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ABSTRACT Caching on the edge has been recognized as an effective solution to tackle the backhaul
constraint of network densification. However, most related works ignored user mobility in wireless networks,
which is unreasonable under the background of network densification. For a more flexible and context-aware
caching decision, the concept of caching on the edge can be extended to mobile edge computing (MEC)
that enables computation and storage resources at mobile edge networks. With MEC servers deployed on
base stations, a huge amount of collected radio access network context data can be analyzed and utilized to
render a caching scheme adaptive to user’s context-aware information. In this regard, a novel mobility-aware
coded probabilistic caching scheme is proposed for MEC-enabled small cell networks (SCNs). Different
from previous mobility-aware caching schemes, user mobility and distributed storage are incorporated
into a conventional probabilistic caching scheme, with the aim of throughput maximization. Based on
stochastic geometry theory and a modified mobility model of discrete random jumps, the explicit expression
of throughput is derived. Due to the complexity of the expression, two light-weight heuristic algorithms
are provided to numerically obtain the optimal solutions. Moreover, a significant trade-off among the
gains of mobility diversity, content diversity, and channel selection diversity is discussed, and we further
numerically analyze how such a trade-off is influenced by user mobility, content popularity, and backhaul
capacity, with some fundamental insights into the application of the proposed scheme in MEC-enabled
SCNs. The superiority of our proposed scheme is demonstrated by the comparisons with the classical M
most popular caching scheme and the conventional probabilistic caching scheme. Numerical results show
that our proposed caching scheme achieves higher throughput than those of the other two, especially when
users of intense mobility request contents, of which the popularity profile is not skewed, in MEC-enabled
SCNs with poor backhaul capacity, indicating that the proposed caching scheme is a promising solution for
network densification.

INDEX TERMS Mobility, mobile edge computing, coded caching, probabilistic caching, throughput,
stochastic geometry, trade-off.

I. INTRODUCTION
In recent years, with the development and proliferation of
mobile devices, we can see an unprecedented global growth
of mobile data traffic (reached 7.2 exabytes per month
in 2016) [1]. Additionally, it is predicted by [1] that the overall
mobile data traffic will grow to 49 exabytes per month by
2021, over three-fourths of whichwill be video. Network den-
sification is an efficient way to mitigate the aforementioned
problem mainly caused by video streaming. With more small
base stations (SBSs) installed, pico and femto-cell networks

enable a higher capacity of wireless cellular networks [2].
However, the performance of such an approach is under the
constraint of the limited capability of backhaul links, which
becomes the bottleneck of network densification [3].

Caching on the mobile edge networks has been
widely recognized as an economical solution to tackle
the aforementioned performance bottleneck of network
densification [4], [5]. Equipped with low-cost storage, SBSs
can serve mobile subscribers without backhaul conges-
tion if the requested contents are already cached locally,
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which improves the network performance (e.g., throughput,
delay, energy efficiency, etc.) of cache-enabled mobile edge
networks [6], [9]. Motivated by this, caching schemes have
been widely studied in the scenario of network densification.
The authors of [6]–[9] proposed their caching schemes for
SBSs, while [10] and [11] studied caching schemes applied to
device-to-device (D2D) system. Although these recent works
have provided valuable insights into caching decisions in
cellular networks and D2D systems, they all assumed that
users are fixed nodes in wireless networks, i.e., user mobility
is ignored. Obviously, such an assumption is unreasonable
under the background of network densification, where SCs
are densely deployed and a moving user may thus be served
by quite a few SBSs in a short period of time [15].

In order to achieve a higher network performance and
better users’ quality-of-experience (QoE), the concept of
MEC can be utilized to provide a more flexible and context-
aware caching decision [12], [13]. Combining computing
and caching resources, the MEC servers deployed on BSs
are able to analyze and utilize the huge amount of collected
RAN context data (e.g., user’s location, content popularity
and cell sojourn time, etc.) to render amobility-aware caching
scheme [18]. As an intrinsic feature of wireless communica-
tion systems, user’s mobility pattern has been studied since
last century [14], while mobility-aware caching schemes
are just studied in recent years. In [15]–[17], optimal stor-
age allocations are proposed considering location transitions
of users (e.g., the discrete-time Markov model in [15]) to
achieve a higher caching utility [16], throughput [17] and
the probability of successful file delivery [15]. However,
the intensity of user mobility (e.g., velocity and cell sojourn
time) can not be well captured through these location-based
models that focus on the user trajectory assumed to be known
a prior. Different from location-based models, the authors
of [18] and [19] proposed their caching schemes on the
basis of inter-contact models that characterize mobility by
the length of contact time, which makes it tractable to ana-
lyze the impact of mobility intensity on the performance
of mobility-aware caching schemes. Generally speaking,
analyzing and exploiting the mobility pattern of users,
mobility-aware caching schemes achieve higher performance
than those of conventional caching schemes (e.g., MPC
scheme) [16], [20].

As a data transmission may just continue in a short time
period of some minutes in ultra-dense cellular networks [15],
a user may possibly download a small portion of the requested
file while passing by a BS [20]. Motivated by this, mobility-
aware coded caching schemes (i.e., segments of encoded ver-
sions of the original file are cached in a distributed manner)
are introduced in [15] and [20]. Furthermore, it is numerically
demonstrated by [20] that coded caching schemes outperform
the uncoded ones. Although [20] has listed some potential
factors that affect the performance of a mobility-aware coded
caching scheme, e.g., transmission rate, user’s sojourn time
and the proportion of a coded file cached at BSs, there is
a lack of numerical results to analyze how these and other

factors influence a mobility-aware coded caching scheme
and its performance. Moreover, little work has been done
on the mobility-aware coded caching scheme, with the aim
of throughput optimization. To the best of our knowledge,
this paper is the first work to propose a mobility-aware
coded probabilistic caching scheme, aiming to maximize the
throughput of ultra-dense cellular networks.

In this paper, we consider a one-tiered SCN equipped with
MEC servers for video delivery, where user’s mobility feature
and content popularity distribution are exploited to render
a more context-aware caching decision than that of [7]–[9].
Taking full account of user mobility, content diversity [7] and
channel selection diversity [8], we propose a novel mobility-
aware coded probabilistic caching scheme with the aim of
throughputmaximization. Based on the discrete random jump
model introduced in [21], we modify the mobility model
in terms of sojourn time modeling and define an additional
novel model for throughput derivation. Although the explicit
expression of throughput is derived, it is hard to further obtain
the closed-form optimal solutions due to the complexity of
the expression. Hence, two light-weight heuristic algorithms
are provided to numerically obtain the optimal solutions.
Furthermore, a significant trade-off is derived and we analyze
how user mobility, content popularity and backhaul capacity
affect the trade-off. Finally, the superiority of our scheme is
shown through the comparisons with MPC scheme [9] and
probabilistic caching scheme [8]. The main contributions of
this paper are summarized as follows:
• We propose a novel mobility-aware coded probabilistic

caching scheme for MEC-enabled SCNs, with the aim
of throughput maximization.

• For the derivation of throughput, we define a novel
model that captures the fundamental coupling between
the intensity of mobility and the amount of remaining
data of a requested file.

• The explicit expression of throughput is derived and
two light-weight heuristic algorithms are provided to
numerically obtain the optimal solutions.

• We numerically analyze how user mobility, file pop-
ularity and backhaul capacity affect the parameters of
our proposed caching scheme, which accounts for the
allocation of the gains of mobility diversity, content
diversity and channel selection diversity. Comparisons
among MPC scheme, probabilistic caching scheme, and
the proposed scheme are made to demonstrate that our
proposed scheme can be a promising solution to address
the challenges of network densification, followed by
some fundamental insights into the application of our
proposed caching scheme in MEC-enabled SCNs.

The remainder of this paper is organized as follows.
Section II describes the system model, including network
model and mobility model. In Section III, we introduce
the proposed mobility-aware coded probabilistic caching
scheme and derive the explicit expression of throughput.
In Section IV, the investigated problem is formulated, with
the numerical solutions obtained through two light-weight
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heuristic algorithms. In Section V, numerical results are illus-
trated and discussed from various aspects, with performance
comparisons among three kinds of caching schemes and some
fundamental insights. Finally, conclusions are summarized
in Section VI.

II. SYSTEM MODEL
In this section, we first introduce the network model, includ-
ing deployment model, file popularity model, and channel
model. Then the mobility model consisting of two parts is
introduced, one of which is to characterize user mobility and
the other is a novel model for throughput derivation.

FIGURE 1. An illustration of a one-tiered SCN, where stochastically
deployed SBSs are equipped with MEC servers.

A. NETWORK MODEL
1) DEPLOYMENT MODEL
As most of the mobile data traffic is generated by Video-on-
Demand (VoD) services [1], we consider a one-tiered SCN
for video delivery, where each SBS is equipped with a MEC
server of which the storage capacity is C. As shown in Fig. 1,
SBSs with low-bandwidth backhaul links are densely
and stochastically deployed. Based on stochastic geometry
theory, SBSs are modeled as independent homogeneous Pois-
son point process (PPP) denoted by8s, with the correspond-
ing density of λs. Without loss of generality, the bandwidth of
all the backhaul links are limited to W0, while the downlink
bandwidthWs is relatively high (i.e.,W0 < Ws). We can thus
derive the following equation:

W0 = θWs, (1)

where 0 < θ < 1 indicates the capacity of backhaul links.
A small θ means relative poor backhaul capacity, and vice
versa. We henceforth call θ as the backhaul capability
coefficient.
In order to support real-time High-Definition (HD) video

streaming services, all the SBSs are working at the same
target downlink spectral efficiency, denoted by ρ. Hence,
the downlink transmission rate Rs and the guaranteed trans-
mission rate R0 are:

Rs = ρWs, (2)

R0 = ρW0. (3)

2) FILE POPULARITY MODEL
The content library consists of F video files, each of which
is of the same size L. As it has been shown in [22] that
video access pattern in the Internet follows Zipf’s law, we also
adopt the Zipf distribution tomodel file popularity. Arranging
videos in descending order of popularity, we denote the set of
video indices by F = {1, 2, . . . ,F}. The popularity of the
i-th ranked video is:

fi =
1/iγ∑F
j=1 1/jγ

, ∀i ∈F , (4)

where the parameter γ controls the skewness of file
popularity.

3) CHANNEL MODEL
We assume that the transmission power of SBSs is kept
constant, denoted by Pt . The standard path loss propagation
model is used with path loss exponent α > 2. According
to [8], given the distance between the reference user and SBS
x, denoted by rx , the signal power received from SBS x is:

Px = Pt |hx |2rx−α, (5)

where hx denotes the Rayleigh fading coefficient. In addition,
we assume that a frequency reuse strategy is carefully planned
among SBSs, as shown in Fig. 1. Hence, the interfering SBSs
are far away from the serving SBS and negligible [8].

B. MOBILITY MODEL
As shown in Fig. 1, user mobility is modeled by discrete
random jumps [21], with the corresponding intensity charac-
terized by average sojourn time between jumps. In terms of
the distribution of sojourn time, it is reasonable to model it by
an exponential function [19], [23], [24]. Therefore, the proba-
bility density function (PDF) of sojourn time, denoted by p(t),
can be written as follows:

p(t) =
1
τ
e−

t
τ , t ≥ 0, (6)

where τ is the average sojourn time, which accounts for
mobility intensity. A small τ indicates intense mobility (i.e.,
frequent jumps), and vice versa. In reality, the value of τ
can be obtained, with the help of MEC server, by analyzing
the huge amount of collected Radio Access Network (RAN)
context data through machine learning tools.

We assume that users will continue requesting another
video after watching the present video and SBSs serve
their users in a round-robin fashion, i.e. a SBS will serve
another user when the current file transmission is fulfilled.
Considering that the amount of downloaded data is limited
by transmission rate and sojourn time [20], a mobile user
could only receive a portion of the requested video from a
SBS between jumps, as shown in Fig. 1 where the progress
bar of a downloaded video gradually grows as the user moves.
Let l indicates the remaining data of a requested video at
the jumping moment. Consider a general scenario where it
takes k jumps for a user to download a video, obviously l
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will initially be L when a user starts requesting a video, and
then decreases to L −

∑j
i=1 di at the j-th (0 ≤ j ≤ k)

jumping moment where di indicates the amount of data
received between the (i-1)-th and the i-th jump. Finally, l will
end at 0 at the k-th jumping moment, and we henceforth refer
to the aforementioned process (i.e., l decrease from L to 0)
as an entire download period. As it is hard to analyze such
a complicated scenario, we thus provide a novel model to
capture the fundamental coupling between mobility intensity
τ and the remaining data of a requested video l. The PDF of
l is modeled as follows:

p(l) =
e
δ τT0

l
L∫ L

0 e
δ τT0

l
L dl

, 0 ≤ l ≤ L, (7)

where δ > 0 is a constant determined empirically, controlling
the sensitivity of p(l) to mobility intensity, and T0 = L/Rs is a
criterion defined to scale mobility intensity from a statistical
perspective. The rationality of the definition will be discussed
in Section III-B. Based on the criterion, user mobility with
average sojourn time τ ≤ T0 is thought to be intense, and vice
versa. Especially when τ � T0 (i.e., τ

T0
≈ 0), it is obvious

that a user can just only download a small portion of the
requested video file between jumps and thus l can be an
arbitrary value between 0 and Lwith equal possibility at each
jumping moment, which indicates a uniform distribution of
l (i.e., p(l) = 1

L ). The other extreme case is τ � T0 (i.e.,
τ
T0
� 1), where users will keep contact with the same SBSs

for a long time (i.e., user mobility can be ignored in this case).
Therefore, users can be treated as fixed nodes, which means
the remaining data of each coming request always starts at
L (i.e., p(L) ≈ 1). Obviously, (7) can well characterize the
two aforementioned extreme cases. Moreover, it captures
the fundamental variation trend between the two cases as τ
varies, with δ adjusting the variation sensitivity.

III. PROPOSED CACHING SCHEME AND
THROUGHPUT ANALYSIS
A. MOBILITY-AWARE CODED PROBABILISTIC
CACHING SCHEME
Our proposed scheme is built on the probabilistic caching
scheme in [8], integrated with mobility awareness and dis-
tributed storage. Ranked in descending order of popularity,
M (0 ≤ M ≤ F) top of all F video files, denoted by 9M

F ,
are coded and cached in a probabilistic and distributed man-
ner over SBSs. Specifically, for each video i ∈ 9M

F , SBSs
independently store the same amount of coded data of video
i with the same possibility p (0 ≤ p ≤ 1). By appropriately
coding (e.g., MDS code), the coded data of a video cached in
SBSs is unique, and a requested video file can be successfully
recovered whenever the total amount of downloaded coded
data is at least the size of that video [25]. Let m (0 ≤ m ≤ 1)
indicates the fraction of coded data of video i ∈ 9M

F to video
size L. In other words, mL coded data of video i ∈ 9M

F is
cached in SBSs with possibility of p. Therefore, a specific
caching decision is jointly determined by the m, M and p,

which are the parameters of our proposed caching scheme.
Assuming that the storage of each SBS is fully utilized,
the following equation and inequality are thus derived:

MmpL = C, (8)

F0 ≤ M ≤ F, (9)

where F0 = C/L is the lower bound of the integer variable
M, which is derived by substitutingm = 1 and p = 1 into (8).
Arranging videos in descending order of popularity, letM =
{1, 2, . . . ,M} indicates the file indices of9M

F , and we derive
the probability of requesting the cached videos:

Phit =
∑
i∈M

fi, (10)

where fi is derived in (4).

B. THROUGHPUT ANALYSIS
We denote the SBSs caching coded data of video i as 8i.
For i ∈M, as SBSs are modeled by PPP with density λs,
the locations of 8i also follow PPP distribution, with den-
sity λi= pλs. To achieve a high transmission rate, the user
requesting video i will first attempt to download local coded
data from the SBS that offers the strongest received power
in 8i. The received power is:

Pr = max
x∈8i

Px , (11)

where the Px is the signal power received from SBS x derived
in (5). As a frequency reuse strategy is carefully applied,
the impact of interference is thus negligible. The correspond-
ing downlink spectral efficiency is thus derived as follows:

η = log2 (1+
Pr
σ 2 ), (12)

where σ 2 denotes the noise power variance. A user can suc-
cessfully connect to a SBS only when the downlink spectral
efficiency at least meets the target (i.e., η ≥ ρ). According
to the Theorem 1 derived in [8], for i ∈ M, the probability
that a user requesting video i successfully accesses coded data
from 8i, with target downlink spectral efficiency ρ is:

Pc = 1− e
−kpλs(

Pt
σ2(2ρ−1)

)2/α

= 1− e−kpλs(
ξ

2ρ−1 )
2/α
, (13)

where k = π
0( 2

α
+1)

0 (1) , and 0(t) =
∫
∞

0 x t−1e−x dx is the
gamma function. ξ = Pt/σ 2 denotes the signal-to-noise
ratio (SNR). If the user requesting video i ∈M fails to access
any SBSs of8i, then he or shewill attempt to download coded
data from the rest of 8i, denoted by 8s\8i. As the SBSs
of 8s\8i also distribute in a PPP pattern, with the density
λ8s\8i= (1− p)λs , the corresponding coverage probability
is thus derived as follows:

P0 = 1− e−k(1−p)λs(
η

2ρ−1 )
2/α
. (14)

On the one hand, if a user requests a
video i /∈M, with the corresponding probability denoted by
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Pmiss, then the situation is relatively simple. The user will be
served if it can access a SBS of8s. As the requested video is
downloaded through backhaul, only guaranteed transmission
rate is available. The coverage possibility and the throughput
in this case, denoted by Ps and Tmiss respectively, are derived
as follows:

Ps = 1− e−kλs(
η

2ρ−1 )
2/α
, (15)

Tmiss = PmissPsR0
= (1− Phit )PsR0. (16)

On the other hand, in the case where a user requests a video
i ∈ M, the possible situations are various and complicated.
For simplicity, we assume that a user will encounter a new
SBS as it jumps (i.e, the case of returning to the prior SBS
is not considered) during each entire download period. Three
cases are concluded as follows:
Case I: If the user requesting video i has experienced

several jumps before, then the amount of remaining data for
video i recovery may become relatively small compared with
the amount of coded data stored in 8i, i.e., l ≤ mL. The
high transmission rate Rs will achieve if the user successfully
accesses a SBS of 8i while the guaranteed transmission rate
R0 will be available if the user fails to access any SBS of 8i
but successfully connects to a SBS of8s\8i. The throughput
of Case I is derived as follows:

Tcase1 = PhitP(l ≤ mL)[PcRs + (1− Pc)P0R0], (17)

where P(l ≤ mL) denotes the possibility of l ≤ mL.
Case II: We consider the case where a user requesting

video i successfully access a SBS of 8i, with l > mL. The
user will first download the coded data of video i from local
disks of MEC servers. However, as only a portion of the
coded video i is cached in a SBS of 8i, the user will have
to access the remaining coded data through backhaul if it has
downloaded mL coded data from the present serving SBS
before its next jump. We define t0 = mL/Rs as the critical
sojourn time. Obviously, the user with sojourn time t ≤ t0
can enjoy the high transmission rate Rs, while the backhaul-
limited transmission will be triggered if t > t0. Hence, it is
reasonable to define a criterion to scale the intensity of mobil-
ity at the individual level by t0. Specifically, the user with
sojourn time t ≤ t0 is thought to be of intense mobility, and
vice versa. Plugging m = 1 into t0, we obtain the expression
of T0 that is the criterion defined in Section II-B. Different
from t0 used to scale mobility intensity at individual level,
T0 is a relatively relaxed criterion used at statistic level.

As for t > t0, we define the average transmission rate
Ravg(t, l) :

Ravg(t, l) =


t0 Rs + (t − t0)R0

t
, t0 < t ≤ ts(l)

t0 Rs + [ts(l)− t0]R0
ts(l)

, t > ts(l) ,
(18)

where ts(l) = t0 + (l − mL)/R0 is the maximum transmis-
sion time of a requested video with remaining coded data l.
Obviously, as t increases from t0,Ravg(t, l) will decrease from

Rs due to the greater weight coefficient of R0. When t grows
to ts(l) and still increases, Ravg(t, l) will accordingly reach at
Ravg[ts(l), l] but stop decreasing. This is because the current
VoD request has been served and the SBS will serve another
user in a round-robin fashion as mentioned in Section II-B.
The throughput of Case II is derived as follows:

Tcase2 = PhitPc[P(l > mL)P(t < t0)Rs

+

∫ L

mL

∫
∞

t0
Ravg(t, l)p(t)p(l) dtdl], (19)

where P(l > mL) and P(t < t0) denote the possibility of
l > mL and t < t0, respectively.
Case III:We consider the case where a user fails to access

the SBSs of 8i, with l > mL. The user can only download
coded data of video i through limited backhaul if it success-
fully accesses a SBS of8s\8i. The throughput of Case III is
derived as follows:

Tcase3 = PhitP(l > mL)(1− Pc)P0R0. (20)

Combining the Case I-III and (16), the throughput of a SBS
in MEC-enabled SCNs is:

T = Tcase1 + Tcase2 + Tcase3 + Tmiss. (21)

According to (10) and (21), if there are more various
videos cached in SBSs (i.e., M increases), the sum cache hit
probability Phit will increase, which leads to an increase of
throughput. Obviously, the Pc derived in (13) is an increas-
ing function of p. This indicates that a higher caching pos-
sibility p of 9M

F will indirectly increase the throughput
by Pc, according to (17) and (19). Similar to the definitions
of [7] and [8], we term the gains that Phit and Pc bring
to throughput as the content diversity gain and the chan-
nel diversity gain, respectively. In the same vein, according
to (18), (19) and the definition of t0, a higher m means that a
higher Ravg will be achieved, and the throughput will increase
accordingly. In other words, a largemwould allow users with
diverse mobility intensity (i.e., either weak or intense mobil-
ity) enjoying the high transmission rate Rs. We thus term
the gain that Ravg contributes to throughput as the mobility
diversity gain.

However, under the constraint of Eq. (8), increasing one
of the three parameters (i.e., M, p and m) of our proposed
scheme will result in a decrease of at least one of the other
two. AsM, p and m account for content diversity gain, chan-
nel diversity gain and mobility diversity gain respectively,
there obviously exists a trade-off among these three kinds of
gains. The method to optimally allocate the aforementioned
gains will be provided in the next Section.

IV. PROBLEM FORMULATION AND HEURISTIC SOLUTION
The explicit expression of throughput has been derived in
Section III-B, which is a three-variable function of the param-
eters (i.e., m, M and p) of our proposed caching scheme,
denoted by T (m,M , p). Substitute (8) into (21), the original
function is transformed into a bivariate function of m and M,
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denoted by T (m,M ). However, it is still hard to further obtain
the closed-form optimal solutions of (21) due to its com-
plexity. Thus, we numerically obtain the optimal solutions
of m and M, denoted by (m∗,M∗), through two classical
light-weight heuristic algorithms. The throughput optimiza-
tion problem can be formulated as follows:

(m∗,M∗) = arg max
(m,M )

T (m,M ),

s.t. FL > C,
MmpL = C,
M ∈ Z,
F0 ≤ M ≤ F,
0 ≤ m ≤ 1,
0 ≤ p ≤ 1, (22)

where Z denotes the set of integers. The first constraint
FL > C is in accordance with the reality that the total size
of content library is larger than the storage of a SBS.

The aforementioned problem can be jointly solved by a
particle swarm optimization (PSO) algorithm and a discrete
particle swarm optimization (DPSO) algorithm, which are
presented in Algorithm 1 and 2 respectively. Specifically,
we first obtainm∗ with fixedM, denoted by (m∗,M ), through
a PSO algorithm and then obtain (m∗,M∗) based on (m∗,M )
through a DPSO algorithm. Substitute (m∗,M∗) into equa-
tion (8), we finally numerically obtain the optimal solutions
of m, M and p, denoted by (m∗,M∗, p∗). For a normalized
result, we define β = M/F the proportion of the content
library cached in SBSs. Therefore, (m∗,M∗, p∗) is equivalent
to (m∗, β∗, p∗), which accounts for the optimal allocation of
mobility diversity gain, content diversity gain and channel
diversity gain.

Algorithm 1 DPSO Algorithm for Finding (m∗,M∗)
1: Input: T (m,M )
2: Output: (m∗,M∗)
3: for doi = 1, 2, . . .N
4: pbesti← a random integer ∈ [F0,F]
5: vi← a random number ∈ [−vmax , vmax]
6: end for
7: for dok = 1, 2, . . .maximum_budget
8: for doi = 1, 2, . . .N
9: pi← [pbesti + vi]+ 1
10: Limit pi between F0 and F
11: if T (m∗, pbesti) < T (m∗, pi) then
12: pbesti← pi
13: end if
14: Update the particles’ velocities vi
15: Limit vi between −vmax and vmax
16: end for
17: gbest ← argmaxpbesti T (m

∗, gbesti)
18: m← m∗ obtained by Algorithm 2 with Input:

T (m, gbest)
19: end for
20: (m∗,M∗)← (m, gbest)

Algorithm 2 PSO Algorithm for Finding m∗ With Fixed M
1: Input: T (m,M )
2: Output: m∗ and T (m∗,M )
3: for doi = 1, 2, . . .N
4: pbesti← a random integer ∈ [0, 1]
5: vi← a random number ∈ [−vmax , vmax]
6: end for
7: for dok = 1, 2, . . .maximum_budget
8: for doi = 1, 2, . . .N
9: pi← pbesti + vi
10: Limit pi between 0 and 1
11: if T (pbesti,M ) < T (pi,M ) then
12: pbesti← pi
13: end if
14: Update the particles’ velocities vi
15: Limit vi between −vmax and vmax
16: end for
17: gbest ← argmaxpbesti T (gbesti,M )
18: end for
19: m∗← gbest

V. NUMERICAL RESULTS AND DISCUSSION
In this section, we numerically show the trade-off among the
gains of content diversity, channel selection diversity as well
as mobility diversity, and discuss how user mobility, file pop-
ularity and backhaul capability affect the optimal allocation
of the three kinds of gains determined by the parameters of the
proposed scheme. Furthermore, comparisons among classical
MPC scheme, conventional probabilistic caching scheme [8],
and our proposed caching scheme are made to demonstrate
the superiority of our scheme in addressing the challenges of
network densification. The simulation parameter settings are
listed in TABLE 1.

TABLE 1. Simulation parameters.

A. IMPACT OF USER MOBILITY ON PROPOSED
CACHING SCHEME
The impact of user mobility on our proposed scheme is
illustrated in Fig. 2, where the backhaul capability coeffi-
cient θ is set to be θ = 0.5, indicating medium capabil-
ity of backhaul links. As shown in in Fig. 2(a), m∗ has a
monotonically increasing behavior with the increase of τ ,
which means SBSs are desirable to cache a larger propor-
tion of coded data of each video file in 9M

F as the inten-
sity of user mobility becomes weaker. Moreover, we note
that such an increasing behavior is more sensitive to the
increase of τ with higher content popularity skewness γ .

VOLUME 5, 2017 17829



X. Liu et al.: Mobility-Aware Coded Probabilistic Caching Scheme for MEC-Enabled SCNs

FIGURE 2. The impact of user mobility on the parameters of proposed caching scheme under different content popularity skewness, with medium
backhaul capability (θ = 0.5). (a) m∗ vs. the intensity of mobility. (b) β∗ vs. the intensity of mobility. (c) p∗ vs. the intensity of mobility.

FIGURE 3. The impact of content popularity on the parameters of proposed caching scheme under different mobility intensity, with medium backhaul
capability (θ = 0.5). (a) m∗ vs. the content popularity skewness. (b) β∗ vs. the content popularity skewness. (c) p∗ vs. the content popularity skewness.

This indicates that precise outcomes of user’s mobility pattern
are significant when the intensity of mobility is medium (e.g.,
50% ≤ τ

T0
≤ 150%) because a small bias in τ will lead

to a large deviation in m∗, especially when the popularity
profile is skewed. In contrast to m∗, both β∗ and p∗ decrease
monotonically and finally tend to be constant as τ increases,
shown in Fig. 2(b) and Fig. 2(c) respectively. However, with
an increase in content popularity skewness γ , the decreas-
ing behaviors of β∗ and p∗ show opposite variation trend.
Similar to that ofm∗, the decreasing behaviors of β∗ becomes
more sensitive to the increase of τ as γ becomes larger,
while p∗ experiences a smaller fluctuation in general with
a larger γ . Fundamental conclusions can be summarized as
follows:
• It is worth sacrificing the content diversity gain (espe-

cially with a skewed popularity profile) and the
channel diversity gain (especially with a flat pop-
ularity profile) to guarantee the mobility diversity
gain as the intensity of user mobility becomes
weaker;

• However, blindly sacrificing the two gains is not a wise
strategy as the loss will outweigh the gain if β∗ and p∗

further decrease instead of maintaining at a reasonable
level.

• Applying our proposed scheme in MEC-enabled
SCNs, precise statistical results of mobility intensity
and the accurate prediction of its future value are

significant when users in MEC-enabled SCNs are
statistically of medium mobility and the popularity pro-
file is skewed.

B. IMPACT OF CONTENT POPULARITY ON PROPOSED
CACHING SCHEME
Fig. 3 shows the impact of content popularity on our proposed
scheme, where the backhaul capability coefficient θ is also
set to be θ = 0.5. In Fig. 3(a), m∗ shows an upward trend
and finally tends to its upper bound with the increase of
content popularity skewness γ . Similarly, p∗ experiences a
relatively sharp increase and finally reaches its upper bound
as γ increases, shown in Fig. 3(c). Furthermore, we note that
both the increasing behaviors of m∗ and p∗ become more
sensitive to the increase of γ as the intensity of mobility
becomes weaker (i.e., with an increase in τ ). On the contrary,
as illustrated in Fig. 3(b), β∗ shows a downward trend and
finally tends to its lower bound with the increase of γ . Such
a decreasing behavior is also shown to be more sensitive to
the increase of content popularity skewness as the intensity
of mobility becomes weaker. Fundamental conclusions can
be summarized as follows:

• Exchanging content diversity gain for channel selection
diversity gain and mobility diversity gain is desirable as
the popularity profile becomes more skewed, especially
when users are of intense mobility;
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FIGURE 4. The impact of backhaul capability on the parameters of proposed caching scheme under various mobility intensity and
content popularity skewness. (a) m∗ vs. the content popularity skewness. (b) β∗ vs. the content popularity skewness. (c) p∗ vs. the
content popularity skewness.

• However, the loss will outweigh the gain if such an
exchange is still conducted with a further increase in
the skewness of content popularity. Hence, all the three
parameters of the proposed scheme finally tend to be
constant.

• Compared with m∗, p∗ is much more sensitive to the
variation of content popularity skewness, which indi-
cates a higher priority to guarantee channel selection
gain rather than mobility diversity gain as the popularity
profile becomes more skewed.

C. IMPACT OF BACKHAUL CAPABILITY ON PROPOSED
CACHING SCHEME
The impact of backhaul capability on our proposed scheme is
plotted in Fig. 4, where the backhaul capability coefficients
are set to be θ = 0.2, 0.5 and 0.8, corresponding to low,
medium and high capability of backhaul links. As illustrated
in Fig. 4(a), m∗ shows an upward trend with the decrease
in the backhaul capability coefficient θ , corresponding to
the decrease in the capability of backhaul links. In addi-
tion, the degree of such an upward trend first gets higher
and then gradually decreases as the intensity of mobility
becomes weaker, especially with a skewed popularity profile
(i.e., large γ ). On the contrary, as shown in Fig. 4(b) and
Fig. 4(c), both β∗ and p∗ have decreasing behaviors with the
decrease in the capability of backhaul links, the degree of
which gets higher and then decreases with an increase in τ .
Similar to that of m∗, the two decreasing behavior is more
apparently observed with a relatively flat popularity profile.
Furthermore, compared with m∗ and β∗, p∗ is not sensitive
to the variation of backhaul capability. For instance, when
the content popularity skewness γ = 0.6, little gap on p∗

is observed between low backhaul capability (i.e., θ = 0.2)
and high backhaul capability (i.e., θ = 0.8). Fundamental
conclusions can be summarized as follows:
• The capability of backhaul links indeed has an impor-

tant impact on the optimal allocation of the three kinds
of aforementioned diversity gains, and it is desirable
to sacrifice the content diversity gain and the channel
diversity gain to guarantee the mobility diversity gain as
the backhaul capability gets worse;

FIGURE 5. Comparisons among MPC, probabilistic caching and the
proposed caching scheme are made under various mobility intensity,
content popularity skewness, with medium backhaul capability (θ = 0.5).

• However, such an impact is weak and even negligible
when users are of intense mobility and the popularity
profile is skewed.

D. PERFORMANCE EVALUATION
Comparisons among our proposed scheme and the other
two widely known caching schemes are plotted in Fig. 5 to
evaluate the performance of the proposed caching scheme.
Therein, the probabilistic caching scheme in [8] that jointly
considers both content diversity and channel selection diver-
sity outperforms MPC scheme, especially with a small
content popularity skewness. Compared with probabilistic
caching scheme, our proposed scheme further exploits user
mobility and distributed storage, outperforming the other two
schemes in terms of throughput. Especially when user mobil-
ity is intense, our proposed scheme achieves a much higher
throughput, which is more remarkable with smaller content
popularity skewness. However, we note that the performance
of our scheme shows a downward trend and finally tend
to that of the probabilistic caching scheme as τ increases.
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FIGURE 6. Comparisons between probabilistic caching and the proposed
caching scheme are made under various mobility intensity and backhaul
capability, with content popularity skewness γ = 0.6.

This is due to the diminished advantage of distributed stor-
age with the decrease of mobility intensity. Additionally,
a higher γ will accelerate the aforementioned downward
trend because them∗ will become larger as γ increase, shown
in Fig. 3(a). Obviously, a large m∗ will result in a simi-
lar caching decision to that of probabilistic caching scheme
as distributed storage is not considered in the latter (i.e.,
m ≡ 1). Therefore, the lower bound of the performance of
our proposed scheme is that of the conventional probabilistic
caching scheme.

In Fig. 6, performance comparisons between the conven-
tional probabilistic caching scheme and our proposed scheme
aremadewith low,medium and high backhaul capability (i.e.,
θ = 0.2, 0.5, 0.8). Therein, MPC scheme is omitted as
probabilistic caching scheme outperforms it, shown in Fig. 5.
With a decrease in θ , the performances of the two caching
scheme show a downward trend, which is in accordance
with the fact that a poor backhaul capability will limit the
performance of wireless networks. Furthermore, we note that
the performance gap between probabilistic caching scheme
and our proposed scheme becomes larger with a decrease in θ
and τ , which indicates that our proposed caching scheme is
a promising way to mitigate the limited backhaul problem
of network densification by exploiting user mobility and dis-
tributed storage. For instance, when the average sojourn time
τ = 25%T0, our proposed caching schemewith low backhaul
capability (i.e., θ = 0.2) provides 42.0% and 12.9% higher
throughput than those of the probabilistic caching scheme
with the low and medium backhaul capability respectively,
while the probabilistic caching scheme can only outperform
ours by just 6.76% at the cost of a high backhaul capability.
Fundamental conclusions can be summarized as follows:
• Our proposed scheme achieves higher throughput than

those of probabilistic caching scheme and MPC scheme
under various circumstances (i.e., different degree of

user mobility, content popularity skewness and backhaul
capability), and the performance gap is remarkable with
flat popularity profile, intense user mobility and poor
backhaul, the last two of which match the characteristics
of network densification.

• Applying our proposed scheme in MEC-enabled SCNs,
it is unnecessary to increase the throughput by enchant-
ing backhaul capability in the area, where users are
mostly of intense mobility due to the diminished impact
of backhaul capability on the performance of our pro-
posed scheme under this circumstance.

VI. CONCLUSION
This paper is the first work to propose amobility-aware coded
caching scheme for throughput optimization in dense cellular
networks. Built on conventional probabilistic caching, a novel
mobility-aware coded probabilistic caching scheme is pro-
posed for video delivery in MEC-enabled SCNs. Different
from previous works, content diversity, channel selection
diversity and user mobility are jointly considered in our
proposed scheme. The explicit expression of throughput is
derived based on the modified discrete random jump model.
Due to the complexity of the expression of throughput, it is
hard to further obtain the closed-form optimal solutions, and
two light-weight heuristic algorithms are thus provided for
the corresponding numerical solutions. The trade-off among
the gains of content diversity, channel selection diversity
and mobility diversity is numerically discussed. Furthermore,
how usermobility, content popularity and backhaul capability
influence such a trade-off is numerically analyzed, followed
by some fundamental insights provided for the application
of our proposed caching scheme in MEC-enabled SCNs.
Compared with typicalMPC scheme and conventional proba-
bilistic caching scheme, it is found that our proposed scheme
achieves a higher throughput than those of the other two
under different degree of user mobility, content popularity
skewness and backhaul capability, which is more remarkable
with intense user mobility, flat popularity profile and poor
backhaul capability. This indicates that our proposed caching
scheme is a promising way to address the challenges of
network densification.
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