightness of the graph to form tight communities.

FIGURE 5. Vertex i based the last twelve triangle sub-graphs.

B. DIRECTED TARGET FUNCTION CONSTRUCTION
AND IMPROVEMENT
We constructed the target function of the vector influence
clustering coefficient model. Our model is based on the defi-
nition of the weighted community clustering function (WCC)
from Prat-Pérez et al. [6]. We focused on the properties of the
directed graph andmade some directional improvement to the
model, defining the new target function as DirectedWeighted
Community Clustering (DWCC). When defining DWCC’s
relationship of a vertex to its community, we definedwt(x,C)
as the weighted triangle number formed by vertex x within
community C . In addition, we defined wvt(x,C) as the
weighted neighbour node number, which can form triangles
by x within community C .
The weighted triangle number wt(x,C) means that based

on the focus vertex x, the formed triangle numbers with the
definition of ITG can be recorded as a weighted triangle.
At the same time, the weighted node number means that
the useful and valid node numbers are recorded as weighted
nodes in definition of ITG around the focus source vertex x.
Based on optimized iteration of the target function of

Arnau Prat-Pérez, the partition refinement step was related
to three functions of possible increase of WCC and their
similarity, which means that the three different functions
can be converted to the united calculation process of WCCI .
In the process of directional improvement, we also need the
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estimation of DWCCI to reduce time complexity of our algo-
rithm, which can be found in the following formula (12):

DWCC ′I (v,C) = DWCC(P′)− DWCC(P)

=
1
V
· (din ·21 + (r − din) ·22 +23)

(12)

In formula (12) [6], (12-1)–(12-4), as shown at the bottom
of this page.

We made some directional improvements to the sta-
tistical parameters in formula (12) which can be found
in Table 4 because we are handling directed networks.

TABLE 4. Statistical value meaning in DWCCI estimation.

With the stable values of parameters provided, the cal-
culation of formula (12) has constant time complexity. The
updating process of calculated ITG values of each node and
DWCCI only occurs when the structure of a community has
been changed. After experiments, the whole time complexity
of our algorithm in the entire graph is O(nm), where m is the
number of times a community structures changes.

C. ITERATION PROCESS IMPROVEMENT AND
ITERATION STOP CONDITION
After finishing the directional improvement above and the
construction of DWCCI , we can implement the vector influ-
ence based clustering coefficient community detection model
by the SCD (Scalable Community Detection) algorithm
framework of Arnau Prat-Pérez.

In the initial partition step, we replace the clustering coef-
ficient with the ITG coefficient for the directed graph as the
referenced calculation value in the ranking step.

FIGURE 6. Algorithm framework of partition refinement.

In the partition refinement step, we found that the greed
of the original algorithm cannot be ignored where the struc-
ture of the original algorithm cannot converge efficiently.
We improve the structure of iteration in our algorithm by
adding the flag bit flag to label the current iteration, which
has reached the maximumDWCC updating limit value or not.

By obtaining the maximum value of DWCC , we simulate
the progress to reach the local optimum solution, which can
be found in Figure 6. According to the experimental process,
we have set up the iteration stop condition to meet one of the
following two conditions:
• There are still updates of maximum DWCCI but the
update proportion of DWCCI value is no less than the
threshold t;

• There is no update of maximum DWCCI and the itera-
tion has been processed 20 times.

21 =
((r − 1)δ + 1+ q)(din − 1)δ

(r + q)((r − 1)(r − 2)δ3 + (din − 1)δ + q(q− 1)δω + q(q+ 1)ω + doutω)
(12-1)

22 = −
(r − 1)(r − 2)δ3

(r − 1)(r − 2)δ3 + q(q− 1)ω + q(r − 1)δω
·

(r + 1)δ + q
(r + q)(r − 1+ q)

(12-2)

23 =
din(din − 1)δ

din(din − 1)δ + dout (dout − 1)ω + doutdinω
·
din + dout
r + dout

(12-3)

q = (b− din)/r (12-4)
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TABLE 5. Dataset attributes.

To our surprise, it was proven by the experimental process
that our iteration stop conditions can remove the algorithm
running situation of ‘‘trapping in local optimum solution’’ to a
certain extent and that these conditions do not consume much
execution time or increase the time of iterations.

IV. DATASET AND RESULT ANALYSIS
A. EXPERIMENTAL ENVIRONMENT
The CPU frequency of Master node is Intel(R) Xeon(R) CPU
E5-2440 v2 @1.90 GHz. Memory is 16 GB with 4 TB hard
disk. JDK version is 1.8.0 131.

B. EXPERIMENT RESULTS
Four representative datasets were selected to evaluate our
algorithm: an artificial simulation dataset, two classic
datasets in community detection and a real world dataset for
connected closely crowd calling record in a city of China.
Dataset 1: an artificial dataset generated by three commu-

nities randomly. We generated it by forming an edge in the
community with probability 0.5 and forming an edge between
communities with probability 0.25.
Dataset 2: an OSLOM dataset, provided by opening

the classical source algorithm OSLOM as an example
dataset [17].
Dataset 3: a subject reference dataset, provided by the

Infomap algorithm as a subject reference dataset [13].
Dataset 4: a real-world mobile calling dataset from one

Chinese city’s cell phone calling records in one month
(see Table 5).

In this article, we compare the performance of our
ITG-DWCC algorithm with the following classical directed
community detection algorithms:
• FastGN: provided by Newman, which is the classical
fast community detection algorithm [3]

• OSLOM: provided by Lancichinetti et al. [17]
• Infomap: provided by Rosvall and Bergstrom [13].

We use the following comparison indicators to analyse differ-
ent algorithms that are often adopted by some authoritative
researchers [3] in this area:
• Community Number: the number of communities after
community detection,

• Directed Modularity: the calculation of a directed
graph’s modularity [20],

Q =
1
m

∑
i,j

[Aij −
kouti k inj
m

] · δ(ci, cj) (13)

• Jaccard: the calculation of result precision. Its definition
formula uses authoritative result and the intersection of
algorithm result of set over union of set [21],

TABLE 6. Community number.

TABLE 7. Directed modularity.

TABLE 8. Jaccard.

TABLE 9. F-1.

• F-measure: the measure of the result of the algorithm; in
our experiment, we use F-1 standard [21].

To avoid random deviations, we executed the following algo-
rithms 10 times each and obtained the experimental results
presented in Tables 6–9:

The experimental results indicate that for the above
datasets, compared with other algorithms, the ITG-DWCC
algorithm reached precision in an accepted scale. In some
cases, the ITG-DWCC algorithm performed better than tra-
ditional community detection algorithms. In Table 6, we find
that for the OSLOM and Calling record datasets, the Commu-
nity Number of ITG-DWCC is more accurate than that of the
FastGN and OSLOM algorithms. In addition, in Table 7, for
the Subject reference dataset, ITG-DWCC has much better
Directed Modularity values (see Table 8).

In terms of scalability, because the step of calculating the
best movement can be deployed in a distributed environ-
ment, our ITG-DWCC algorithm has an advantage for large-
scale networks of parallel computing, which can be used for
efficient community detection on large-scale directed net-
works. To test the parallel performance of our Distributed
ITG algorithm (DITG-DWCC), we used some real directed
large calling record networks from a calling graph in a city of
China; it can be found in Table 10. The experimental results
of DITG compared to other classical directed community
detection algorithms are presented in Table 11.

For the experiment whose results are presented in Table 11,
we used the following parallel computing environment to test
the performance of DITG-DWCC: eight slave nodes were
used in deployment with Spark version 2.1.0. and Hadoop
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TABLE 10. Large directed network datasets.

TABLE 11. Time consumed using 8 nodes (seconds).

version 2.7.3 on each node. The CPU of Slave nodes were
Intel(R) Xeon(R) CPU E5-2440 v2@1.90 GHz. Their mem-
ories are 16 GB each.

Table 10 shows that with the scale growth of the dataset,
our DITG algorithm has very good distributed performance in
handling large-scale directed networks, better than FastGN,
OSLOM and Infomap in terms of time consumed.

V. CONCLUSIONS
First, this paper put a classic probability graph and clustering
coefficient together and proposed a new vector influence-
based clustering coefficient ITG for measuring directed
graphs. Then, we combined the definition of target function
iterative optimization of DWCC with directed modularity in
the community detection of directed networks. In the itera-
tions, due to the independent optimal movement calculation,
we can perform a paralleling operation in the most time-
consuming step.

With extensive experiments in artificial network datasets
and real-world, large network datasets derived from online
social media, it has been proved that our algorithm is more
accurate and faster than several traditional and well known
community detection methods such as FastGN, OSLOM and
Infomap in directed networks. Our ITG-DWCCalgorithm has
acceptable precision and has obvious advantages regarding
time complexity.

Our follow-up research will include: (1) optimizing the
stop condition in the iterations to fetch up the greediness
of the algorithm, (2) implementing efficiency of our parallel
algorithm and experimenting in a distributed environment,
and (3) integrating our algorithm to form a visualization
analysis software application.
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