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ABSTRACT Beyond energy, the growing number of defects in physical substrates is becoming another
major constraint that affects the design of computing devices and systems. As the underlying semiconductor
technologies are getting less and less reliable, the probability that some components of computing devices
fail also increases, preventing designers from realizing the full potential benefits of on-chip exascale
integration derived from near atomic scale feature dimensions. As the quest for performance confronts
permanent and transient faults, device variation, and thermal issues, major breakthroughs in computing
efficiency are expected to benefit from unconventional and new models of computation, such as brain-
inspired computing. The challenge is then to find not only high-performance and energy-efficient, but also
fault-tolerant computing solutions. Neural computing principles remain elusive, yet as source of a promising
fault-tolerant computing paradigm. In the quest to fault tolerance can be translated into scalable and reliable
computing systems, hardware design itself and/or to use circuits even with faults has further motivated
research on neural networks, which are potentially capable of absorbing some degrees of vulnerability based
on their natural properties. This paper presents a survey on fault tolerance in neural networks manly focusing
on well-established passive techniques to exploit and improve, by design, such potential but limited intrinsic
property in neural models, particularly for feedforward neural networks. First, fundamental concepts and
background on fault tolerance are introduced. Then, we review fault types, models, and measures used to
evaluate performance and provide a taxonomy of the main techniques to enhance the intrinsic properties of
some neural models, based on the principles and mechanisms that they exploit to achieve fault tolerance
passively. For completeness, we briefly review some representative works on active fault tolerance in neural
networks. We present some key challenges that remain to be overcome and conclude with an outlook for this
field.

INDEX TERMS Fault tolerance, neural networks, redundancy, fault masking, fault models, taxonomy.

I. INTRODUCTION
Artificial neural networks models have attracted intensive
research interest and enjoyed significant renewed growth in
artificial intelligence related applications over the last two
decades, e.g., deep learning models based on a feedforward
deep network or multilayer perceptron [1]. Indeed for some
applications that extract data from the noisy physical envi-
ronment, speech recognition and visual object recognition,
they appear to be the preferable choice. In neural networks
research, one of the main problems that has been addressed
is the architecture optimization, which aims at appropriately
choosing the neural architecture and its parameters for high
generalization performance at solving a given task. However,
the fact that performance maximization is of primary concern

does not necessarily imply that it is the only goal that has
been or should be pursued [2]. Artificial neural networks are
generally assumed to acquire some other desirable intrinsic
features of biological systems such as their tolerance against
imprecision, uncertainty, and faults [3], which also make
them harder to study or design [4].

According to neurobiological studies, the human brain is
able to tolerate a small amount of synapse or neuron faults,
or even use noise as a source of computation [5]. Nervous
systems are complex, highly massive parallel information
processing architectures made of seemingly imperfect and
slow, but exceptionally adaptive and power-efficient compo-
nents that carry out information processing functions [6], [7].
Moreover, brains have the capability to relearn by growth of
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new neurons and/or neural connections and/or retraining of
the existing neural architecture [8]. Derived from these obser-
vations, it is commonly claimed that the majority of neural
network models, abstracted from biological ones, have built-
in or intrinsic fault tolerance properties due to their parallel
and distributed structure, and the fact that usually they contain
more neurons or processing elements than the necessary to
solve a given problem, i.e., some natural redundancy due to
overprovisioning. However, claiming such an equivalent fault
tolerance only on the basis of rough architectural similarities
therefore cannot hold true in general, especially for small
size neural networks [9], [10]. Furthermore, the assessment
of fault tolerance across different neural models still remains
difficult to generalize, due to fault tolerance is network- and
application- dependent, an inconsistent use of the principal
concepts exists, and the lack of systematic methods and tools
for evaluation across neural models.

Computational studies have shown that neural networks
are robust to noisy inputs and they also provide graceful
degradation due to their resilience to inexact computations
when implemented in a physical substrate. The tolerance to
approximation, for instance, can be leveraged for substantial
performance and energy gains through the design of cus-
tom low-precision neural accelerators that operate on sen-
sory input streams [11]–[13]. However, in practice, a neural
network has a very limited fault tolerance capability and,
as a matter of fact, neural networks cannot be considered
intrinsically fault tolerant, without a proper design. Further-
more, as a consequence of computation and information are
naturally distributed in neural networks, error confinement
and replication techniques, key to conventional fault toler-
ance solutions, cannot be applied directly so as to limit the
error propagation when implemented in potentially faulty
substrates.

Obtaining truly fault tolerant neural networks is still a
very attractive and important issue to obtain more biologi-
cal plausible models, both for i) artificial intelligence based
solutions, where, for instance, pervasive embedded systems
will require smart objects fully merged with the environment
in which they are deployed to cope with unforeseeable condi-
tions [14]–[16], and ii) as a source to build reliable computing
systems from unreliable components, as suggested by [17].
Rooted on the neural paradigm computing systemsmight take
advantage of new emerging devices at nanoscale dimensions
and deal both with manufacturing defects and transient faults
as well [18], [19] and even considers faults/errors an essential
and intrinsic part of the design.

In this last direction, the robustness and the potential fault-
tolerant properties of neural models call for attention as per-
manent and transient faults, device variation, thermal issues,
and aging will force designers to abandon current assump-
tions that transistors, wires, and other circuit elements will
function perfectly over the entire lifetime of a computing sys-
tem, relying mainly on digital integrated circuits [20]–[23].
To achieve real benefits from future technologies at
nanoscale, we must find inexpensive ways to exploit such

imperfect components from the beginning or even use
components whose functionality degrades with time without
compromising functionality. As a consequence, computa-
tional organizations must be prepared for faults/errors, and
provisioned to be able to exploit late-bound information
about how variation and faults are affecting the system over
time [24]. More specifically, from a pragmatic point of
view, the potential fault-tolerant property of neural models
will be crucial to the success of attempts to integrate large
neural models onto silicon for embedded applications, when
problems of yield become unavoidable [25], [26]. Custom
hardware implementations of neural networks can benefit the
emerging high-performance machine learning applications
but faults can compromise the reliability of such acceler-
ators under nanoscale manufacturing process in practical
scenarios.

Fault tolerance in a conventional digital computing system
is usually achieved by increasing its redundancy in space,
time or code, [27], [28] combined with some sort of cen-
tralized voting-based strategies, which usually implies higher
implementation costs and lower performance that sometimes
make it even infeasible to be applied in computing systems
at large scale. Research around fault tolerance capabilities
of neural networks is expected to provide novel solutions to
improve existing fault tolerance and reliability technologies
and play a more fundamental role in the future. The style
of neural computation, the parallel, and distributed architec-
ture of neural models have been argued as the source for
inherent fault tolerance but more general and comprehen-
sive analysis for large class of perturbations affecting neural
computation, and large scale fault tolerance mechanisms tai-
lored to neural models must be envisioned at an affordable
cost by further exploiting the inherent capabilities of neural
computing [29], [30]. As such, a literature review is important
to understand how fault/error tolerance in neural networks
has been addressed and to gain insight in the foundations
and recent developments in this field towards new promis-
ing directions. This survey is of great value to investigate
how faults/errors will affect the operation of hardware neural
networks and whether the faults/errors can be mitigated by
leveraging the intrinsic features of neural networks with com-
plementary techniques.

In the literature, several experimental and less analytic
works have been carried out to study neural networks fault
tolerance related issues, which include the analysis on effect
of noise on the output sensitivity [31], [32], the weight
error sensitivity [33]–[35], and the relationship among fault
tolerance, generalization and model complexity [2], [10],
[36]–[38]. Such works have been carried out at different
levels of abstraction, from very specific low level physical
implementations to the high level intrinsic fault masking
capacity of neural paradigms. In fact, most works use a high
level approach focusing on errors instead of faults. Despite
of an important number of works for fault tolerance in neural
networks exist, a survey providing a framework for fault
tolerance study and a categorization for the discussion of
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FIGURE 1. Cause effect relationship between fault, error and failure, and its propagation from the physical-implementation level to the behavioral
application level of a neural network model.

formal techniques and methods that produce fault tolerant
neural networks is still missing.

In this paper, a review on reported works addressing the
fault tolerance of neural networks for a given behavioral
fault/error model, which evaluate the impact of such errors
on the neural computation in a rather technology-independent
way, is presented. This paper proposes a categorizing frame-
work that groups together a number of existing techniques
to improve fault tolerance into categories and compare their
advantages and drawbacks. The rest of this paper is organized
as follows. Section II presents background and some key
concepts for fault tolerance in neural networks and discusses
the similarities and differences between them. Section III
formalizes fault tolerant neural networks and presents typical
fault models and measures that have been used for fault
tolerance assessment. Section IV presents the taxonomy and
a discussion of the principal techniques that have been used
to produce fault tolerant neural networks, focusing on pas-
sive fault tolerance. We present and discuss commonly cited
techniques for each class in the taxonomy. In section V we
describe some open challenges for current/future research.
Section VI provides some concluding remarks.

II. BACKGROUND AND TERMINOLOGY
Neural networks are claimed to have a built-in or intrin-
sic fault tolerance property mainly due to their distributed
connectionist structure. Fault tolerance in a neural network
is directly related to the redundancy introduced because of
spare capacity (over-provisioning), i.e., when the complexity
of the problem is less than the raw computational capacity
that actually the network can provide [39]. Nevertheless, the
analysis and evaluation of fault tolerance remain difficult
because many different architectural and functional features
under diverse conceptual frameworks are usually involved,
and there are no common systematic methods or tools for
evaluation [40], [41]. Technical and quantitative reasoning
about these features calls for clear definitions, highlighting
their similarities and differences, as those concepts appear in
different contexts and areas of application.

This section provides some basic definitions related to
faults, fault models, fault tolerance and other alike terms,

which are widely used in computing systems at hardware
level and that have been also applied and extended in neural
computing. The interested reader is referred to [42]–[45] for
further information on fault-tolerant systems, concepts and
principles.

A. FAULT TYPES
There are three fundamental concepts in fault-tolerant sys-
tems, which are fault, error, and failure. A cause-effect rela-
tionship exists between them, from the physical level to the
behavioral level, as conceptually shown in figure 1 for a
neural network that performs a computational task and is
implemented in a digital substrate.

A fault is an anomalous physical condition in a system that
gives rise to an error. An error is a manifestation of a fault
in a system, the deviation from the expected output, in which
the logical state of an element differs from its intended value
[43], [46]. A failure refers to a system’s inability to perform
its intended functionality or behavior because of errors in its
elements or perturbations in its environment. Propagation of
an error to the system level results in system failure, however,
a fault in a system does not necessary result in an error or
failure as it might go inactivated. A fault is said to be active
when it produces an error; otherwise it is called dormant.

Faults can be classified by their temporal characteristics as
follows:
• A permanent fault is continuous and stable with time;
it is mainly a result of an irreversible physical damage.

• A transient fault may only persist for a short period of
time and it is often result of external disturbances.

Transient faults, which recur with some frequency are
called intermittent. Usually, an intermittent fault results
frommarginal or unstable device operation and they are more
difficult to detect than permanent ones. Transient and inter-
mittent faults cover the vast majority of faults which occur
in digital computing systems built with the current semicon-
ductor technology [47]–[49]. Even, future implementation
technologies are expected to suffer transient faults due to a
reduced device quality, exhibiting a high level of process and
environmental variations as well as considerable performance
degradation due to the potential high stress of materials [50].
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Timing faults change the timing behavior rather than the
structure of circuits; they affect circuit parameters which
define the timing characteristics of the device, such as prop-
agation delay, hold and set-up times, etc.

Figure 2 shows a classification of some fault types accord-
ing to their temporal characteristics, indicating some typical
causes and mechanisms that generate them, which are mod-
eled with the corresponding permanent/transient fault mod-
els, shown as gray rounded boxes in the figure. For instance,
a bridging fault occurs when two leads in a logic network are
connected accidentally and wired logic is performed at the
connection [51]. There exist other fault classifications using
different criteria, such as value and extent as proposed in [42].

FIGURE 2. Fault types with some representative causes and mechanisms
of permanent and transient faults and the corresponding fault models,
shown as gray rounded boxes.

In order to facilitate the detection of faults and the correc-
tion of their errors, researchers develop models of them to
examine the variety of faults that need to be tolerated during
the operation of a given system.

B. Fault Models
A fault model lists which components can become defective
in a system, and also when and how they will misbehave.
They describe the physical manifestation of faults, the types
of faults and where and how they will occur in a system
[52]. The two major requirements for defining fault models,
which group faults that cause similar effects into the system,
in some sense, are contradictory. On one hand, accuracy is
pursued, that is, realistic faults should be modeled and on the
other hand tractability, complex or large scale systems should
be studied at affordable computational costs. Research,
therefore, deals with deriving realistic models at higher levels

of abstraction, which can accurately capture the faults at
lower physical levels.

The following fault models have been widely, and success-
fully used as abstractions of physical defect mechanisms in
digital electronics devices and systems [53]–[55]:
• Stuck-at, a data or control line appears to be held exclu-
sively high (stuck-at-1) or low (stuck-at-0).

• Random bit flips, a data or memory element has some
incorrect, but random value.

The stuck-at fault model has been the source of a great
research effort in fault tolerance. It is still very popular since it
has been shown that many defects at the transistor and inter-
connection structures can be modeled, as permanent faults,
at the logic level with reasonable accuracy [21], [56]. The
stuck-at model is a binary model that do not capture the inde-
terminate states that faults may induce while occurring. Also,
but less frequently for fault tolerance assessment in comput-
ing systems, stuck-open or stuck-short faults are considered
in the literature [28]. Stuck-open models are necessary, for
instance, to characterize the fact that a floating line has a high
capacitance and retains its charge for a significant length of
time in current semiconductor technology.

The random bit-flip model is intended to model transient
faults that usually happen at registers or memory elements
due to external perturbations, for instance, a single event
upset. Under this model, damage/corruption is done only to
the data and not to the circuit itself. Conceptually, it consists
of a register bit that is switched randomly, resulting in that
memory element holding a wrong logic value. The related
pulse model accounts for bit flips produced in combinational
logic is used to differentiate from the bit-flip produced in
memory circuits. Recall that, single event effects (SEE) in
microelectronics are mainly caused when highly energetic
particles, present in the natural space environment, strike sen-
sitive regions of a microelectronic circuit [57], however, it is
expected that those effects happen in normal environments
due to near atomic scale integration as well.

As for fault-tolerant hardware implementations, high level
fault models should be consistent with manufacturing defects
or physical ones. Indeed, recently, in spite of its importance, it
has been shown that classical stuck-at and bit-flip fault mod-
els are not enough to cope with the fault mechanisms of new
deep-submicrometer technologies and new fault models are
needed to cover aspects like transient pulses, indetermination,
delays, stuck-opens, shorts, open-lines, and bridgings [54],
[55], [58], [59], some of which are illustrated in figure 2 with
their corresponding fault models in gray rounded boxes.

On the other hand, contrary to fault models, error models
do not attempt to capture or locate the underlying physical
effect of a failure [28]. They rather characterize the devia-
tion, due to the fault, of the function performed from input
to output within a system, at a higher level of abstraction
for a better tractability. Mapping criteria of physical faults
onto the abstract errors are required to show the usabil-
ity and consistency of the error analysis in evaluating the
actual fault tolerance of a system physical implementation.
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Yet, similar errors can be induced by different types of faults,
as no one-to-one correspondence might exist.

C. FAULT TOLERANCE AND RELATED TERMS
Themain goal of this section is to identify the proper subset of
concepts, and highlight their intersection, to develop a com-
mon and consistent understanding of their meaning without
reference to a specific discipline or implementation media,
and then use themwith the exposed in the previous subsection
concepts for an analytical framework that can be used for
fault tolerance in neural networks. Some terms of interest
related to the dependability or truthwordiness of a system
[42], [60], [61] are as follows:
• Reliability, a system is reliable if it performs correctly
with high probability in the presence of faults under
previous stated conditions and for a specified period of
time.

• Fault tolerance is the property that guarantees the
proper operation of the system in the event of fault(s)
within some of its components.

• Graceful degradation is referred to as a low sensitivity
to the occurring faults instead of a complete or catas-
trophic failure.

• Robustness is a property that allows a system to con-
tinue operating correctly despite noise in its inputs or
parameters variation.

• Error resilience, tolerance to inexact or approximate
computations as originally designed.

Reliability is a quality over time and it is associated with
unexpected failures of systems. Understanding why these
failures occur is key to improve the system performance in
specific working environments. Reliability is a measure of
uncertainty and therefore estimating reliability means using
statistics and probability theory.

Fault tolerance is often associated with robustness to noisy
inputs, functioning correctly in the presence of such inputs,
but they are rather different terms [61]. Fault tolerance might
generally exploit some sort of redundancy to provide the
functionality needed to counterbalance the effects of faults.
The redundancy might be manifested mainly in two ways:
extra time or extra components [28].
Intuitively, the term graceful degradation means that a sys-

tem tolerates failures by reducing its functionality or perfor-
mance, rather than going into a catastrophic behavior. In order
to graceful degradation be possible, the system must have
some level of reduced or auxiliary functionality; i.e., it must
be possible to define the system’s state as working but not
completely functional.

Error resilience of systems means that they tolerate
some accuracy reduction, or inexact computations [62],
in return for potential resource savings. Approximate com-
puting exploits the gap between the level of accuracy required
by applications and that provided by the computing system,
for achieving diverse optimizations; it is more related to
specific implementations [11]. On the other hand, it can
be said that a robust system provides a graceful loss in

performance accuracy when perturbations (e.g. noise) affect
its parameters. Hence, a system might both be resilient to
lower accuracy (i.e., reduced number of bits) and tolerant to
a class of parameter fluctuations or perturbations [2].

According to the concepts exposed above, fault tolerance
can be defined as the attribute of a system that allows it to pre-
serve its expected behavior after faults have manifested them-
selveswithin the system [42].More preciselly, for the purpose
of this review, a fault-tolerant system might be defined as one
that has provisions to avoid failure, as measured by a figure
of merit, after faults have caused errors within the system.

D. ACTIVE AND PASSIVE FAULT TOLERANCE
Fault tolerance can be classified into passive and active,
taking into account the mechanisms by which it is achieved in
a system. A system with passive fault tolerance does not react
in any special way to compensate for the effect of internal
faults, but by exploiting the intrinsic redundancy and fault
masking, built into the system structure, which efficiently
masks the fault effects ensuring correct outputs in spite of
such faults [63]. The system is designed to mask, by compen-
sation, a given maximum number of faults. No diagnostics,
relearning, or reconfiguration is needed in such passive fault-
tolerant system. Thus, fault detection and location can be
totally avoided under this approach.

On the other hand, a system with active fault tolerance,
explicitly and dynamically recognizes andmanages its redun-
dant resources to compensate the fault effects (by adaptation,
retraining or self-repairing mechanisms) when they appear.
Active fault tolerance requires special detection/localization
and supervising/control components, whose design may turn
out to be rather complex and intrusive [64]. Active fault
tolerance provides a system the ability to recover from faults
by reallocating the tasks performed by the faulty elements to
the fault-free ones [65].

Generally speaking, it is more difficult to achieve the same
degree of fault tolerance of an active approach than with the
passive approach, mainly because not all the faulty scenarios
can be considered at the system design, and no repair or
reconfiguration is possible afterwards. However, in a hybrid
approach, passive and active tolerance can complement one
to each other; a static base configuration masks a given num-
ber of faults, while faulty modules are detected online and
replaced within fault-free ones in the base configuration [43].

III. FAULT-TOLERANT NEURAL NETWORKS
Since a neural network relies on its neurons to collectively
perform its function, a claimed property of neural networks is
that they can still perform their overall function even if some
of the neurons/synapses are not functioning. Neural networks
are not commonly built with the exact or minimum number
of neurons to perform a computation for solving a given task.
In fact, it has been experimentally observed and documented
that such overprovisioning leads to a natural robustness and
potential fault tolerance, considering a neural network as a
fully parallel and distributed system where neurons/synapses
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can fail independently. Yet, the relationship between overpro-
visioning and the actual number of tolerated faults has not
been fully investigated [39].

A. A BASIC DEFINITION
A neural network N performing a computation HN is said
to be fault tolerant if the computation HNfault , performed by
a faulty network Nfault obtained from N , is close to HN .
Formally, for ε > 0, N is called ε-fault-tolerant, [39], [66],
if it tolerates faulty components (for instance neurons/
synapses) for any subset of size at most nfails:∥∥∥HN (X )−HNfault (X )

∥∥∥ ≤ ε, ∀X ∈ T (1)

whereX is any stimuli, applied to the networksN andNfault ,
that belongs to the training set T or is part of the input data to
be processed by the networks. Given a problem, he goal for
fault tolerance is to determine the network N that performs
the required computation and has the additional property that
is ε-fault-tolerant with respect to T .

Furthermore, in a strict sense, a neural network is truly or
complete fault tolerant with respect to a class and number
of faults if their effects measured by the chosen figure of
merit is null. The complete fault tolerance requirement can
be weakened toward graceful degradation if we allow that the
increase in the error is below a predefined threshold as stated
in equation 1. Thus, recall that, when a statement about fault
tolerance is made, it should be implicitly assumed a failure
condition or criterion of the network functionality, which is
the threshold below which it cannot longer perform its func-
tion according to the specification. As such, fault tolerance in
neural networks depends on the definition of the acceptable
degree of performance and its intended application [67].

B. FAULTS IN NEURAL MODELS
At a high level of abstraction, fault tolerance, within neural
models, might be analyzed by the effects of errors in the main
operators that support the whole neural computational task,
rather independent from their intended physical implementa-
tion. In fact, this has been the practice in most works reported
in the literature. In a more comprehensive and structured
approach, as the one described in [29], after this initial step,
physical faults affecting a specific implementation can be
mapped onto such errors so that the expected fault tolerance
of a given architectural implementation of a neural model can
be estimated, and further by identifying critical neural com-
ponents, complementary and ad-hoc fault tolerance policies
can be further applied to enhance the properties of the neural
model implementation.

In neural networks, an error model can be defined depend-
ing only on the neuron behavior itself, rather independent of
its physical implementation, which is usually targeted to a
digital substrate, so as to estimate the influence of faults on
the neural computation from the initial design stages. More
specifically, in the behavioral neuron model, as conceptually
shown in figure 3, errors may occur [68], [69]:

FIGURE 3. Abstract neuron model and its main components.

• As unexpected values of signals in the communication
channels due to faulty interconnections or noise.

• In the synaptic weight or the associated computation,
which in the absence of implementation details can be
considered as indistinguishable.

• In the neuron body itself, affecting the summation or the
evaluation of the nonlinear activation function.

The first two errors, in digital implementations, are often
modeled as both stuck-at-0 or stuck-at-1, since an asymmetric
behavior for such faults has been reported [70]. Synapse
errors are modeled at stuck-at-value, where value is within
the domain for weights [wmin,wmax]. Errors caused by faults
in the neuron body, usually saturates its output to posi-
tive/negative values, thus they are modeled as stuck-at-1 or
stuck-at-(-1), as the activation function is often in this range.
However, neurons cannot only stop computing by saturating,
but generally they might even send a value different from
their nominal expected output of the transfer function [65].
Neurons that can fail by transmitting arbitrary values (known
in the literature as Byzantine neurons) has been only recently
considered for fault tolerance assessment [39].

The stuck-at model essentially allows to investigate fault
tolerance at the behavioral level, independently of the actual
implementation or detailed characteristics of physical faults.
It abstracts and simplifies faults into stuck-at values affecting
single components. Such an abstraction has been widely used
in testing of digital circuits and has proved to be sufficient
to model a large number of physical faults. Some other
faults/errors can be even considered for neurons but they can
mask each other in the sense that it can be undistinguishable
which fault occurred, for instance a fault in the synaptic
operation itself (multiplication) instead of a fault in theweight
storage. Considerations on physically realistic fault models
for analog VLSI neural networks are also needed [71]–[73].

Among the most important works reported in the literature
regarding fault models in neural networks, mostly feedfor-
ward multilayer networks, are the following.

Sequin and Clay [68] used a bottom-up approach to cate-
gorize the types of faults that usually might occur in neural
networks looking at the main components that comprise a
network and focusing in fault cases that yield a worse effect
on the overall performance of the network. In their modeling,
authors distinguished three types of units, input, output and
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FIGURE 4. a) A feedforward neural network, b) A faulty synapse between node 5 and 8, c) Network considering that node 5 is faulty.

hidden units, all of which can fail and potentially impact
differently the network operation because of their location.
They focused in the following types of faults: i) missing
hidden units stuck at an intermediate output value, regardless
of its inputs, not delivering an effective signal, ii) saturated
hidden units stuck at an extreme value, iii) missing weights,
so called disabled, which do not transmit any signal, and
iv) saturated weights, the weight is driven to the maximum
or minimum values of their allowed range.

Bolt [52] introduced a method to develop fault models
for neural networks at the abstract level, considering the
fault location and then defining the faults characteristics, by
enumerating the manifestations of a fault to be such that
the maximum harm is caused to the neural network. A fault
model for the multi-layer perceptron was developed, at a
high level of abstraction, thus allowing their inherent fault
tolerance to be estimated. Two types of fault components
were identified, stable entities whose associated information
does not change at any time, such as weights and activa-
tion functions, and temporary entities whose information is
only valid for a limited period of time, such as outputs and
activation values.

Chandra and Singh [8] investigated pre-trained feedfor-
ward neural networks and proposed a framework of study
for neural fault tolerance. Particularly, they proposed fault
models and fault/error measures to quantitatively assess fault
tolerance in such feedforward networks. According to their
proposal, fault tolerance can be divided intro three sepa-
rate sets of categories: i) tolerance to faults/errors in the
learning rule, ii) tolerance to faults/errors outside the neural
network structure (incorrectness in the inputs due to noise),
and iii) tolerance to fault/errors inside the neural network
(structural fault). Specific faults were defined according to
such proposed categories.

C. FAULT INJECTION AND MEASURES
For fault tolerance assessment, a fault injection method is
required for gaining insights of the behavior of a system [74].

Especially, its critical components might be identified, which
can then be protected against possible faults targeted to a
specific physical implementation. Faults are probabilistically
introduced into a neural model and the degree of failure,
impact on the performed neural computation, is evaluated
according to some measures. Figure 4 shows an example of
a feedforward neural network, and the corresponding derived
networks when a faulty synapse/neuron is considered in the
connection graph. The measure of fault tolerance from many
experiments can be evaluated against the number of con-
sidered faults injected into the neural model. The limit of
the fault tolerance of the network, assessed in this way, is
problem-dependent and is determined by operating scenar-
ios of multiple faults that would lead to a violation of the
performance constraints. With known failure rates and faults
occurring at random locations, these worst-case scenarios can
be used to estimate an upper bound for the fault tolerance of
the neural network [67]. If a minimum number of faults is
stablished, nfails, it is necessary to prove that the network will
perform well with nfails or fewer faults from a specified set.
For large neural networks, exhaustive testing of all pos-

sible single faults is prohibitive, not to mention that even
multiple faults might occur concurrently. Hence, the strategy
of randomly testing a small fraction of the total number of
possible faults in a network has been adopted for tractability.
It yields partial fault tolerance estimates that statistically are
very close to those obtained by exhaustive testing. Moreover,
when the fraction of faulty components tested is held fixed,
the accuracy of the estimate generated by random testing is
seen to improve as the network size grows [65].

Table 1 summarizes some general measures used to assess
fault tolerance, which basically measure the performance
distance (closeness) between fault-free or a baseline neu-
ral network and the derived faulty networks in classifica-
tion tasks. The measures selection is problem and neural
model dependent but broadly fall into two main categories
of the neural paradigm: those requiring supervised or unsu-
pervised learning. Chandra and Singh [8] suggested the use of
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TABLE 1. Some typical measures used to assess performance and fault tolerance in neural networks.

mean squared error (MSE) and the mean absolute percentage
error (MAPE) to measure the effect of faults, and particularly
for classification problems, the percentage of misclassifica-
tion is suggested. For other MSE-like and sensitivity related
measures see [37], [76], [77]. On the other hand, sensitivity
measures the change in the output due to a change in the input
or internal parameters [69]. The memory capacity has been
used for evaluating fault tolerance in associative memories
with faulty neurons [78].

For neural models for clustering tasks, silhouette statistics
can be used as a fault tolerance measure since ground truth
labels are not known. It gives a measure of the quality of the
clusters obtained. Such measure is defined for each sample
and is composed of two scores: i) ai, the mean distance
between a sample and all other points in the same cluster,
and ii) bi, the mean distance between a sample and all other
points in the next nearest cluster. The silhouette coefficient
score is bounded between −1, for incorrect clustering, and
+1, for highly dense clustering. Scores around zero indicate
overlapping clusters.

As a matter of fact, such figures of merit measures two
overlapping aspects, on one hand how well the problem is
solved and on the other hand the fault tolerance that the cor-
responding network would roughly provide. But those mea-
sures do not provide a more comprehensive fault tolerance
assessment, such as for example, on the tight bounds on the
number of neurons that can fail, without harming the result of
a computation in terms of weight and failure distribution [39].
This call for new measures for better understanding of the
extent to which neural networks can be fault-tolerant.

IV. TAXONOMY OF FAULT TOLERANCE
Different starting points and criteria usually might lead to
different taxonomies of fault tolerance. A general but widely
adopted frame is to classify fault tolerance as passive or
active, based on the principles and mechanisms that they
exploit to achieve fault tolerance as outlined in section II-D,
and particularly emphasized for fault tolerance in neural mod-
els in [67]. We follow this frame in reviewing the literature
related to neural networks fault tolerance, and we principally
focus on methods and techniques to enhance fault tolerance

passively. Nonetheless, other important works on fault toler-
ance in neural networks are also briefly referred throughout
this review. As for instance, the work reported in [79], where
an empirical study of the influence of the activation function
on fault tolerance properties of feedforward neural networks
is presented, showing that the activation function largely has
relevance on fault tolerance and the generalization property of
the network. Furthermore, for completeness in section IV-B,
we briefly review some representative works on active fault
tolerance in neural networks.

Before going into details, it is worth to point out that the
majority of reported works has been focused in feedforward
neural networks and few attempts have been made to improve
fault tolerance in some other neural models. In section IV-C
works that discuss and analyze fault tolerance of non-
feedforward neural networks will be briefly described, even
though some works do not propose any specific technique
for fault tolerance improvement. This issue is of importance
since the studies and results in the literature concerned
with fault tolerance in feedforward neural networks, despite
of its importance (e.g. for deep learning), are difficult to
generalize and directly apply across other different neural
models.

A. PASSIVE FAULT TOLERANCE
In the proposed taxonomy, as schematically shown in
figure 5, the reviewedworks are classified based on their main
strategies to achieve or improve fault tolerance in the recall
stage of neural networks without considering retraining, i.e.,
wemainly focus on passive fault tolerance. Since only passive
fault tolerance is considered in depth herein, the main mech-
anisms to provide the needed redundancy or fault masking to
enhance fault tolerance will be presented. Each technique is
explained based on its characteristics, design objectives, and
the considered fault types in the performed study.

Three main categories, in the passive approach, are iden-
tified, which group together related methods and techniques
to enhance the intrinsic fault tolerance capabilities of neural
networks: i) explicitly augmenting redundancy, ii) modifying
learning/training algorithms, and iii) neural network opti-
mization with constraints.
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FIGURE 5. Taxonomy for techniques and methods to enhance fault tolerance in neural network models grouped into two main categories, passive and
active fault tolerance. This survey mostly reviews research on the three subcategories of passive fault tolerance.

TABLE 2. Summary of some representative works for enhancing fault tolerance in neural models by explicitly adding redundancy in the network after
training, with a representative example of a NN topology used in the experiments.

1) EXPLICITLY AUGMENTING REDUNDANCY
Fault tolerance in neural networks can be achieved by explic-
itly inserting redundancy in a pre-trained network, partic-
ularly in hidden neurons and their associated connections
within feedforward networks. Such methods start with a
minimal network that learns the given input/output pattern
mapping or performs the desired computational task, and then
replicate hidden neurons or selectively add nodes to share the
load of the critical ones, after the training has been completed.
The fault tolerance criterion is tested on the obtained model
and improved off-line by using techniques such as: network
augmentation bymeans of spatial redundancy, i.e., replication
of critical neurons, or evenly synaptic weight distribution
with neuron pruning and removal of unnecessary weights.
Some representative works in this category are summarized in
table 2, indicating the fault model, a typical network size and
topology and a short description on the underlying principle,
which is further described in the following paragraphs.

Chu and Wah [80] addressed fault tolerance using a hybrid
redundancy scheme applied on well-trained multilayer neural

networks in a similar way to the conventional redundancy
approach. A combination of spatial, temporal and informa-
tion redundancy was applied on critical neurons, those ones
located in the network outputs. Neurons are classified into
a limited number of isomorphic sets in which neurons have
identical inputs. By replicating weights of one neuron into the
others in the same set, it is possible to recompute the output
of a given neuron and to cope with transient, intermittent,
and permanent faults. Output neurons are implemented as
time-multiplexed in synchronous processing elements as they
receive, process and send outputs at the same time in the
network. A decision automata is used as a centralized super-
visor for error detection and recovery but a fault model was
not specifically defined in this work. The high level analysis
was carried out in terms of the overhead and implementations
costs that incur redundant neurons.

Emmerson and Damper [81] investigated fault tolerance
of single and multilayer perceptrons (MLPs), especially for
pattern recognition tasks. Backpropagation-trained MLPs
with different hidden nodes were considered in this work.

17330 VOLUME 5, 2017



C. Torres-Huitzil, B. Girau: Fault and Error Tolerance in NNs: A Review

After training, networks were subject to random connections
cuts, as a physically plausible type of fault. Experiments,
repeated several times and averaged, showed counterintu-
itively that fault tolerance does not improve as the number
of hidden units increases, and that backpropagation training
fails to exploit redundancy (additional hidden units). They
proposed a mechanism called augmentation to improve fault
tolerance, consisting in the replication of each hidden neuron
and their associated connections. Since each node now has
twice as many inputs as in the original network, the weights
connecting the augmented network’s hidden layer to the out-
put layer must be the half of those in the original network to
maintain the same input-output mapping, as it is shown in the
example in figure 6. Augmented networks showed better fault
tolerance, and the inserted redundancy, the excess nodes, was
verified by means of singular value decomposition.

FIGURE 6. a) A critical hidden neuron (7) in a feedforward neural
network and b) Explicitly augmenting redundancy by duplicating
neuron 7. The postsynaptic weights of neurons 7 and 7’ are halved.

Chiu et al. [82] addressed fault tolerance of feedforward
neural networks by measuring the sensitivity of links and
nodes in the network output, and implemented a technique
to ensure the design of networks that satisfy well-defined
fault tolerance criteria. Their method takes as input a well-
trained network and then follow two main steps, i) unimpor-
tant nodes in the hidden layers are removed, according to
the sensitivity measure and a threshold, and ii) the pruned
network is retrained and some redundant nodes are introduced
to this network so as to share the task of the critical nodes
(neurons with high sensitivity). Faults are injected as a weight
perturbation, and sensitivity of links and nodes are evaluated
in terms of the MSE. Two criteria for adding nodes are used,
1) adding extra nodes until the sensitivity of the current most
critical node is less than some proportion of the sensitivity
of the initial most critical node, and 2) adding extra nodes
until the number of nodes is equal to the original number
of nodes, in order to compare two networks of the same
size. Weights in the augmented network are modified in a
similar way as in [81]. The obtained results showed a consid-
erable improvement in the fault tolerance (changes affecting
weights) of networks trained for two multiclass classification
problems.

Chiu et al. [83] extended their previous work [82] and, in
this contribution, they proposed three methods for improving
fault tolerance of feedforward neural networks under a hybrid
approach, which involves both modifying training and use of
explicit redundancy. In the first method weights are restricted
to have low magnitudes during the backpropagation training,
since fault tolerance is degraded by the use of high magnitude
weights; at the same time, hidden nodes are added dynami-
cally to the network to ensure that the desired performance
can be obtained. The second method adds artificial faults to
various components (nodes and links) of a network during
training since injecting a specific fault during training can
produce a network that can tolerate that specific fault very
well. Perturbation of weight values and stuck at zero faults
were considered for synapses, and stuck at 0/1 faults for
nodes. The third method removes nodes that do not signifi-
cantly affect the network output, and then adds new nodes that
share the load of the most critical ones in the network. Note
that the first two methods of this work can be also considered
in the second category of the taxonomy for fault tolerance as
training was modified.

Phatak and Koren [65] studied fault tolerance in feed-
forward neural networks with a single hidden layer consid-
ering permanent stuck-at type faults of single components.
They proposed a method to synthesize fault tolerant neural
networks by replication of the hidden units. The method
exploits the computational characteristics of the intrinsic
weighted summation performed by neurons. It starts with a
near minimal network that learns the given input/output pat-
tern mapping. The hidden neurons are replicated as a whole
and inputs/biases of the output neurons are scaled down/up
accordingly. There is no majority voter to explicitly mask
out the faults. Compared to previous works that use stuck-
at-0 permanent faults, herein the fault model was extended
to allow permanent stuck-at-±W type faults on a single
component (weight/bias). Analytical, as well as, extensive
simulations showed that a significant amount of application-
dependent redundancy is needed to achieve complete fault
tolerance, despite the somewhat simple restrictive assumption
of single faults. Moreover, authors pointed out, as future
extensions, to include modifications of learning algorithms
to find weights and biases that optimize fault tolerance as a
promising alternative to be further explored.

Dias and Antunes [84] proposed a technique to improve
fault tolerance by changing the architecture of feedforward
neural networks after training, while maintaining its input-
output mapping unchanged. Following a similar approach
to previous works in this category, this technique evaluates
the elements of the network which are more sensitive to a
fault and duplicates inputs, bias, weights or even neurons,
according to the evaluation criteria. The fault model, used
for weights and inputs, is the stuck-at considering 0, min and
max values. The proposed dividing technique diminishes the
importance of the fault by splitting a potential faulty synapses
and dividing its original strength accordingly. A complete
critical neuron can also be duplicated, including all of its
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TABLE 3. Summary of some representative works for enhancing fault tolerance in neural models by modifying learning/training, with a representative
example of a NN topology used in the experiments. BP stands for backpropagation, WP for weight perturbation, WC for weight constraint, PT for penalty
term, and R for regularization.

connections to the previous layer and the connections coming
from this neuron to the next layer will have half of their previ-
ous values in the unmodified network. Interestingly, authors
in a further work introduces the Fault Tolerance Simulation
and Evaluation Tool that evaluates and assists to improve
fault tolerance for neural networks [85]. The tool is composed
of three main sub-tools: the Insertion tool, to receive the
neural network that were previously trained and prepared;
the Evaluator, for evaluation of the fault tolerance and the
Improver, for improving the built-in fault tolerance in an
integrated environment.

As a summary, methods for explicitly augmenting redun-
dancy in the neural model could be effective, but they often
result in large networks with too many hidden nodes and
parameters. Thus, pruning, used to determine the relevance
or contribution of hidden units and to identify excess units
that might be removed to produce a reduced network, is
of relevance in this approach. Even though these methods
do not appear to be different from the conventional redun-
dancy approach, such as triple modular redundancy schemes,
they are different in one major respect. There is no major-
ity voter to explicitly mask out the faults, but faults are
masked by exploiting the intrinsic characteristics of neu-
ral networks such as the weighted summation and the fact
that the hidden-layer nodes operate close to their saturation
points. However, most of these techniques in this category
make a trained network fault tolerant by replication, similarly
to the conventional approach for fault tolerance, whereas
the main question for neural computing is about the inher-
ent passive fault tolerance of neural networks, as discussed
in [86].

2) MODIFYING TRAINING/LEARNING
These methods modify conventional training/learning
schemes used for neural networks models in order to tolerate
faults a posteriori, i.e., by explicitly targeting fault tolerance
while training/learning to achieve the desired computational
task. A summary of some representative works in this cate-
gory is shown in table 3. According to [86], ANNmodels may
be described by the conceptual relation between two main
factors, as established in equation 2:

{ANN model} = {Architecture}
+ {Training/learning Paradigm} (2)

Following this conceptualization, in this category, two
main subcategories can be identified. On one hand, some
works have focused on the training experience provided to
the network for the development of techniques to obtain
fault-tolerant networks by adding noise, perturbations or by
direct faults injection during training. On the other hand,
some other works focus on the learning rule by including
a regularization/penalty term in the performance measure to
be improved to indirectly incorporate faults in conventional
algorithms such as backpropagation, or by a major adapta-
tion/modification of learning algorithms so as to, for instance,
search for weights values that are more equally distributed
and avoid saliency.

In the first subcategory, Sequin and Clay [68] showed
that fault tolerance can be improved by a suitable training
process, where a feedforward neural network is presented
with representative faults so as to learn an internal redun-
dant distributed representation. They modified the training
procedure such that temporary random faulty hidden units
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could be injected. For each pattern presentation, from one
to three hidden neurons were randomly selected to be faulty.
The resulting internal representation assumes a more spread-
out and distributed form that is also more tolerant to faults.
From experiments, both for classification and approximation
tasks, it was observed that training with only single faults
can lead to fault tolerance against multiple faults as well.
Another key remark is that weight values induce a sharpening
of the transition regions of the sigmoids and thus produce
more extreme binary output signals. However, for analog
approximation tasks it is more difficult to mask the effect of
faults.

Similarly, Arad and El-Amawy in [87] presented an algo-
rithm, derived from the backpropagation algorithm, with
built-in measures to promote fault tolerance during training.
They demonstrated that feedforward neural networks are able
to tolerate any combination of two faulty hidden units even
with mixed fault types. They considered a pattern presenta-
tion as the execution of the forward pass of the backprop-
agation algorithm for a particular pattern, assuming certain
number of faulty hidden neurons with a relatively higher
probability. A comprehensive presentation (CP) of pattern p
is defined to be the execution of all desired presentations
of the pattern. By varying the CPs parameters the network
can be trained to exhibit different fault tolerance degrees and
varying learning efficiencies. Each hidden-layer neuron can
be assumed faulty with a relatively higher probability in each
iteration. They argue that the ability to tolerate various fault
types can be associated with an increase in the size of the
training set due to the larger number of fault types considered.
Moreover, they confirmed that using critical fault types, stuck
at the extreme values of the activation function, results in fault
tolerance against any single faulty neuron stuck at any value
which lies between the two extreme values.

Most works in the second subcategory, in order to cope
with faults at recall phase, adds a regularization/penalty
term to the training cost function so as to bias the solu-
tion toward fault-tolerant networks. Commonly, well-known
learning algorithms, such as backpropagation, are modified
by introducing such terms in the error function to promote
uniform information distribution. Regularization is an essen-
tial technique that has been proved to be useful to improve
generalization ability of neural networks [96]–[98], and by
imposing smoothness constraints on the estimated function,
small changes in inputs or parameters produce small changes
in the computed outputs. Under this approach, there are two
main terms in the objective function as shown in equation 3:

E + λJ (3)

The first termE includes the standard error term used in learn-
ing algorithms such as backpropagation. The second term J ,
is the penalty function, which takes into account the errors
that arise due to faults, and λ is the regularization parameter
that controls the compromise between the degree of fault
tolerance and accuracy. When E is minimized, the error
between the target outputs and the faulty network outputs

is also minimized. Thus, the addition of these terms forces
the search to look for a solution with better fault tolerance.
The fault tolerance constraints in the modified training algo-
rithms can be interpreted as imposing regularity conditions
on the estimated function by the neural network, such as
weight decay for penalizing large weights, by adding noise to
the weights, and weight smoothing for uniform information
distribution.

Wei et al. [88] presented a learning method, derived from
the backpropagation algorithm, to improve the fault tolerance
in classification tasks. The classical backpropagation algo-
rithm develops nonuniformweights with a few that are critical
and many others that are not significant. During training, the
weights magnitude is constrained to be within a limited range
for evenly information distribution across weights. Authors
highlight that as some layers are intrinsically more important
than others, they only evaluate that information is evenly
distributed across the weights, which are between the same
pair of successive layers: if a weight has a relatively high
influence degree, its magnitude is constrained not to rise
temporarily. Two types of faults were considered: i) node fault
of stuck-at node’s extreme values and ii) connection faults,
which consider setting the relevant weights to zero.

Edwards and Murray [89] proposed a method for enhanc-
ing fault tolerance via penalty terms, which are incorporated
into the learning rule to optimize the networks for smoothness
of the solution towards low average weight saliency and
optimally distributed computation. Such method focuses on
small weight perturbation fault tolerance. Two penalty terms
are introduced, a first order term intuitively linked to the use
of weight-noise, particularly multiplicative noise, and also
a second order term is proposed using the well established
statistical theory of smoothing splines. Neural networks were
trained using a simple steepest descent algorithm with an
incorporated line search technique to optimize the step size in
multilayer perceptron networks. Fault tolerance was assessed
using the average value of the error hessian, as this value has
been shown to be directly related to the inverse of the fault
tolerance of a given network.

Hammadi et al. [90] proposed a constructive algorithm
for fault tolerant feedforward neural networks, which starts
with a single hidden neuron and incrementally adds neu-
rons whenever the network fails to converge. The baseline
algorithm is modified to update any weight whose relevance
is less than a given threshold, and the weights are updated
using the backpropagation algorithm. The relevance of a
given weight is defined as the maximum error caused at
the primary output by the stuck-at fault of this weight. The
algorithm consists of three main stages: training a normal
network using backpropagation, training of candidates where
only input-to-candidate and candidate-to-output connections
are trained, and neuron addition. This process is repeated until
the convergence criterion is satisfied or the maximum net-
work size is reached. The main fault type considered was the
loss of a connection between two neurons (open fault). The
used fault tolerance metric was the percentage of recognized
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patterns as function of the percentage of faulty weights in the
network. The constructive algorithm was based in a previous
work, where in [99] proposed a learning method to enhance
fault tolerance ability, which uses the Taylor expansion of the
output around fault-free weights, to estimate the relevance of
the weights to the output error. In this algorithm, the weight
that produces the maximum relevance is decreased.

Cavalieri and Mirabella in [91] proposed an algorithm that
updates synaptic weights so as to distribute their absolute
values as uniformly as possible in a multilayer perceptron
with sigmoidal activation functions, based on the observation
that a fault in large weights is critical for the fault tolerance of
the network as a whole, particularly for weights in the output
layer. The modified backpropagation algorithm updates each
weight only as long as the newweight does not exceed a given
threshold, which in turn is updated dynamically during the
learning phases based on the current weight values. The basic
principle of inhibiting large absolute weight values is at the
cost of larger network training convergence time. Two kinds
of faults were considered, stuck-at-0 and stuck-at-1 and fault
tolerance was assessed when multiple faults occur.

Bernier et al. [100] and Bernier et al. [37] presented an
algorithm that tries to maximize fault tolerance in a given net-
work. Such algorithm explicitly adds a new term to the back-
propagation learning rule related to the mean square error
degradation in the presence of weight deviations. Authors
presented a quantitative measure to evaluate the fault tol-
erance and the noise immunity of a multilayer perceptron.
This measure, termed mean squared sensitivity, was derived
from an explicit relation between the mean squared error
degradation of the multilayer perceptron in the presence of
perturbations and the statistical sensitivity. This new term can
be considered as a stabilizer that tends to smooth the square
error surface with respect to the weight values in order to
obtain configurations that are stable against perturbations of
their values. The proposed algorithm showed better perfor-
mance with respect to fault tolerance and similar performance
with respect to learning abilities to the conventional back-
propagation algorithm.

Zhou et al. [92] introduced a method called T3
(Test-Train-Test) in order to exploit the fact that the perfor-
mance of trained neural networks does not linearly decrease
with the increasing of the severity of faults characterized by a
fault rate. The proposed method uses a multi-node open fault
model where several faulty hidden nodes are concurrently
considered. T3 utilizes a validation set to build the fault curve
of a trained network, then it heuristically locates the inflection
point of the fault curve and repeatedly trains the network
according to the corresponding fault rate so that the spatial
redundancy is added to the network in a proper manner.
Eventually, the function of faulty nodes are undertaken by
the additional appended nodes, both the number and the
function of the appended nodes are different to those of
the faulty nodes. The T3 algorithm was only applied to
some feedforward neural networks whose hidden nodes are
dynamically appended during training.

Simon [93] modified the recursive training algorithm [101]
for the optimal interpolative classification network to include
distributed fault tolerance against small weight perturbations
from their trained values. Recall that, the optimal inter-
polative network is a three layer classification network that
grows only as many middle layer neurons as necessary to
correctly classify the training set [102]. The proposed algo-
rithm attempts to distribute the weights evenly throughout
the network to achieve fault tolerance in such a way that
both the sum of each row of the weight matrix is equal and
the sum of each column of the weight matrix is also equal.
The proposed technique can be viewed as a special purpose
regularization algorithm as it imposes some structure on the
network weights, specifically designed to minimize the effect
of particular types of faults.

Xiao et al. [94] studied the performance of faulty radial
basis function (RBF) networks considering a general node
fault model, which includes stuck-at-zero, stuck-at-one, and
the stuck-at level, with arbitrary distribution. Authors derived
an expression to describe the performance of faulty RBF
networks and identify an objective function. With this func-
tion, a training algorithm for the general node situation was
developed. A mean prediction error (MPE) measure that is
able to estimate the test set error of faulty networks is derived.
As previous works focused in feedforward networks, it is
not straightforward to compare the results for these neural
network models. In an extension of this work, in [95] studied
how the open weight fault and the multiplicative weight noise
degrade the performance of RBF networks, and then devel-
oped two learning algorithms, one batch mode and one online
mode. The first one produces the optimal weight vector with
respect to the average training set error of faulty networks. For
the online mode, a cyclic learning scheme, in each training
cycle an example is learned exactly once according to a fixed
order. From the experiments it was found out that when the
RBF nodes increase, the fault-tolerant ability can be further
improved.

As a summary, methods and techniques that modify
training/learning algorithms often significantly increase the
computational cost and slow down the convergence of train-
ing/learning, but the performance/fault-tolerance tradeoff is
solved during this phase without any external interaction
afterwards. They try to avoid that key or critical neural
elements appear, i.e., synapses/neurons that being faulty
cause a great impact on the function of the network or
in other words to evenly distribute information among the
network weights. Learning can induce intrinsic fault/error
masking ability by forcing neurons to work towards the satu-
ration regions of the nonlinear activation functions, so that
even a large variation of the weighted summation affects
the neuron output marginally [105]. Generally, fault toler-
ant neural networks generated by these methods appear to
exhibit better generalization than unconstrained solutions,
and also it appears that enforcing uniformity in the network
is similar to making all hidden units equally relevant in the
network.
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TABLE 4. Summary of some representative works for enhancing fault tolerance in neural models posed as constrained optimization problem, with a
representative example of a NN topology used in the experiments.

3) OPTIMIZATION UNDER CONSTRAINTS
In this approach, the training/learning process and fault tol-
erance are transformed into an optimization problem solved
by nonlinear optimization algorithms in order to find the
neural network topology and its parameters that perform a
given task and fulfill fault tolerance constraints as well [104].
Table 4 summarizes some representative works that fall in this
category. The fault tolerance constraints in the optimization
approach can be interpreted as imposing regularity conditions
on the estimated function by the neural network with respect
to the weights values.

Usually, the fault tolerance problem in this category has
been formulated as a constrainedminimax optimization prob-
lem where the goal is to minimize the maximum deviation
from the desired output for each input in the presence of
single unit faults in the neural network model:

min
W

max
i∈Vh

E(W i) (4)

subject to the following constraints:

d l − yl = 0, ∀l = 1, . . . , p (5)

Here the term E(W i) in equation 4 represents the error in
the network output when a hidden node i is removed, as
it is graphically shown in figure 4. The goal is to find a
weight configuration that minimizes E(W i) for all nodes;
minimization of the maximum E(W i) implies minimization
of each of the E(W i). The performance constraints, as indi-
cated in equation 5, capture the requirement that when all the
nodes in the network are functional, for each input x l to the
network the output yl must be equal the corresponding desired
output d l . The objective is to determine a weight matrix such
that the network not only classifies the patterns or performs
the computational task as desired, but it is also maximally
fault tolerant.

The main difficulty with a minimax optimization problem
is that the objective function is in general nondifferentiable;
hence well-known gradient-based methods cannot be used to
solve such problems. Fault tolerance posed as an optimization
problem does not explicitly add, replicate, any spatial redun-
dancy to the network, nor does it involves the modification of
standard training algorithms.

Neti et al. [66] proposed the concept of maximally fault
tolerant feedforward neural networks, where the determina-
tion of weights was formulated as a nonlinear optimization

problem. Authors provided a first formalization of the con-
cept of epsilon-fault tolerant neural network, as introduced in
section III. Their method selects the weights that perform the
required computation and have the additional property that
whenever any single hidden unit is deleted, the faulty network
continues to perform the computation satisfactorily. Pattern
recognition examples were analyzed showing that uniformly
fault tolerant solutions exist in a network with a single hidden
layer. Uniformity of fault tolerance is a measure of the extent
to which the computation performed is evenly distributed
through neurons in the hidden layer. To maximize the number
of different single hidden units while finding the weights
that minimize the error, a successive quadratic programming
algorithm to calculate the weights was used in this work.

Deodhare textit et al. [103] presented a technique for gener-
ating feedforward networks tolerant to the loss of a node and
its associated weights. The problem was also formulated as
a minimax optimization problem and two different solutions
were addressed: i) optimization is converted to a sequence
of unconstrained least-squares optimization problems, whose
solutions converge to the solution of the original problem.
Then a gradient-based minimization technique is applied to
the unconstrained minimization, ii) the problem is converted
to single unconstrained problem equivalent to the original
one. The methods proposed here lead to networks that exhibit
a partial degree of fault tolerance. However, authors claim that
those methods might be extended to ensure complete fault
tolerance. Both in terms of time and space, achieving fault tol-
erance in this approach is significantly more expensive than
previous methods. Authors argue that such problem mainly
arises due to the choice of using conventional optimization
algorithms to perform the minimization, thus more advanced
methods should be further explored.

Considering that genetic algorithms are a powerful tool for
optimization, some works have employed them to search for
a solution to fault tolerance. Zhou and Chen [104] employed
a genetic algorithm to improve the tolerance of feedforward
neural networks against an open fault, where a hidden node
and its associated weights are considered to be faulty. The
proposed method does not explicitly add any redundancy to
the network as other works in this category, nor does it modify
conventional training algorithm. The proposed method fol-
lows the key idea of genetic algorithms, maintain a population
of neural networks, then use some fault-tolerant measures,
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TABLE 5. Summary of some representative works that address active fault tolerance of neural networks.

fitness, to promote the population to evolve good fault
tolerance. Experiments show that the proposed method
improves fault tolerance as well as the generalization ability
of neural networks. Similarly, the approaches proposed in
[111] and [112] use genetic algorithms as the optimization
method of choice for obtaining fault tolerant multilayer neu-
ral networks. However, in the first work, a fault tolerant
multi-layer neural network, employing both hardware redun-
dancy andweight retraining in order to realize self-recovering
neural networks, is proposed, i.e., it provides active
fault-tolerance.

B. ACTIVE FAULT TOLERANCE
In this section, we present a brief review of some representa-
tive works that propose methods/techniques to achieve active
fault tolerance in neural models when targeted to physical
hardware implementations. Such works are summarized in
table 5. Under this approach, low-latency fault detection and
recovery techniques are required to ensure that a neural net-
work is reset into a fault-free and consistent state after a fault
has occurred and propagated.

Khunasaraphan et al. [106] introduced a self-recovery
mechanism called weight shifting applied to feedforward
neural networks and outlined a hardware architecture for
implementing this technique. Once a link or a neuron is
detected to be faulty, weight shifting is invoked. If some
links of a given neuron are faulty, their weights are shifted
to other fault-free links of the same neuron. In case of a
complete faulty neuron, all the output links of the output
neuron are considered to be faulty. The fault detection circuit
for links/neurons was considered as a black box in this work.
In a further work, [107], authors applied weight shifting to
recover a self-organized maps after some faulty link/neurons
occur during operation without retraining or hardware repair.
The fault detection or self-testing technique is not clearly
described but it is rather suggested that information coding
techniques can be employed for such purpose. Results were
presented and validated for a 2 × 2 self-organizing map.
To address fault detection, Tanprasert et al. [113] presented
a technique for detecting the faulty links and determining
the faulty weights in single-output two-layered feedforward
neural networks by using a set of predefined probing vectors
as inputs.

Hashmi et al. [108] described a biologically plausi-
ble computational model of cortical perceptual maps and

highlighted its inherent fault tolerance. They demonstrated
that such cortical maps can tolerate some failure modes
that can occur in commodity GPGPUs systems. The model
software implementation can intrinsically preserve its func-
tionality in the presence of faulty hardware, considering a
stuck-at fault model, without requiring any reprogramming
or recompilation. Periodically retraining of the application is
needed to adapt to the new configuration, but without explic-
itly specifying that configuration; the learning process will
automatically adjust to the faulty hardware. Fault injection
experiments validated that such systems are inherently far
more tolerant to permanent faults than conventional ones and
that can be applied for the robust implementation of tasks on
future computing systems built of faulty components.

Deng et al. [109] studied the impacts of timing errors in
hardware neural networks, feedforward multilayer models,
to suit the de-facto distribution of timing variation in each
individual chip. They proposed a timing variation-aware
retraining method, thereby mitigating the negative effects of
timing violations through the intrinsic resilience of neural
networks. Once the accumulated delay of all gates and wires
along a path exceeds the specified clock cycle, a timing vio-
lation occurs. Specifically, when timing errors significantly
affect the output results, they retrain the neural accelerators
to change their weights. In this way circumventing excessive
timing errors. Experimental results show that timing errors
in neural accelerators can be well tolerated for different
applications.

Finally, Naeem et al. [110] demonstrated that a network
model of spiking neurons can self-repair in the presence of a
uniform and significant (up to 80%) fault distribution. Recall
that, neurons of the central nervous system interact primarily
with action potentials or spikes, which are stereotyped electri-
cal impulses [120]. In this model, faults manifest themselves
as silent or near silent neurons because of a sudden drop in
probability of release (PR) at synaptic sites. The enhancement
of PR, associated with non-faulty or healthy synapses, by the
indirect retrograde signal is a key step in the repair process.
Authors hypothesize that this repair strategy is effective for
a nonuniform fault distribution because the proposed repair
mechanism relies on the level of neural activity within the net-
work being sufficient to maintain calcium oscillations across
all astrocytes. Authors point out that by moving toward a
more astrocentric computing paradigm that captures the self-
repairing capability of the brain, it will open up an entirely
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TABLE 6. Fault tolerance in non feedforward neural networks.

new generation of brain-inspired autonomous computing
systems.

C. BEYOND FEEDFORWARD NEURAL NETWORKS
As it was previously pointed out, most revised works
have been focused in feedforward neural networks and few
attempts have beenmade to analyze some other neuralmodels
for fault tolerance such as recurrent networks, RBF networks,
associative memories, or self-organizing maps (SOM). This
section provides a brief review of some of such works, sum-
marized in table 6, even though these do not propose any
technique to improve fault tolerance in those models.

Protzel et al. [67] investigated fault tolerance of continuous
time recurrent neural networks aimed at solving optimization
problems. Networks were subjected to up to 13 simultaneous
stuck-at faults for sizes up to 900 neurons. Fault locations
were randomly selected but no two stuck-at-1 faults are
allowed to occur within the same row or column, as this
automatically preclude a valid solution. In their study, mixed
stuck-at faults were not considered so as to distinguish and
compare the effect of a different fault type in the same loca-
tions. They defined a conditional performance measure by
viewing the faults as constraints to the problem. According
to results, optimization networks exhibit partial fault toler-
ance, which is achieved without the explicit use of redundant
components.

Nijhuis and Spaaenenburg [9] studied fault tolerance of
neural associative memories using the Hopfield model under
stuck-at-0 and stuck-at-1 faults in the neuron output, broken
connections and weight deviation of their nominal values.
The fault tolerance was considered to be the probability that
the network will still function if there are x faulty neurons
and y faulty connections. Results showed that the degree
of fault tolerance in such models strongly depend on the
assumed physical faults and the nature of the stored informa-
tion: number of stored patterns, their correlation and desired
radius of attraction. For small fault rates (below 20% of the
total number of connections) such neural models proved to
be less vulnerable to broken connections, whereas for large
fault rates deviations in the connection strengths have less
influence on the functioning of the network.

Leung et al. [114] studied the effect of multiplicative
noise and open weight faults on the performance of bidi-
rectional associative memories (BAM). Recall that a BAM
is a two-layer heteroassociator that stores a prescribed set

of bipolar pattern pairs, namely library pairs. They stud-
ied how many number of pattern pairs can be stored in a
faulty BAM even when there are some errors in the initial
stimulus patterns. They established some boundaries for the
degradation factor in the memory capacity, and margins on
noise providing a chance to recall the desired library pair.
Leduc-Primeau et al. [115] studied fault-tolerant associative
memories based on c-partite graphs. By analytical and sim-
ulation results they show that these associative memories
can be made resilient to faults by modifying the retrieval
algorithm. Faults were grouped into those affecting the rep-
resentation of the graph’s adjacency relationships, and those
affecting the state of the retrieval algorithm. For a case study,
the memory retains 88% of its efficiency when 1% of the
storage cells are faulty, or 98% when 0.1% of the binary
outputs of the retrieval algorithm are faulty.

Parra and Català [116] presented a sensitivity analysis
for determining the most critical neural elements in a RBF
network. Parametric faults in neural elements such as weights
and biases, which involves a tolerance parameter related to
multiplicative and additive noise in weights, were considered.
The RMSE was used to calculate the approximation quality
and as a measure of fault tolerance. The RBF networks and
their topologies consisted in one hidden layer with Gaussian
functions and one output layer with linear weighted addition.
They concluded that the larger the weights, the worse the fault
tolerance. Eickhoff and Rückert [117] studied the robust-
ness of RBF networks in noisy and unreliable environments.
If the network parameters are constrained, upper bounds
on the MSE can be determined under noise contaminated
parameters and inputs. A technique to identify sensitive
neurons and to apply methods to increase reliability or to
reduce noise to high sensitive neurons was only evaluated.
Sum et al. [121] studied two different node-fault-injection-
based on-line learning algorithms, including (1) injecting
multinode fault during training and (2) weight decay with
injecting multinode fault. By fault injection, either fault or
noise is introduced to a network before each step of training.
Proofs on the convergences of two node-fault-injection-based
on-line training RBF methods have been shown and their
corresponding objective functions were deduced. Some other
fault tolerant learning methods for RBF have been proposed
such as those reported in [94], [95], and [121]–[124].

Yasunaga et al. [118] studied the fault tolerant capa-
bility of SOM in the presence of defective neurons.
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under stuck-at faults. It was shown that defective SOMs can
eventually organize itself for fault tolerance if the defective
neuron stuck-output is larger than a critical-stuck-output.
Only a linear array was analyzed and discussed, where defec-
tive neurons, were concentrated in one place in the array,
forming what is called a defective-neuron cluster. In the
experiments, 100 neurons, including six defective ones, were
used. Talumassawatdi and Lursinsap [119] addressed fault
tolerance improvement in SOMs by using a technique of fault
immunization of the synaptic connections. Stuck-at-a faults,
where a is a real value, were considered. Only one neuron
can be faulty at any time, but no restriction on the number of
faulty links of the neuron is assumed.Weights are immunized
by adding a constant value that is increased or decreased
as much as possible without creating any misclassification.
Fault immunization is formulated as an optimization prob-
lem on finding the corresponding constant value for each
neuron.

V. OPEN CHALLENGES
Research directions that merit further exploration to enhance
fault tolerance in neural computing need to pointed out. Some
of these open issues - certainly not an exhaustive list - include
the following:

1) Novel fault models, more realist models need to be
developed based on a deep understanding of modern
fabrication technologies. Moreover, due to the vari-
ety of failure modes and the high level of interplay
involved, combinatorial strategies may be needed to
obtain consistent, high quality fault tolerant neural
mechanisms.

2) Fault tolerance at architecture and application level,
efficient large scale fault tolerance mechanisms need
to be designed while also leveraging the intrinsic char-
acteristics of underlying neural models. Scalability
of fault tolerance, currently is limited to small prob-
lem sizes, but neural networks are rapidly growing in
size and complexity for emerging machine learning
applications.

3) Fault tolerance across different neural models, fault
tolerance enhancement techniques applicability is ad-
hoc to specific neural model topologies, particularly for
feedforward neural networks; ensuring different fault
tolerance techniques operating at different levels is a
major research challenge.

4) Integration and coordination between different
approaches need be promoted. Even if a neural network
may have its rather inherent fault tolerance, some addi-
tional mechanisms to enhance it should be incorporated
for an specific implementation media.

5) Interdisciplinary interaction, reinforce potential
interactions between neuroscience, computational neu-
roscience and neural networks so as to look for bio-
logical plausible fault tolerant mechanisms that allows
to explore active fault tolerance principles and self
repairing mechanisms.

VI. CONCLUSIONS
The connectionist and distributed nature of neural computing
potentially leads to graceful degradation as exhibited by most
neural networks models, i.e., neural networks will not suffer
catastrophic failure, but any fault will influence the output to
some degree since all components take part in the compu-
tational task. Considering neurons and synapses as physical
entities that can fail independently is key in a truly distributed
and scalable computing model with biological plausibility.
Fault tolerance is not inherent within neural networks and
is far from being complete; it does need to be specifically
designed and built into the models. Approaching failure in
neural network models is possible to be detected by using a
continuous measure. The additional computational complex-
ity that arises in fault tolerance enhancement techniques is
absent in standard neural networks design.

In this paper, we presented a review of the main passive
techniques used for improving the fault tolerance of neural
networks, mainly for small size feedforward multilayer mod-
els, that exploit redundancy and fault masking. However, the
obtained results for feedforward multilayer neural networks
currently are both of relevance and a great opportunity for
further exploration, since such networks are the quintessential
elements of deep learning models, which have shown state-
of-the-art performance on real-world artificial intelligence
applications. The reviewed works have been categorized into
three main categories based on key parameters and mecha-
nisms to highlight their similarities and differences in pursu-
ing fault tolerance in neural networks. The key role of fault
tolerance in future computing systems has been highlighted
by an important body of work. From a pragmatic point of
view, the potential fault-tolerant property of neural models
will be crucial to the success of attempts to integrate large
scale neural models onto silicon, e.g. neural hardware accel-
erators, when problems of yield become unavoidable.
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