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ABSTRACT Cloud computing platform is one of themost important parts in the smart factory of industry 4.0.
Currently, most cloud computing platforms have adopted flash memory as the mainly storage for more
efficiency, because the flash memory having high capacity and speed. However, flash memory exhibits
certain drawbacks in terms of out-of-place updates and asymmetric I/O latencies for read, write, and erase
operations. These disadvantages prevent replacing traditional disks. Fortunately, the flash buffer can be used
to address these drawbacks, and its replacement policies provide efficiencymethods. Therefore, in this paper,
we propose a locality-aware least recently used (LLRU) replacement algorithm, which exploits both access
and locality characteristics. LLRU divides the LRU list into four lists: the hot-clean, hot-dirty, cold-clean, and
cold-dirty LRU lists. According to reuse probability and eviction cost, the eviction page is selected to ensure
effective system performance for cloud computing. The experimental results demonstrate LLRUoutperforms
other algorithms, including LRU, CF-LRU, LRU-WSR, and AD-LRU, which can optimize cloud computing
for smart factory of industry 4.0.

INDEX TERMS Flash memory, cloud computing, replacement policy, LRU, locality, storage.

I. INTRODUCTION
Not only the majority of mobile computing devices, such as
tablets, personal computers (PCs), smart phones, and per-
sonal digital assistants (PDAs), but also cloud computing
platforms, have been equipped with flash memory as part
of secondary storage, because of its efficient characteristics,
such as low power consumption, high reading speed, high
density, non-volatility, and solid-state reliability. It is a good
trend for the smart factory of industry 4.0, which is based on
cloud computing platform.

However, flash memory can not replace traditional disks
as unique secondary storage currently. Because its shortcom-
ings have not been solved efficiently, including: out-of-place
updates; asymmetric I/O latencies for read, write, and erase
operations, with erasing being higher thanwriting andwriting
higher than reading; and limited erase operation times [1].

The flash buffer replacement policies are considered
to offer effective solutions [2], therefore, many replace-
ment policies have been proposed to optimize flash
memory [3]. However, these policies exhibit certain common
characteristics:

1) In order to determine eviction costs, pages are catego-
rized as clean or dirty. Pages without writing are denoted as
clean, which do not require writing back to the flash and
incur a low cost when evicted. Pages including writing are
designated as dirty, which require writing back and incur a
high cost when evicted [4].

2) In order to determine reuse probability, pages are cat-
egorized as hot or cold. Pages with only one-time access
are denoted as cold pages, and are considered as having
a low probability for reuse [5]. Cold pages have a higher
probability of being evicted. Pages with more than one-time
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access are designated as hot, and are considered as having a
high probability for reuse, as well as a lower probability of
being evicted.

Although current proposed replacement policies have con-
sidered asymmetric eviction costs and various reuse probabil-
ities [6], these policies still exhibit certain problems that need
to be addressed:

1) The classification of pages as hot or cold can reflect
reuse probability to a certain extent, but not with sufficient
accuracy. For example, given two pages, one is accessed
twice and the other more than 100 times, both are hot pages,
moreover, are considered to have the same reuse probabil-
ity. However, it is clear the page of being accessed more
than 100 times has a higher reuse probability than that only
accessed twice.

2) Clean pages are evicted first if there are clean pages in
the buffer in the current replacement policies for lower evic-
tion costs. However, this rule is too absolute. For example,
when selecting one eviction page from two pages, where one
is cleanwith thousands of access times, and the other is a dirty
cold page, it may be preferable to evict the dirty cold page.

Both above issues can be considered as the locality prob-
lem, which is the greatest advantage of the LRU replacement
policy. The mean of exploiting locality is the key to flash
memory optimization.

Therefore, we propose the locality-aware least recently
used (LLRU) replacement algorithm in flash memory for
cloud computing, which exploits both access and local-
ity characteristics. The LLRU replacement policy consists
of three steps: firstly, split the LRU list into four lists,
the hot-clean, hot-dirty, cold-clean, and cold-dirty LRU lists;
secondly, apply the conversion protocol, where pages are
dynamically changed among these four LRU lists, so that a
page in the cold-clean LRU list will be inserted into the hot-
dirty LRU list after writing; and thirdly, according to both
access times and eviction costs, select the eviction page from
the four LRU lists.

We simulated LLRU by using certain types of traces,
different read/write ratios and localities. The experimen-
tal results demonstrate that the LLRU algorithm outper-
forms others, including LRU, CF-LRU, LRU-WSR, and
AD-LRU. LLRU achieves an improvement of 13.5%, 10.4%,
11.8%, 5.2% over LRU, CF-LRU, LRU-WSR, and AD-LRU,
respectively.

The specific contributions of our paper can be summarized
as follows:

1) We present a novel LLRU algorithm for more efficiency
flash memory, which not only considers asymmetric eviction
costs and hot/cold characteristics, but also takes locality into
account when evicting pages.

2) LLRU applies both reuse probability and eviction
costs to select eviction pages from four LRU lists, which
can ensure the evicted pages have minimal value to the
system.

3) The experimental results demonstrate the effectiveness
of the proposed LLRU algorithm.

The remainder of this paper is organized as follows.
In section II, we present the theoretical background and
research motivation. In section III, the proposed Locality-
aware LRU replacement algorithm (LLRU) is explained. The
experimental methodology is described in section IV, and the
results provided in section V. A discussion of related work is
provided in section VI. Finally, we present a brief conclusion
in section VII.

FIGURE 1. Flash memory architecture.

II. THEORETICAL BACKGROUND AND
RESEARCH MOTIVATION
A. FLASH MEMORY ARCHITECTURE
Fig. 1 illustrates the flash memory architecture. In the buffer
manager section, the RAM buffers recently used pages,
resulting in faster access [5]. Erase and write operations
are also reduced if most occur in the RAM [10]–[12]. Fur-
thermore, the replacement policy applied in the buffer man-
ager is key to the flash memory’s performance [15], [16].
The buffer manager’s replacement policy consists of the
followings [17], [18]:

1) optimizing flash access efficiency, by reducing average
flash access time, which can be achieved by improving the hit
ratio;

2) improving the write operation hit ratio, which reduces
write operations to the flash to prolong flashmemory lifetime.

B. LEAST RECENTLY USED (LRU)
REPLACEMENT ALGORITHM
At present, the buffer manager mainly adopts LRU-based
replacement algorithms. The LRU replacement algorithm
maintains a LRU list, in which the most recently used (MRU)
position records the most recently used page, while the LRU
position records the least recently used page. Therefore,
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the LRU list changes dynamically [19]. When a page is
accessed, it is inserted into the MRU position, and all other
pages are moved corresponding. When a new page that is
not in the LRU list is accessed, the algorithm must evict the
page in the LRU position to buffer the new page, and the new
page is inserted into the MRU position. Most replacement
algorithms employed by the buffer manager are based on
LRU [7].

C. MOTIVATION
LRU-based replacement algorithms perform effectively to a
certain extent [9], which mainly stems from the following
aspects.

1) The LRU replacement algorithm is effective in mining
locality. When eviction is required, LRU always selects the
page in the LRU position. Since the LRU position page is
the least recently used, it has the lowest probability of being
reused.

2) LRU-based replacement algorithms categorize pages as
clean or dirty. They prioritize the eviction of clean pages,
as clean pages do not write back to the flash, which results
in a lower cost.

3) LRU-based replacement algorithms categorize pages as
cold or hot. Cold pages are only accessed once, while hot
pages are accessed more once. These algorithms prioritize
the eviction of cold pages as these have the lowest reuse
probability.

However, at times, points 2 and 3 above are in con-
flict, as there are hot-clean, hot-dirty, cold-clean, and cold-
dirty pages. Hot-clean, cold-clean, and cold-dirty pages
are all candidates for eviction. It is challenging to obtain
efficient system performance by simply using a basic
rule to select the eviction page, as it is difficult to
determine the page with minimum cost to the system
performance [13], [14].

In this paper, we implement a mathematical model to
demonstrate this challenging problem:

PC = EC ∗ CHG (1)

where PC denotes page cost, which represents the cost
to system performance if the page is evicted. The lower PC
value, the less cost to system performance, in which case it is
preferable to evict the page. EC denotes the page’s eviction
cost. If a page is dirty, EC will be higher. Clean pages do not
need to write back when evicted, which means their EC value
is constant. However, dirty pages need to write back when
evicted, so their EC value is also constant. CHG denotes
the probability of reuse. If the page is hot, the CHG will
be higher. All cold pages have the same CHG, as do all
hot pages, in most current replacement policies. However,
different hot pages need to assign different CHG values. For
example, two pages, one with two access times and the other
with 1000 times, must be assigned different CHG values
obviously. Therefore, the greatest challenge is how to assign
CHG values for each page.

III. LOCALITY-AWARE LRU REPLACEMENT
ALGORITHM (LLRU)
An overview of the LLRU replacement algorithm in the buffer
manager is presented in subsection III.A. The organization
of LRU lists is explained in subsection III.B, while dynamic
adjustment is introduced in subsection III.C. The eviction
model, based on locality, access times, and eviction cost,
is provided in subsection III.D. The time complexity of LLRU
is analysed in subsection III.E.

A. LLRU OVERVIEW
LLRU is implemented in the LRU replacement algorithm in
the buffer manager, and aims to provide high efficiency for
flash memory.

The purpose of RAM in flash memory is to store valuable
pages for reuse, therefore, the buffer manager must store the
most valuable pages, which are also considered as having
the highest cost to flash memory when evicted. In current
buffer management, clean and dirty pages have different costs
when evicted, as a dirty page must write back to the flash,
but a clean page does not need to. Similarly, cold and hot
pages incur different costs when evicted, with a hot page
having a higher reuse probability. Therefore, evicting a hot
page may lead to increased flash access times, which means
the performance cost is higher. Therefore, in the replacement
algorithm, locality, cold/hot and clean/dirty characteristics
are all parameters for determining the page value in the
buffer, and exploitation of these characteristics extremely
challenges.

Therefore, in this paper, we propose the LLRU replacement
algorithm for high efficiency flash memory, shown in Fig. 2.
The LLRU consists mainly of the following three features:

1) In order to take cold/hot and clean/dirty characteristics
into consideration, the traditional single LRU list is parti-
tioned into four LRU lists: the cold-clean, cold-dirty, hot-
clean, and hot-dirty LRU lists.

2) As a page in the buffer is dynamically changed with
increased access times, a cold page will become a hot page,
and a clean page will become a dirty page. LLRU contains a
conversion protocol.

3) One page is evicted with the eviction model, which com-
bines the locality, cold/hot, and clean/dirty characteristics.
The eviction model provides higher accuracy in evaluating
the page cost in the buffer.

B. LRU LIST SPLITS
In order to consider the cold/hot and clean/dirty characteris-
tics, the LLRU algorithm divides the traditional single LRU
list into four LRU lists. All pages being read only once are
placed in the cold-clean LRU list; all read-only pages being
accessed more than once are placed in the hot-clean LRU list;
all write pages being accessed only once are listed in the cold-
dirty LRU list; and all write pages being accessed more than
once are listed in the hot-dirty LRU list.

A new page, which is not in the buffer, will be inserted
into the cold-clean or cold-dirty LRU list according to
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FIGURE 2. LLRU framework.

its operation. If the new page is read, it will be placed in
the cold-clean LRU list; if it is written, it will be placed in
the cold-dirty LRU list. Algorithm 1 shows the new page
insertion algorithm.

Algorithm 1 New Page Insertion Algorithm
Definition:
NP: the new page
CC: cold-clean LRU list
CD: cold-dirty LRU list
Our new page insertion algorithm:
if the operation to NP is read

insert NP into the MRU position of CC;
Else

insert NP into the MRU position of CD;

C. CONVERSION PROTOCOL
Pages in the LRU lists change dynamically with real-time
access. If a cold-clean page reads/writes, its status is changed;
therefore, the page needs to be deleted from the cold-clean
LRU list and inserted into the hot-clean/hot-dirty LRU list.

In order to describe the dynamic changes among the four
LRU lists, the LLRU replacement algorithm contains a con-
version protocol.

1) Pages in the cold-clean LRU list will be inserted into the
hot-clean LRU list when they undergo read operations.

2) Pages in the cold-clean LRU list will be inserted into the
hot-dirty LRU list when they undergo write operations.

3) Pages in the cold-dirty LRU list will be inserted into
the hot-dirty LRU list whenever they undergo read/write
operations.

4) Pages in the hot-clean LRU list will be inserted into the
same list when they undergo read operations.

5) Pages in the hot-clean LRU list will be inserted into the
hot-dirty LRU list when they undergo write operations.

6) Pages in the hot-dirty LRU list will be inserted into
the hot-dirty LRU list whenever they undergo read/write
operations.

Fig. 3 illustrates the conversion protocol. Cold-clean and
cold-dirty are two statuses for the new page; therefore, these

FIGURE 3. Conversion protocol.

Algorithm 2 Conversion Algorithm
Definition:
P: page
CC: cold-clean LRU list
CD: cold-dirty LRU list
HC: hot-clean LRU list
HD: hot-dirty LRU list
Our Conversion:
If the operation to P is read

If P is in the CC
delete P from CC to insert HC;

Else if P is in the CD
delete P from CD to insert HD;

Else if P is in the HC
move P to the MRU position in HC;

Else
move P to the MRU position in HD;

Else
If P is in the CC

delete P from CC to insert HD;
Else if P is in the CD

delete P from CD to insert HD;
Else if P is in the HC

delete P from HC to insert HD;
Else

move P to the MRU position in HD;

are the starting points for the conversion. Algorithm 2 shows
the pseudocode for implementing the conversion protocol.

D. EVICTING PAGE WITH EVICTION MODEL
The most important task of the replacement algorithm in the
buffer manager is to determine the evict page. We propose
an eviction model for the LLRU algorithm, which is used to
determine the evicted page.

All current replacement algorithms have a common draw-
back, which is difficulty in selecting the lowest-cost page.
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The proposed eviction model is based on locality, cold/hot,
and clean/dirty characteristics.

1) In order to distinguish the different eviction costs for
clean/dirty pages, the eviction model assigns different evic-
tion costs to clean and dirty pages.

2) In order to distinguish the different eviction costs for
cold/hot pages, the eviction model assigns a different evic-
tion cost to each page according to access times, which is
preferable for locality.

3) An eviction page is selected from among four pages in
the LRU position of the four LRU lists. In this way, locality
is also retained.

Algorithm 3 LLRU Algorithm
Definition:
PCC : the page in LRU position of cold-clean LRU list
PCD: the page in LRU position of cold-dirty LRU list
PHC : the page in LRU position of hot-clean LRU list
PHD: the page in LRU position of hot-dirty LRU list
ECC : evict cost for clean page
ECD: evict cost for dirty page
ATCC : accessed times of PCC
ATCD: accessed times of PCD
ATHC : accessed times of PHC
ATHD: accessed times of PHD
Our Conversion:
PCCC = ECC*ATCC ;
PCCD = ECD*ATCD;
PCHC = ECC*ATHC ;
PCHD = ECD*ATHD;
compare PCCC , PCCD, PCHC and PCHD;
choose the smallest one;
EP=smallest one;

Eq. (2) shows the evictionmodel, where PC is the page cost
and EC is the eviction cost for the page, while AT denotes
access times for each page. In our proposed eviction model,
AT is used to represent CHG, which is shown in Eq. (1).
The higher AT value, the more access times, and also means
the page is hotter. Therefore, LLRU not only distinguishes
cold/hot, but also implements in a fine-grainedmanner, which
is more appropriate for evaluating the page cost.

PC = EC ∗ AT (2)

Algorithm 3 shows the LLRU algorithm. PCC denotes the
page in the LRU position of cold-clean LRU list; PCD denotes
the page in the LRU position of the cold-dirty LRU list;
PHC denotes the page in the LRU position of the hot-clean
LRU list; and PHD denotes the page in the LRU position of
the hot-dirty LRU list. ECC denotes the eviction cost for a
clean page, which is the same for all clean pages;ECD denotes
the eviction cost for a dirty page, which is the same for all
dirty pages. ATCC denotes the access times of PCC , ATCD
denotes the access times of PCD, ATHC denotes the access
times of PHC , and ATHD denotes the access times of PHD.
According to Eq. (2), the smallest PC value among PCC ,

PCD, PHC , and PHD is selected, and the page with the smallest
PC value is evicted.

E. TIME COMPLEXITY ANALYSIS OF LLRU ALGORITHM
We can easily calculate the time complexity of this algorithm.
The access time complexity of the four LRU lists is O (1), and
the maximum time cost is the selection of the replacement
page.The selection of the evicted page can be done within a
constant time. Therefore, the total time complexity of LLRU
is O(1).

IV. EXPERIMENTAL SETUP
We used the Flash-Dbsim [8] simulator in our experiment.
Flash-DBsim is an efficient, reusable, and configurable flash
memory system simulation platform. Many previous studies
have adopted this simulator to compare performances of the
LRU replacement algorithm.

TABLE 1. NAND flash configuration.

A. SYSTEM CONFIGURATION
In our experiment, we used Flash-DBSim to simulate a
128MB flash memory device, containing 64 pages, and the
page size is 2KB. The cost of reading, writing, erasing in
the flash memory is 25us/page, 200us/page, 1.5ms/block,
respectively. The maximum number of flash erases is only
100,000. The specific configuration information is shown
in Table 1.

TABLE 2. Test data set.

B. WORKLOADS
In order to evaluate the proposed LLRU, we randomly gener-
ated four kinds of test data shown in Table 2, where ‘‘x%y’’ in
the read/write ratio means the read operation accounts for x%
and the write operation for y%, while ‘‘x%y’’ in the locality
means x% of the operations are centered on y% of the data
pages.

We applied the following criteria to evaluate the perfor-
mance of the buffer replacement algorithm: (1) hit ratio;
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(2) number of physical read operations (read flash); (3) num-
ber of physical write operations (write flash); and (4) runtime.

C. SIMULATED CACHE CONFIGURATIONS
In order to evaluate the proposed LLRU, we compared it to
the following configurations.

1) BASELINE
The default LRU replacement policy is used as the baseline
policy in this study.

2) CF-LRU
The CF-LRU [4] algorithm, which is based on the LRU, con-
siders the flash memory write cost to be significantly higher
than the read cost, and replaces the clean data preferentially,
which reduces write operations and improves flash memory
performance. In this study, we set the w parameter to 0.5 for
the CF-LRU algorithm, meaning that the replacement area
accounts for half of the total cache size. The hit ratio of
CF-LRU algorithm is related with w, when w is close to 0,
CF-LRU will degrade to be LRU algorithm, when w is close
to 1, the entire area can be used to store dirty pages. Therefore,
setting w to 0.5 is reasonable.

3) LRU-WSR
The LRU-WSR [6] algorithm distinguishes between hot and
cold data, preferentially replaces clean and cold data pages,
delays the dirty and hot data pages, to reduce flash write
operations.

4) AD-LRU
The AD-LRU [2] algorithm divides buffer into cold and hot
zones. Hot areas store pages with at least twice accessed.
The hot area size is dynamically adjusted, while the cold area
capacity has a lower bound of min_lc. When the capacity of
the cold zone is greater than or equal to min_lc, replacement
occurs in the cold zone; when it is less than min_lc, replace-
ment occurs in the hot zone. According to the literature [2],
we set themin_lc parameter to 0.1 for theAD-LRU algorithm.

V. RESULTS AND ANALYSES
In this section, we present the various LLRU perfor-
mances. In section V.A, we provide the hit ratio analysis;
in section V.B, the read count is analyzed. In section V.C,
we present the write count, and in section V.D, runtime is
discussed. Finally, we explain the impact of parameters in
section V.E.

A. HIT RATIO ANALYSIS
Fig. 4 to 7 illustrate the hit ratio of each buffer algorithm
when operating on different data sets. It can be seen that an
algorithm that considers data access frequency and hot/cold
characteristic is much more effective than those without con-
sidering.

When the buffer size is 5MB, LLRU has a higher hit ratio
than other algorithms for the T1 dataset. The AD-LRU buffer
replacement algorithm has a hit ratio of approximately 32%,
the LRU algorithm approximately 29%, and our proposed

FIGURE 4. Hit ratio comparison of different algorithms when use T1.

FIGURE 5. Hit ratio comparison of different algorithms when use T2.

FIGURE 6. Hit ratio comparison of different algorithms when use T3.

LLRU buffer replacement algorithm approximately 36%,
which is higher than the LRU algorithm by nearly 7%. When
the data is better localized, as in T4, we observe that the
LLRU with a buffer size of 4M achieves a hit ratio as high
as 79%, while that of the ordinary LRU is only 59%. There-
fore, the LLRU offers a significant advantage for effective
locality.
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FIGURE 7. Hit ratio comparison of different algorithms when use T4.

FIGURE 8. Read count comparison of different algorithms when use T1.

FIGURE 9. Read count comparison of different algorithms when use T2.

B. READ COUNT STATISTICS
Fig. 8 to 11 illustrate the number of physical read opera-
tions for each buffer replacement algorithm using different
test data sets. It can be seen that algorithms considering
both data access frequency and hot/cold characteristic read
far fewer times than others. In the case of the 5MB buffer
size, the LLRU reads approximately 1.9 million times in the
T1 data set, while the LRU reads the flash 2.1 million times,

FIGURE 10. Read count comparison of different algorithms when use T3.

FIGURE 11. Read count comparison of different algorithms when use T4.

FIGURE 12. Comparison of different LRU algorithm write counts when
use T1.

and the AD-LRU approximately 2.05 million times. There-
fore, we conclude that LLRU can reduce read operations.

C. WRITE COUNT STATISTICS
Fig. 12 to 15 illustrate the number of physical write operations
for each buffer replacement algorithm using different test
data sets. It can be seen that algorithms considering both
data access frequency and hot/cold characteristic write to the
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FIGURE 13. Comparison of different LRU algorithm write counts when
use T2.

FIGURE 14. Comparison of different LRU algorithm write counts when
use T3.

flash far fewer times. In the case of the 5MB cache size,
the LRU writes approximately 286,000 times in the T1 data
set, while the AD-LRU writes approximately 200,000 times,
and the LLRU writes only 195,000 times. Furthermore, with
the 4MB cache size, the LRU writes to the flash approxi-
mately 45W times in the T4 data set, the AD-LRU approx-
imately 18.5W times, and the LLRU writes to flash memory
only 13W times. Therefore, the LLRU can reduce write oper-
ations to the flash memory, which reduces performance cost.

D. RUNTIME STATISTICS
Fig. 16 to 19 illustrate the runtime comparison of each
buffer replacement algorithm when performing different test
data sets. We compare LLRU with the disk-oriented buffer
algorithm LRU, as well as cache-oriented replacement algo-
rithms, namely CF-LRU, LRU-WSR, AD-LRU, and LLRU.

The runtime consists of the times for reading the flash,
writing to the flash time, and erasing. Although the runtime
of AD-LRU and LLRU are almost the same running T4 with
5 MB buffer, the LLRU algorithm for flash memory per-
forms much faster than others mostly. The reduced runtime
is mainly a result of decreased read and write operations.
Moreover, the erase operations are also decreased due to

FIGURE 15. Comparison of different LRU algorithm write counts when
use T4.

FIGURE 16. Comparison of different LRU algorithm runtimes when use T1.

FIGURE 17. Comparison of different LRU algorithm runtimes when use T2.

reduced write operations. Therefore, the LLRU exhibits supe-
rior performance to other algorithms.

For the reason of exception, the locality of T4 is well,
the best among these four data sets. Therefore, it’s eas-
ier to cache the useful pages in the buffer for future use
when having enough buffer. Fig. 7 has shown the highest hit
ratio of AD-LRU and LLRU when running T4 with 5MB.
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FIGURE 18. Comparison of different LRU algorithm runtimes when use T3.

FIGURE 19. Comparison of different LRU algorithm runtimes when use T4.

Both AD-LRU and LLRU cache the most valuable pages in
the buffer when running T4 with 5MB.

E. IMPACT OF PARAMETERS
Flash read and write operations incur different costs, and
determining optimal parameters for an algorithm is often
challenging. The cost of replacing a dirty page is much higher
than that of replacing a clean page. Therefore, we assume that
the replacement cost for a clean page is 1, and that for a dirty
page is n. In this section, we analyze the impact of different
replacement costs on the LLRU.

The buffer size is set to 5MB, while the dirty page replace-
ment cost is increased from 1 to 20, whichmeans it is changed
from equal to that of a clean page to 20 times more.

As shown in the Fig. 20 to 23, in the cases where data
locality is not very efficient (T1, T2, T3), we prefer to replace
the clean page. In the case of improved locality data (T4),
we obtain optimal simulator operation when the cost of
replacing the dirty page is 18 times that the clean page.
Therefore, in the entire testing process of testing, we use a
clean/dirty page replacement cost ratio of 1 to 18.

FIGURE 20. Cost of running the program at different times when use T1.

FIGURE 21. Cost of running the program at different times when use T2.

VI. RELATED WORK
Read and write operations in flash memory are asymmetric
in terms of response time and energy consumption [20]–[23].
A great deal studies have been conducted on buffer replace-
ment algorithms to improve flash efficiency.

CF-LRU is the first flash-based buffer replacement algo-
rithm, which divides the LRU list into work and replacement
areas. It is preferable to select a clean page to be replaced
from the replacement area. This approach reduces the write
back operations from dirty pages. The replacement area size
is also very important: if it is too large, the buffer hit rate will
be too low; if it is too small, many dirty pageswill be replaced,
resulting in increased write operations. The work space size
can be specified at the beginning of the experience, or dynam-
ically adjusted while the program is running.

The LRU-WSR is another buffer management algorithm
based on flash characteristics, proposed by Hanyang Uni-
versity in Korea. This method distinguishes buffer between
hot and cold data, preferentially replaces clean and cold data
pages, and delays the dirty and hot data pages, thereby reduc-
ing the flash access cost to a certain extent. However, it is
likely to add extra overhead in replacing the hot clean pages.
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FIGURE 22. Cost of running the program at different times when use T3.

FIGURE 23. Cost of running the program at different times when use T4.

The CCF-LRU algorithm categorizes data pages as having
hot or cold properties, as well as dirty or clean attributes.
The aim of the replacement concept is to replace as many
cold clean data pages as possible, particularly those have been
accessed only once, before replacing the hot pages.

The AD-LRU algorithm divides the buffer into hot and
cold areas. Hot pages are those accessed at least twice, and
cold pages are those accessed only once. The size of the
hot and cold regions is dynamically adjusted. The cold area
capacity has a bound of min_lc. When the capacity is greater
than or equal to min_lc, the replacement operation occurs in
the cold zone, and when it is less than min_lc, the replace-
ment operation occurs in the hot zone. However, AD-LRU
leads to cold pages being resident in the buffer long-term for
priority replacing clean pages, which wastes valuable buffer
resources.

VII. CONCLUSION
In this paper, we have proposed the LLRU replacement algo-
rithm to optimize cloud computing for smart factory of indus-
try 4.0, which exploits both reuse probability and locality
characteristics. The LLRU replacement policy consists of
three steps: firstly, the LRU list is divided into four lists,

the hot-clean, hot-dirty, cold-clean, and cold-dirty LRU lists;
secondly, a conversion protocol is applied, so that pages are
dynamically changed among the four LRU lists. For example,
a page in the cold-clean LRU list will be inserted into the hot-
dirty LRU list after writing; and thirdly, according to both
access times and eviction costs, the eviction page is selected
from the four LRU lists. We simulated the LLRUwith certain
kinds of traces, different read/write ratios and localities. The
experimental results demonstrate the LLRU algorithm out-
performs others, including LRU, CF-LRU, LRU-WSR, and
AD-LRU, which can optimize cloud computing for smart
factory of industry 4.0.
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