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ABSTRACT Improving the accuracy of power system load forecasting is important for economic dis-
patch. However, a load sequence is highly nonstationary and hence makes accurate forecasting difficult.
In this paper, a method based on wavelet decomposition (WD) and a second-order gray neural network
combined with an augmented Dickey–Fuller (ADF) test is proposed to improve the accuracy of load
forecasting. First, the load sequence is decomposed byWD to reduce the nonstationary load sequence. Then,
the ADF test is adopted as the test method for the stationary load sequence of each decomposed component
after WD in which the test results determine the best WD level. Finally, because forecasting the wavelet
details characterized by high frequencies is difficult owing to its fluctuation, a second-order gray forecasting
model is used to forecast each component after WD. Furthermore, to obtain the optimum parameters of the
second-order gray forecasting model, the neural network mapping approach is used to build the second-order
gray neural network forecasting model. The simulation result of a real load sequence verifies that the method
proposed in this paper can effectively improve the load-forecasting accuracy.

INDEX TERMS Augmented Dickey–Fuller test, load forecasting, neural network mapping, second-order
gray neural network forecasting, stationary load sequence.

I. INTRODUCTION
Load forecasting is one of the key challenges in the devel-
opment of a power-supply plan and the balance between
supply and demand of a power grid. It is also the foundation
of power market operation as well as an important link in
power planning. Improving the accuracy of load forecasting is
helpful in improving the utilization ratio of power equipment
and reducing energy consumption. Load-forecasting methods
can be broadly divided into two categories. The first type of
load-forecasting model is the statistical model such as the
time-series method, which is developed based on the analysis
of the inherent characteristics of historical data. The second
type of load-forecasting model is based on related factors
such as meteorological factors or price. However, quantifying
the complicated interactions of different climate and load
conditions needs more consideration, which, for the second
model, is the auxiliary input. Therefore, we use the firstmodel
in the present study.

Until the present, many load-forecasting methods such as
the continuation method, artificial neural networks [1]–[3],
time-series method [4], Kalman filters [5], [6], support vec-
tor machine [7], and gray forecasting model [8], [9] are
commonly used. In [1], load-forecasting models based on
different neural networks were compared. The results showed
that load-forecasting models based on the Elman neural net-
work load were more accurate. The effect of climate change
on load forecasting was discussed in [10]. In [11], a new
short-term load-forecasting method was proposed, and the
fittingmethodwas discussed. The short-term load forecasting
method based on root locus was presented, and the error
convergence was guaranteed [12]. In [13], by considering the
India electric power market as the research object, short-term
load forecasting based on an extreme learning machine was
proposed. A short-term load-forecasting model based on the
feedback network and principal component decomposition
was proposed in [14]. Big data theory was widely used in a
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load-forecasting model in [15] and [16]. A load-forecasting
model based on wavelet network was proposed in [17].
In [18], the spatial load forecasting of an urban distribution
network based on the cloud and the cellular automata theories
was presented. As far as the recent studies are concerned,
most of the models were directly modeled and predicted. The
nonstationary characteristics of the load are important factors
that affecting the accuracy of forecasting.

The wavelet decomposition (WD) method has been widely
investigated [19]–[22], as it can reduce the nonstationary
characteristics of a series and improve forecast accuracy.
In [19], the selection of a mother wavelet was studied. Typ-
ically, the load series is decomposed by a wavelet, and the
components are then separately modeled [20]–[22]. With
regard to the recent research works, two problems arise in
the use of WD to process the time series. First, no theoretical
basis is available for the determination of the WD level,
and secondly, it lacks the ability to predict high-frequency
components.

To solve the first problem, a method of selecting the
WD series based on an augmented Dickey–Fuller (ADF) test
is proposed in this paper. For the second problem, a load-
forecasting model based on a second-order gray forecasting
model is adopted. To obtain the optimum parameters of the
second-order gray forecasting model, a neural network map-
ping approach is used to build the second-order gray neural
network forecasting model [GNNM (2, 1)]. The simulation
result verifies that the method effectively improves the load-
forecasting accuracy.

II. WD BASED ON ADF TEST
A. WD
WD is a powerful tool for analyzing nonstationary and non-
linear signals. WD is used to process the load series in this
work, and can reduce the nonstationarity of the load series
and use it as the basis to improve the forecast accuracy.WD is
expressed by the following equation:

WTx(b, a) =
1
√
a

+∞∫
−∞

x(t)ψ∗
(
t − b
a

)
dt, (1)

where WTx(b, a) is the coefficient that represents the extent
to which load sequence x (t) and the scaled mother wavelet
match. Thus, for all a and b associated with a signal, the set
of all wavelet coefficients WTx(b, a) is related to the mother
wavelet, where a and b are real and ∗ denotes the complex
conjugation. Scale parameter a controls the spread of the
wavelet, and translation parameter b determines its central
position.

We let a = 1
2s and b =

k
2s , where s and k are integers. The

discrete wavelet transform is described by the equation:

ωk,s =

+∞∫
−∞

x(t)ψk,s(t)dt. (2)

FIGURE 1. Mallat decomposition algorithm.

The inverse wavelet transform is described by the follow-
ing equation:

x(t) = C−1ϕ

∞∫
−∞

∞∫
−∞

dadb
a2

WTx(b, a)ψ∗
(
t − b
a

)
. (3)

TheMallat algorithm [23] is a fast algorithm for computing
the wavelet transform based on multiresolution analysis. The
load series is projected into the scale space and wavelet
subspace to obtain the approximate and detailed signals. The
Mallat algorithm flow is shown in Fig. 1.

The decomposition process can be expressed as follows:{
aj+1 = H (aj)
dj+1 = G(dj),

(4)

where j is the decomposition level of the Mallat
algorithm. H (•) is the low-frequency decomposition func-
tion, and G(•) is the high-frequency decomposition function,
which are similar to low-pass filters and high-pass filters,
respectively. During this process, the reconstruction only
needs the coefficient vectors, which are generated by down
sampling the length of the series into half. Therefore, before
the reconstruction, the coefficient should be modified by
allocating zeros between the samples.{

Aj = (H∗)jaj
Dj = (H∗)j−1G∗dj,

(5)

whereH∗ is the dual operator ofH andG∗ is the dual operator
of G.

After this process is completed, load sequence x can be
smoothened by eliminating the high frequencies or by sepa-
rating it into high and low frequencies as follows:

x(t) =
j∑

i=1

Di(t)+ Aj(t), (6)

where Aj(t) is an approximation signal or a fundamental
component andDj(t) is denoted as a detailed signal or a high-
frequency component.

To obtain the optimum parameters of the second-order gray
forecasting model, a neural network mapping approach is
used to build the GNNM (2, 1). The respective outputs are
reconstructed to obtain the final forecasted load.
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B. DETERMINATION OF THE BEST WD LEVEL BASED
ON ADF TEST
The selection of the number of decomposition layers and
the mother wavelet affects the forecast results. The selection
method of the mother wavelet was studied in [19]. In the
present work, the optimal WD level is studied. When the
decomposition level is increased, the low-frequency compo-
nents become more stable, and the forecasting accuracy of
the fundamental component increases. However, the number
of high-frequency components increases in addition. Thus,
the forecast accuracy decreases as the number of components
increases. Therefore, we need to find a balance between the
WD level and the stability of the wavelet components.

To determine the balance, a model that evaluates the sta-
bility of the components after WD and that determines the
optimal decomposition level based on the ADF test is pro-
posed in this paper. The ADF test is an improved method of
the unit root test. Its principle is to check whether a unit root is
present in a sequence. If no unit root is present, the sequence
is stationary; otherwise, it is nonstationary. The ADF test
is usually used to test the stationarity of an economic time
series. The determination of the optimal WD level by the
ADF test is described as follows:
Step 1:We set j = 1.
Step 2: The load sequence is transacted by the j-level

wavelet transformation to obtain the different components.
Step 3: The ADF test is used to evaluate the stability of the

components after WD.
Step 4: If each component is stable, j is the best WD level.

Otherwise, j = j+ 1, and Step 2 is repeated.
At the same time, the ADF test can not only ensure the

stability of the sequence and improve the forecast accuracy
but also eliminate the many WD levels. Using this method,
we derive the optimal layer of WD.

III. GRAY MODEL
Gray system theory was put forward as early as in the
1980s. It is characterized by using gray mathematics to deal
with uncertainty and makes full use of known data to find
the law of a system. A forecast model based on the gray-
system theory has the advantages of being a simple model,
requires less historical data, has high forecast accuracy, can
be conveniently calculated, and does not need to consider the
distribution.

GM (N, M) is a gray model whose order is N, and the num-
ber of variables is M. Until the present, GM (1, 1) has been
widely used owing to its simplicity. However, the GM (1, 1)
model contains only one exponential component and only one
characteristic root; thus, simulating the time series charac-
terized by a large oscillation is difficult. The second-order
gray model [GM (2, 1)] has two eigenvalues, which reflect
the monotonous and nonmonotonous changes. As a result,
the low-frequency components and high-frequency compo-
nents with significant oscillation characteristics can be well
simulated. Thus, the GM (2, 1)model is adopted in the current
study.

A. GM (2, 1)
The components of the historical load data decomposed by a
wavelet are shown as follows:

X (0)
=

[
x(0)(1), x(0)(2), . . . , x(0)(n)

]
, (7)

where n is the number of sequences.
Superimposing these sequences produces new sequences,

which are defined as 1-AGO [using superscript ‘‘(1)’’],
i.e.,

X (1)
=

[
x(1)(1), x(1)(2), . . . , x(1)(n)

]
, (8)

x(1) (·) is defined as:

x(1) (t) =
t∑
i=1

x(0) (i) , t = 1, 2 . . . n. (9)

We set up the second-order differential model based
on the first-order accumulated generation operation as
follows:

d2x(1)

dt2
+ a1

d2x(1)

dt
a2x(1) = b. (10)

This equation is solved as follows:

x(1)(t) = C1eλ1t + C2eλ2t +
b
a2
. (11)

Equation (11) is the analytical expression of the forecasted
value λ1 and λ2 are the characteristic roots of the character-
istic equation λ2+ a1λ+ a2 = 0. Finally, we obtain the final
forecast results using the following:

x(0) (t) = x(1) (t)− x(1) (t − 1) . (12)

B. GRAY NEURAL NETWORK MODEL (GNNM)
The parameters of a gray model are usually computed by
least square estimation, which needs to update the cal-
culation. A large amount of computation is required to
accelerate the training speed of the model. To improve
the computation efficiency, least square estimation is used
to estimate the initial value of the gray model. Then the
gray neural network is trained to obtain the optimal model
parameters.

To accelerate the training speed of the gray neural network
and determine the initial value of a1, a2, and b in (10) (the
initial weights of the gray neural network), the initial values
are computed by least square estimation. The formula is as
follows:

A = [a1 a2 b]T =
(
BTNBN

)−1
BTNYN , (13)

where

BN =


−x(0)(2) −z(1)(2) 1

−x(0)(3) −z(1)(3) 1
...

...
...

−x(0)(n) −z(n)(n) 1
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YN =


x(0)(2) x(0)(1)

x(0)(3) x(0)(2)
...

...

x(0)(n) x(0)(n− 1)


z(1)(t) = 0.5x(1)(t)+ 0.5x(1)(t − 1)

t = 2, 3 . . . n

ParametersC1 andC2 are obtained by the following deriva-
tion. We use the first-order difference to replace the integral
term as follows:

dx(1)

dt
= x(1)(t)− x(1)(t − 1) = x(0)(t). (14)

We take the derivative of (11) with respect to t , i.e.,

dx(1)

dt
= C1λ1eλ1t + C2λ2eλ2t . (15)

Substituting (15) into (14) yields

x(0) (t) = C1λ1eλ1t + C2λ2eλ2t . (16)

ParametersC1 andC2 are obtained by solving (11) and (16).
To construct the GNNM, (11) is transformed as

follows:

x(1) (t) = C1eλ1t + C2eλ2t +
b
a2

=

(
C1eλ1t

1+ eλ1t
+

b
a2

1
1+ eλ1t

) (
1+ eλ1t

)
+

C2eλ2t

1+ eλ2t
(
1+ eλ2t

)
=

(
C1

1+ e−λ1t
+

b
a2

(
1−

1
1+ e−λ1t

)) (
1+ eλ1t

)
+

C2

1+ e−λ2t
(
1+ eλ2t

)
=

(
C1

1+ e−λ1t
−

b
a2

1
1+ e−λ1t

) (
1+ eλ1t

)
+

C2

1+ e−λ2t
(
1+ eλ2t

)
−

(
−
b
a2

(
1+ eλ1t

))
(17)

According to (17), a neural network map is constructed,
as shown in Fig. 2.

Then, the optimal parameters of the model, i.e., (17), can
be obtained. The neural network learning process follows this
procedure.
Step 1: The initial weights [see (13) to (16)] and the thresh-

olds of the network are entered.

U = [U1 U2] = [λ1 λ2]

V =

V11 V12 V13

V21 V22 V23

 =
C1 −

b
a2

0

0 0 C2



FIGURE 2. Schematic of the GNNM (2, 1) network. LA: Layer A. LB: Layer
B. LC : Layer C. LD : Layer D.

W = [W1 W2 W3]T

=

[
1+ eU1t 1+ eU1t 1+ eU2t

]T
=
[
1+ eλ1t 1+ eλ1t 1+ eλ2t

]T
The threshold value of the LD layer is expressed as

θ = −
b
a2

(1+ eλ1t ).

Step 2: The output of each layer is calculated.
The output of the LB neurons is defined as

b1(t) =
1

1+ eλ1t

b2(t) =
1

1+ eλ2t
,

The output of the LC neurons is defined as

c1(t) = V11b1(t)

c2(t) = V12b1(t)

c3(t) = V23b2(t).

The output of the LD neurons is defined as

d (t) = y1 (t) = W1c1 (t)+W2c2 (t)+W3c3 (t).

Step 3: The inverse error is calculated.
The LD layer error is defined as

δd = y (t)− y1(t).

Here, y (t) is the actual data.
The LC layer error is defined as

δc1 = δdW1

δc2 = δdW2

δc3 = δdW3.
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The LB layer error is defined as

δb1 =
1

1+ e−λ1t

(
1−

1
1+ e−λ1t

) (
δc1V1 + δc2V2

)
δb2 =

1
1+ e−λ2t

(
1−

1
1+ e−λ2t

)
δc3V3.

Step 4: The weights and thresholds are updated.
1U and1V are the correction weights of U and V respec-

tively, η is the learning rate, and µ is the inertia coefficient.

1U1(s) = µ1U1(s− 1)+ ηδb1 t

1U2(s) = µ1U2(s− 1)+ ηδb2 t

1V1(s) = µ1V1(s− 1)+ ηδc1 t

1V2(s) = µ1V2(s− 1)+ ηδc2 t

1V3(s) = µ1V3(s− 1)+ ηδc2 t.

The remaining correction for matrix V is zero, and s repre-
sents the number of trainings.

U (s+ 1) = U (s)+1U (s)

V (s+ 1) = V (s)+1V (s).

MatrixW is updated as follows:

W1 = W2 = 1+ eU1t

W3 = 1+ eU2t .

Step 5: Steps 2–4 are repeated until the convergence con-
dition is reached.

FIGURE 3. Load time series. The load profile of the time-series
in 1000 time intervals (approximately 42 days).

IV. CASE STUDIES
A. HISTORICAL DATA
The 1000 data points of a continuous load of a substation in
Southwest China in 2016 whose interval is 1 h are considered
as the research object. The first 900measured data in the sam-
ple are selected for the training, and the final 100 measured
data are used for the test. Fig. 3 shows the samples.

FIGURE 4. Decomposed electric load using discrete wavelet transform.
(a) A5. (b) D1. (c) D2. (d) D3. (e) D4. (f) D5.

Some of the existing studies that use the wavelet trans-
form in electrical load forecasting usually used the fourth-
order Daubechies wavelet. From the ADF test, we choose the
WD level as five. Given a signal s of length N, the discrete
wavelet transform consists of log2 N stages at most, and the
samples decompose 9 layers at most. Fig. 4 shows the electri-
cal load decomposed by the frequency. Each component has
a stable sequence.

B. FORECAST RESULTS
We clearly show the forecasted results based on WD with
a second-order gray neural network model [WD–GNNM
(2, 1)] of each component after the WD, as shown in Fig. 5.

The WD–Elman (five layers of WD combined with the
Elman neural network) and GNNM (2, 1) are used to com-
pare the performance of the proposed WD–GNNM (2, 1)
[five layers of WD combined with the GNNM (2, 1)]. The
load-forecasting results and the results of the different models
are shown in Fig. 6.

C. RESULT ANALYSIS
First, to verify the ADF test to determine the optimal layer
of the WD, the stability results based on the ADF test from

16328 VOLUME 5, 2017



B. Li et al.: Short-Term Load-Forecasting Method Based on WD

FIGURE 5. Forecasting results based on WD-GNNM (2, 1) of each
component. (a) A5. (b) D1. (c) D2. (d) D3. (e) D4. (f) D5.

FIGURE 6. Load forecasting results of different models.

the single- to the nine-layer WDs are listed in Table 1.
We evaluated our results using the mean absolute percentage
error (MAPE). The computed MAPEs for different periods

TABLE 1. ADF test results.

TABLE 2. MAPE index of different decomposition layers.

TABLE 3. MAPE index of different methods.

are listed in Table 2.

MAPE =
1
N

N∑
i=1

(∣∣y′ − y (i)∣∣
y (i)

)
× 100, (18)

where y′(i) is the forecast value, y(i) is the real data, and N is
the number of sequences.

In Table 1, ‘‘0’’ denotes that the sequence is nonstationary,
and ‘‘1’’ denotes that the sequence is stationary. The ADF
test results listed in Table 1. In the single-layer WD, A1 is a
nonstationary component, and D1 is a stationary component.
By continuing the decomposition of A1, we obtain the results
of the two-layer WD; however, A2 remains a nonstationary
component. With the continuous decomposition of Aj, each
component becomes stable in the five-layer WD. As can be
seen from Table 2, when the layer of the WD increases,
the error is reduced. In the five-layer WD, the fundamental
component is a stationary component. The cumulative errors
is minimum at this time. When the decomposition level is
more than five, the forecast accuracy of each component is
guaranteed because all components are stable. However, with
the progress of the WD, the cumulative errors increase.

Table 3 and Fig. 6 show the detailed error analysis of the
proposed WD–GNNM (2, 1) and two other methods. The
theoretical analysis and experimental evaluation reveal that
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the proposed WD–GNNM (2, 1) is an optimal solution that
will be beneficial for the establishment of a model with high
accuracy for a load.We have shown in this paper thatWD can
improve the forecast accuracy.

V. CONCLUSION
To accurately predict a load with nonstationary characteris-
tics, a short-term load-forecasting method based on WD with
a second-order gray neural network was proposed in this
paper. The ADF test was adopted as a test method for
the stationarity of each decomposed component after WD.
This paper draws the following main conclusions. First,
the wavelet transform can reduce the nonstationarity of a
load sequence and improve the forecast accuracy. Secondly,
the method of determining the optimal WD level based on
the ADF test can find the balance between the optimal
WD level and the stability of the wavelet components; the
forecast errors are reduced to the lowest. Third, the proposed
WD–GNNM (2, 1) can effectively improve the forecasting
accuracy. We believe that the proposed approach can be
extended to other forecasting applications.
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