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ABSTRACT Identity-based proxy re-encryption (IBPRE) is a powerful cryptographic tool for various
applications, such as access control system, secure data sharing, and secure e-mail forwarding. Most of
the existing efficient IBPRE schemes are based on the Diffie–Hellman assumption, and they only focus on
the single-hop construction. Based on the work of Chandran et al.’s lattice-based proxy re-encryption (PRE)
scheme (PKC’14) and Yamada’s lattice-based identity-based encryption (IBE) scheme (EUROCRYPT’16),
in this paper, we first show the possibility of assembling lattice-based IBE into lattice-based PRE.
Then, we present the construction of a new efficient single-hop homomorphic IBPRE from learning with
errors (LWEs) via key homomorphic computation. Furthermore, using branching program (BP), we obtain
an efficient multi-hop IBPRE scheme. To the best of our knowledge, our scheme is the first multi-hop
homomorphic IBPRE scheme via BP. Our scheme supports homomorphic evaluation and is proved secure
under the decisional LWE assumption.

INDEX TERMS Multi-hop, identity-based proxy re-encryption, key switching mechanism, homomorphic
evaluation.

I. INTRODUCTION
Consider a scenario in which a proxy server wants to achieve
once ciphertext transformation, i.e., converts ciphertexts of
Alice (i.e., delegator) to ciphertexts of Bob (i.e., delega-
tee). Then the transformation ciphertexts can be decrypted
by Bob’s secret key. This scenario is called the single-
hop proxy re-encryption (hereafter 1-hop PRE) scheme.
Moreover, if there exists another user, Eve, then, upon
receiving the ciphertext from Alice, Bob re-encrypts the
ciphertext and sends it to Eve. In this setting, Eve decrypts
the ciphertext from Bob using her secret key. This sce-
nario is called 2-hop PRE. Repeating this procedure many
times, we can obtain multi-hop PRE. Actually, the above
scenario can be viewed as the PRE under identity-based
encryption (IBE) setting. In order to achieve fine-grained
access control, the identity-based proxy re-encryption (here-
after IBPRE, a.k.a., PRE under IBE setting) came into
being. Nowadays, IBPRE schemes play a crucial role in
the foundation of privacy preserving, hence various infor-
mation security systems were proposed to protect users’
privacy [1]–[3] etc.

We observe that, most PRE or IBPRE schemes and
optimizations were developed by using pairing-based
cryptography (i.e., under the Decisional Diffie-
Hellman (DDH) assumption). However, with the advance-
ment of the quantum computer, DDH-based cryptography
cannot prevent the quantum attacks. Thus post-quantum
cryptography is now receiving increasing emphasis. Lattice-
based cryptography is one of the typical representatives
of post-quantum cryptography. The worst-case hardness
of lattice problems (such as the Short Integer Solu-
tion problem (SIS) and the Learning with Errors (LWE)
problem [4], [5]) have been proved to be a phenomenal
success in fully homomorphic encryption (FHE) [6]. Impor-
tantly, lattice-based cryptography quickly caught up with
pairing-based cryptography. In this case, many cryptogra-
phy primitives were re-constructed by using lattice-based
cryptography, such as IBE schemes [7], attribution-based
encryption (ABE), PRE scheme and optimizations [8], [9].

Although the possibility of LWE-based PRE construc-
tions was shown by Xagawa in his thesis [8] and many
follow-ups lattice-based PRE constructions were proposed
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(e.g., [9]–[12] etc.), there nevertheless remains one primi-
tive for which lattice-based PRE scheme is still far behind:
Identity-based Proxy Re-Encryption (IBPRE) [13] from
lattice.

To the best of our knowledge, there is only one scheme
of lattice-based IBPRE, given by Singh, Rangan, and
Banerjee (SRB) [14], and no subsequent work. We note that,
the main drawback of SRB’s construction is that they only
focus on single-hop IBPRE and cannot propose the multi-
hop construction. This limitation is a serious obstacle and
prevents to capture the real-world multi-hop requirements,
i.e., multi-hop IBPRE. Moreover, there was only one trap-
door for finding short vectors in SRB’s construction. Con-
cretely, they just used G trapdoor function to enable the real
IBPRE system to generate the master secret key. However,
no other trapdoor was provided to enable the simulator to
generate short vectors. Apparently, the multi-hop construc-
tions under paring-based setting don’t imply the multi-hop
constructions under lattice-based setting. Hence, we view it
as an important question to determine

whether we can achieve an efficient multi-hop
IBPRE scheme in a lattice-based setting?

To solve this issue, we first obtain an efficient lattice-
based IBPRE construction by following the methodology of
Yamada’s IBE scheme. Then, we achieve multi-hop IBPRE
by introducing the Branching Program (BP). The crux of this
issue is how to assemble IBE scheme into the PRE scheme
efficiently and how to embed the IBPRE into BP. Below,
we sketch our main technique.

A. OUR CONTRIBUTION AND TECHNICAL OVERVIEW
In the following, we describe our technical ideas in a high
level, and give a detailed description in Section III.

• Our first contribution is that we develop a variant
of key switching procedure by using
Gentry-Peikert-Vaikuntanathan’s (GPV) [5] scheme.
More concretely, as far as we know, using
Brakerski and Vaikuntanathan [15] key-switching tech-
nique, Chandran et al. [11] proposed two types of single-
hop PRE schemes. The first one is based on Regev’s
scheme [4] and the second one is based on GPV (a.k.a.,
dual-Regev) [5] scheme. In this paper, we use the dual-
Regev scheme as the building block to design the IBPRE
scheme. In this setting, we need the key-switching
mechanism to achieve re-encryption algorithm. How-
ever, there does not exist any GPV-style (or dual-
Regev-style) key-switching mechanism. Inspired by the
errorless key-switching mechanism of Li et al. [16],
we first tweak their errorless key-switching mecha-
nism, and then develop a GPV-style key-switching
mechanism.

• Our second contribution is that we construct the first
IBPRE scheme based on the lattice. The crux of lattice-
based IBPRE is how to assemble IBE scheme into the
PRE scheme efficiently. Concretely, inspired by the

work of Yamada [7], we first use a hash functionH(·) to
map each entry of id to a matrix and we can obtain many
matrices; secondly, we utilize homomorphic multipli-
cation to restructure these matrices and obtain H(id);
thirdly, we sample a public matrix (e.g., A ∈ Zn×mq )
to generate a matrix (A|H(id)). For future convenience,
the matrix (A|H(id)) is called user-specific matrix.
In this case, there exists an identity public matrix, e.g.,
(u|A|H(id)), for each identity id , where u is a fixed
vector such that (A|H(id))e = u (mod q) for secret
key e. Next, we follow GPV-style encryption algorithm,
use the matrix (u|A|H(id)) to encrypt the message and
obtain the ciphertext of identity id . In order to achieve
the proxy re-encryption, we transform the ciphertext
of identity id (i) into the ciphertext of identity id (j) by
using the above ‘‘GPV-style key-switching mechanism’’
for j ≥ i + 1. In this way, we can naturally assemble
IBE scheme into GPV-style PRE and obtain a lattice-
based IBPRE scheme. We describe our construction for
IBPRE in Section III and Section IV.

• Our third contribution is that we obtain the multi-
hop homomorphic IBPRE scheme via Branching Pro-
gram (BP). The point is that how to use BP to achieve
multi-hop IBPRE. Concretely, the core of BP is NAND
gate which can be expressed by the form of X ·
G−1(Y) for some specified matrices X and Y. Actu-
ally, this structure of X · G−1(Y) is similar to the
homomorphic multiplication C1 · G−1(C2) for the two
ciphertexts C1 and C2, and it’s also similar to the re-
encryption algorithm Cj := K ·G−1(Ci) of PRE for the
re-encryption key K and the ciphertext at input side Ci.
Thus, in order to obtain multi-hop IBPRE, we need
our multi-hop IBPRE scheme support homomorphic
operation. In this setting, we first tweak the encryption
algorithm of IBPRE and make it support homomorphic
operation. Then, we embed the re-encryption key and
ciphertext into the NAND gate and transform the NAND
gate into BP.
We remark that, Chandran et al. [11] have presented a
multi-hop PRE scheme via the ideal circuit. However,
their scheme only allows limited times hop and we
cannot find the concrete construction. Fan and Liu [17]
also constructed a multi-hop PRE scheme, however,
their scheme is based onG-trapdoor function introduced
by [18]. To the best of our knowledge, NC1 circuit is
one type of ideal circuit and by Barrington’s theorem,
any NC1 circuit can be converted into the polynomial-
size BP with constant-width 5 and polynomial-length
4d for circuit depth d . Moreover, BP can be used to
compute encrypted data [19] or represent the decryp-
tion circuit. Most importantly, before running the BP
to achieve the multi-hop re-encryptions, the input val-
ues (the re-encryption keys and the ciphertexts) don’t
need to be known in advance. That’s the reason why
we develop a multi-hop homomorphic IBPRE scheme
via BP.
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B. OTHER RELATED WORK
In the following, we describe some related work.

1) PROXY RE-ENCRYPTION
The concept of PRE was first proposed by Blaze et al. [20]
at EUROCRYPT’98. Their construction is based on the
ElGamal encryption scheme [21] and chosen-plaintext
attack (CPA) secure under the decisional Diffie-
Hellman (DDH) assumption. Along this line, many follow-
up PRE schemes (e.g., [22]–[24] etc.) and optimizations
were constructed under DDH assumption. The possibility of
LWE-based PRE constructions was shown by Xagawa in his
thesis [8], but the scheme lacks a complete security analysis.
Subsequently, Aono et al. [9] proposed the first scheme at
INDOCRYPT’13, which is key-private LWE-basedPRE, but
their scheme is weakly key-private. A major breakthrough in
LWE-based PRE arrived with the work of Kirshanova [10]
and Chandran et al. [11] at PKC’14. Kirshanova [10] pro-
posed a new unidirectional LWE-based PRE scheme which
is collusion-safe and does not require any trusted authority
for the re-encryption key generation and at the same time,
Chandran et al. [11] constructed an obfuscator re-encryption,
functional re-encryption, and multi-hop re-encryption from
the decisional LWE assumption, without going through
FHE [6] respectively. Very recently, utilizing re-encryption
techniques of Gentry’s FHE [6], Nishimaki and Xagawa [12]
proposed two types of key-private LWE-based PRE scheme
based on Regev [4] scheme and Linder–Peikert [25] scheme
respectively. Actually, Chandran et al. [11] andAono et al. [9]
also took the ‘‘convert-then-rerandomize’’ approach to con-
struct PRE scheme. Moreover, Ma et al. [26] gave a variant
of single-hopPRE scheme by using the encryption algorithm
of Gentry-Sahai-Waters (GSW) [27] to encrypt the message,
and got a new single-hop homomorphic PRE scheme that
supports homomorphic operation.

2) IDENTITY-BASED ENCRYPTION
The concept of IBE was first proposed by Boneh and
Franklin [28]. The construction of Boneh-Franklin’s IBE is
based on pairing under DDH assumption and cannot pre-
vent quantum attacks. Most notably, the existing IBE
constructions (e.g., [7], [29]–[31] etc.) from lattice fol-
low the general blueprint of constructing the lattice-based
IBE scheme first introduced by Agrawal, Boneh, and Boyen
at EUROCRYPT’10 [29]. Along this line, a breakthrough in
fully key-homomorphic encryption technique arrivedwith the
work of Boneh et al. [32], which was inspired by the work
of FHE [27] and they proposed the fully key-homomorphic
technique to embed the entries of identity into the circuit.
Followed by Yamada [7], he constructed an adaptively secure
LWE-based IBE, which captures the security notions of real
work.

3) IDENTITY-BASED PROXY RE-ENCRYPTION
Green and Ateniese [13] proposed the first (IBPRE) scheme
based on Boneh-Franklin’s IBE scheme [28] in the random

oracle model at ACNS’07. Since Green and Ateniese [13]
showed the possibility of IBPRE constructions under DDH
assumption, many IBPRE schemes with the desirable prop-
erties were proposed. More specially, Ren et al. [33] gave the
chosen-ciphertext attack (CCA) secure hierarchical IBPRE
scheme. Shao and Cao [34] gave the CCA-secure multi-
hop hierarchical IBPRE scheme. Moreover, Liang et al. [35]
constructed an attribute-based PRE scheme, etc. Note that
the above schemes are based on DDH assumption.

We remark that, to the best of our knowledge, our
scheme is the first lattice-based multi-hop homomorphic
IBPRE scheme via BP in the standard model and computes
the identity matrix via fully key homomorphic technique,
which corresponds to practical needs. For comparison sake,
we give a comparison result in the Table 1. We stress that
there are many follow-up works and optimizations. We just
compare some related works with our scheme:

4) APPLICATION
On the other hand, in cloud computing, in order to pro-
tect users’ privacy and maintain the confidentiality of sen-
sitive data, the cryptographers use cryptography approaches
to design various cryptosystems [1]–[3], [37], etc. Notably,
the main applications of IBPRE (or PRE) are access control
on cloud storage, secure data sharing, secure e-mail for-
warding, etc [36]. Wang et al. [38] proposed a novel proxy-
oriented data uploading and remote data integrity checking
model in identity-based proxy public key cryptographywhich
is based on the technique of PRE.

C. PAPER ORGANIZATION
The remainder of this paper is organized as follows.
In Section II we formally define the LWE assumption and
present notation that will be used throughout the paper.
In Section III we describe our single-hop homomorphic
IBPRE scheme. In Section IV we describe our multi-hop
homomorphic IBPRE scheme. Finally, in Section V, we give
a conclusion.

II. PRELIMINARIES
In this section we introduce required notations, definitions
and lemmas which are taken from previous works.

A. NOTATION
For n ∈ N, we let [n] denote the set {1, · · · , n}. For a real
number x ∈ R, we let bxc denote the largest integer not
greater than x. We denote vector x via bold lower-case letter
and matrix A via bold upper-case letter. We use ‘‘:=’’ to
denote deterministic assignment. Let DZmq ,σ be the truncated
discrete Gaussian distribution over Zm with parameter σ , that
is, we replace the output by 0whether the ‖·‖∞ norm exceeds
√
m · σ . Note that DZm,σ is

√
m · σ -bounded.

1) NORMS
We will give well-known norms that will be used in the
following sections. `∞ norm is: ||v||∞ = max{|v1|, · · · , |vn|}
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TABLE 1. Comparison of LWE-based PRE and IBPRE schemes.

and Euclidean norm is: ||v||2 =
√∑n

i=1 |vi|
2. For matrix

A ∈ Zk×m, let Ã be the result of applying Gram-Schmidt(GS)
orthogonalization to the columns of A, s.t., ‖A‖GS = ‖Ã‖.
||A|| denotes the l2 length of the longest column of A. (For
notational convenience, we denote the length of a matrix is
the norm of its longest column: ||A|| = maxi ||ai||.)

2) INDISTINGUISHABILITY
Moreover, for a random variable X and an element x we use
Pr[X = x] to denote the probability that X outputs x.
Definition 1 (Statistical Distance): Let X0 and X1 be two

random variables with range D (i.e., a finite set). We call
δ(X0,X1) := 1

2

∑
d∈D
|Pr[X0 = d]− Pr[X1 = d]| the statistical

distance between X0 and X1.
Definition 2 (Statistical Indistinguishability): We say that

X0 and X1 are statistically indistinguishable (a.k.a., statisti-
cally close), written X0 ≈s X1, if δ(X0(λ),X1(λ)) is negligible
in λ.
Similarly, let X0 = {X0(λ)}λ∈N be families of variables.
We say that X0 and X1 are computationally indistinguishable
and write X0 ≈c X1 if there is no PPT distinguishers which
can distinguish the above variables.

3) INJECTIVE MAP
We denote an efficiently computable injective map (i.e., one
of the canonical map) S that maps a bit string ID ∈ {0, 1}κ

to a subset S(ID) of [1, ξ ]d , where ξ = dκ1/de and d is some
integer.
Definition 3 ([39, Definition 2.1]): A distribution ensem-

ble χ = χ (λ) over the integers is called B-bounded (denoted
|χ | ≤ B) if there exists:

Pr
x

$
←χ

[|x| ≥ B] ≤ 2−�̃(n)

Lemma 4 ([5, Lemma 2.9]): For any n-dimension lattice
3, c ∈ span(3), real ε ∈ (0, 1), and gaussian parameter
r ≥ ηε(3):

Pr
x←D3,r,c

[
||x− c|| > r ·

√
n
]
≤

1+ ε
1− ε

· 2−n

The final fact we need for certain applications is an upper
bound on the probability of the mode (the most likely ele-
ment) of a discrete Gaussian; equivalently, it is a lower bound
on the min-entropy of the distribution.

B. LATTICE BACKGROUND AND LEARNING WITH ERRORS
Lemma 5 (Matrix-Vector Leftover Hash Lemma (LHL),

[15, Lemma 2.1]): Let λ ∈ Z, n, q ∈ N, m ≥ n log q + 2λ,

r
R
← {0, 1}m and y

R
← Znq. Sample a uniform random

matrix A
R
← Zm×nq , then the statistical distance between the

distributions (A,AT r) and (A, y) is as follows:

1
(
(A,AT

· r), (A, y)
)
≤ 2−λ (2.1)

Lemma 6 ([40, Lemma 4.4]):

1) For ∀ k > 0, Pr[|e| > k · σ, e← D1
σ ] ≤ 2 · exp(− k2

2 );
2) For ∀ k > 0, Pr[‖e‖ > k · σ ·

√
m, e ← Dm

σ ] ≤ km ·
exp(m2 · (1− k

2)).
Remark 7: Throughout the paper, we suppose σ ≥ 2

√
n.

Therefore, if e← Dm
σ then we have, on average, that ‖e‖ ≈

√
m · σ . Lemma 6 (2) implies that ‖e‖ ≤ 2σ

√
m with

overwhelming probability.
Lemma 8 ([29, Lemma 12]): Let vector x be some vector

in Zm and let e ← DZm,r . Then the quantity | xT · e | when
treated as an integer in [0, · · · , q− 1] satisfies

| xT · e |≤ ||x||rω(
√
log m)+ ||x||

√
m/2

with all but negligible probability inm. Where r is a gaussian
parameter and defined in Lemma 4.
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We define the decisional version as follows,
Definition 9 (Decision-LWEn,q,χ,m): Assume given an

independent sample (A,b) ∈ Zm×nq × Zm×1q , where the
sample is distributed according to either: (1) As,χ for a
uniform random s ∈ Znq (i.e., {(A,b) : A ← Zm×nq , s ←
Zn×1q , e← χm×1,b = A ·s+e (mod q)}), or (2) the uniform
distribution (i.e., {(A,b) : A ← Zm×nq ,b ← Zm×1q }).
Then, the above two distributions are computationally
indistinguishable.
Remark 10: Regev and others [4], [40]–[42] show that

the LWE assumption is at least as hard as solving the
worst-case Shortest Independent Vectors Problem (SIVP) for
polynomial approximation factors. We omit the corollary of
these schemes’ results. More details will be found in [4],
and [40]–[42].

C. TRAPDOOR
Below, we show two sampling algorithms ofSampleLeft and
SampleRight [29] which will be used in our scheme.
Lemma 11 [5], [29]: There exist some parameters A ∈

Zn×mq , B ∈ Zn×nq , R ∈ Zm×nq , a vector u ∈ Zn×1q , two
short basis TA of 3⊥q (A) and TB of 3⊥q (B), and a Gaussian
parameter s, then

• SampleLeft(A,B,TA,u, s): Takes as inputA, B, TA, u
and s, then outputs a vector e← 3u

q(F) for F = (A|B),
where e is statistically close to D3u

q (F),s.
• SampleRight(A,B,R,TB,u, s): Takes as input A, B,
R, TB, u and s, then outputs a vector e ← 3u

q(F)
for F = (A|AR + B), where e is statistically close
to D3u

q (F),s.

D. BASIC TOOLS
We use the same techniques proposed by Mukherjee and
Wichs [43] and Brakerski et al. [44]. First fix q,m ∈ N and
let `q = blog qc + 1 and N = m · `q.
Lemma 12 [18]: For any N ≥ mdlog qe there exist a

computable gadget matrix G ∈ Zm×Nq and an efficiently
computable deterministic inverse (a.k.a., ‘‘short preimage’’)
functionG−1(·). The inverse functionG−1(M) takes as input
a matrix M ∈ Zm×m′q for any m′ and outputs a matrix
G−1(M) ∈ {0, 1}N×m

′

such that GG−1(M) =M.
Remark 13: For future convenience, the gadget matrix G

from Micciancio and Peikert [18] can be expressed by G =
Im×m ⊗ g ∈ Zm×Nq where g = (1, 2, 4, . . . , 2`q−1)T . For
v ∈ Zmq we have PowerOf2(v) = vTG. For v ∈ ZNq we
have Bit−1(v) = Gv. For a ∈ Zmq the algorithm Bit(a) can be
renamed as G−1(a).
Remark 14: We set ti as the i-th unit vector (0, · · · , 1,
· · · , 0)T . Consider the gadget matrix over Zm×Nq with the
following view

G = (20, 21, · · · , 2`q−1)⊗ Im×m
= [20t1, · · · , 2`q−1t1, · · · , 20tN , · · · , 2`q−1tN ]

= [G[1], · · · ,G[N ]]

where any column vector G[i] over Zm×1q for i ∈ {0, · · · ,m ·
`q − 1}, the structure of G[i] should be 2j · ti =
(0, · · · , 2j, · · · , 0)T , where j := i mod `q. For example,
without loss of generality, the (`q − 1)-th vector is G[`q −
1] := 2(`q−1) · t1 = (2(`q−1), 0, · · · , 0)T .

E. PREDECESSOR FUNCTION FOR CIRCUIT
Below is the definition of Predecessor Function for Circuit
Pred9 (i) and its corollary for on-the-fly branching programs
BPOTF, which are from Brakerski and Perlman [45].
Definition 15 (Predecessor Function for Circuit): Wefirst

denote a circuit as in Barington Theorem by 9. Then we
denote the predecessor function of 9 by Pred9 (i) where i
is the index of length. Lastly, we set the label of Pred9 (i)’s
output gate to be 0 and we label Pred9 (i)’s input gate by the
index of the variable. For example, set a label i for a gate,
Pred9 (i) returns (j1, j2) which are the labels of the wires
feeding this gate.
Corollary 16 (Barrington on-the-Fly): Given access to a

Pred9 (i) of a depth d circuit, there exists a uniform machine
BPOTF that outputs the layers (p0,t , p1,t ) of the branch-
ing program from Barrington Theorem for BPOTF’s width
t ∈ [L]. Each layer takes time O(d) to produce, and the total
space used by BPOTF is O(d).

F. BRANCHING PROGRAM
Below, we describe the computational model of permutation
‘‘branching programs’’ (BP). We note a corollary from Bar-
rington construction, which allows computing the BP ‘‘on-
the-fly’’, layer by layer, keeping only small state. Hence,
we define the BP similarly to [45] and [46].
Definition 17: A permutation BP

∏
with ` variables,

width k and length L is a sequence of L tuples (p0,t , p1,t )t∈[L]
which is called the instruction. For a function var : [L] →
[`], each tuple is composed of a pair of permutations p0,t ,
p1,t : [k] → [k]. The BP takes as input a binary vector
x = (x1, · · · , x`) ∈ (0, 1)`, and outputs a bit b ∈ {0, 1}.
The execution of

∏
is as follows:

- The program keeps a state integer s ∈ {0, · · · , k},
initially s0 = 1;

- On every step t = 1, · · · ,L, the next state is deter-
mined (recursively) using the t-th instruction: st :=
pxvar(t) (st−1).

All in all, st := p0,t (st−1) if xvar(t) = 0, and otherwise st :=
p1,t (st−1). Finally, after the L-th iteration, the BP outputs 1 if
and only if sL = 1.
Remark 18: In this paper, we would like to evaluate a BP

homomorphically. Thus, we prefer to represent an integer
state s ∈ {1, 2, 3, 4, 5} by a 0-1 state vector v ∈ {0, 1}5.
The computation then processes as follows: The idea is that
vt [i] = 1 ⇔ st = i. We initialize v0[1] = 1 and v0[i] = 0
for i ∈ {2, 3, 4, 5} and evaluate using the following recursive
formula: vt [i] = 1⇔ pt,xvar(t) (st−1) = i. Turning this around,
for every 1 ≤ i ≤ 5, vt [i] = 1 if and only if:
• either vt−1[p−1t,0 (i)] = 1 and xvar(t) = 0
• or vt−1[p−1t,1 (i)] = 1 and xvar(t) = 1.
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Hence, equivalently, we have the following formula:

vt [i] = vt−1[p−1t,0 (i)](1− xvat(t))+ vt−1[p−1t,1 (i)]xvat(t)
= vt−1[γt,i,0](1− xvat(t))+ vt−1[γt,i,1]xvat(t) (2.2)

where γt,i,0
1
= p−1t,0 (i) and γt,i,1

1
= p−1t,1 (i) are constant

parameters that are publicly computable given the description
of the BP. After the L-th iteration, we accept if and only if
sL = 1, that is we output vL[1]. Please keep in mind the form
so that we will use it in our homomorphic evaluation.

Below, we recall the Barrington’s Theorem.
Theorem 19 (Barrington’s Theorem [47]): EveryBoolean

NAND circuit C that takes ` inputs and has depth d can be
computed by a width-5 permutation BP of length 4d . Given
the circuit C’s description and the BP ’s description

∏
can

be computed in poly(`, 4d ).

G. IDENTITY-BASED PROXY RE-ENCRYPTION
Definition 20: An identity-based proxy re-encryption

(IBPRE) scheme is a tuple of probabilistic polynomial
time (PPT) algorithms as follows,

(Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc)

we denote ID as the identity space of IBPRE scheme.
Moreover, if there exists a collision resistant hash function
(e.g., H): {0, 1}∗ → ID, then we can use an arbitrary string
as an identity. In more detail:

- (mpk,msk) ← IBPRE.Setup(1λ): Takes the security
parameters λ as input and outputs a master public key
mpk and a master secret key msk;

- skid ← IBPRE.KeyGen(mpk,msk, id): Takes thempk ,
msk , and an identity id ∈ ID as input, then it outputs a
private key skid , where id is implicitly included in skid ;

- cid ← IBPRE.Enc(mpk, id, µ): Takes anmpk , an iden-
tity id ∈ ID, a message µ and pkid corresponding to id ,
then it outputs a ciphertext cid ;

- rk (i→j)
← IBPRE.ReKeyGen(mpk, id (i), id (j), skid (i) ):

In order to generate re-encryption key rk (i→j) from user
i to user j, takes as input mpk , skid (i) under id

(i) for i,
the identity id (i) and id (j) for user i and j;

- cid (j) ← IBPRE.ReEnc(cid (i) , rk
(i→j)): In order to

transform user i’s ciphertext cid (i) to user j’s ciphertext
cid (j) (also called user i’s re-encryption ciphertext), takes
as input cid (i) and rk (i→j). Notably, for convenience,
hereafter, we write cid (j) as cj;

- µ← IBPRE.Dec(mpk, skid , cid ): Takes the mpk , skid ,
and c, then it outputs the message µ when the ciphertext
is in a valid form, otherwise, outputs ⊥.

1) CORRECTNESS
For all n, all id ∈ ID, and all µ in the specified message
space,

Pr[Dec(mpk, skid ,Enc(mpk, id, µ)) = µ] = 1− negl(λ)

holds, where the probability is taken over the random-
ness used in (mpk,msk) ← Setup(1λ), skid ←

KeyGen(mpk,msk, id), and Enc(mpk, id, µ).

2) SECURITY
The adversary A is allowed to adaptively choose the IBPRE
secret key queries and re-encryption queries. This security
notion is defined by the following game between a challenger
C and an adversary A.

1) At the outset of the game, C runs the Setup(1λ) →
(mpk,msk) and sends mpk to A;

2) A adaptively makes the key-extraction queries, and it
first submits id ∈ ID to C, more specially,A first sub-
mits the form of (extract, id ∈ ID) to C, then C obtains
a secret key skid ← KeyGen(params,mpk,msk, id)
for identity i and sends the skid to A, then A adds id
to the honest user set ID. Here A can repeat the query
many times;

3) A issues the re-encryption key query rk (i→j) for iden-
tities id (i) and id (j) where i 6= j, then the challenger
obtains rk (i→j) via the re-key generation algorithm
ReKeyGen(mpk, (id (i), id (j)), skid (i) ) and sends back
rk (i→j) to A; (Here we must stress that we do not
allow re-encryption key generation queries between a
corrupted and an uncorrupted party, i.e. we require that
the queries occur at either all of (i, j), i 6= j are honest
parties, or alternatively all are corrupted parties.)

4) A submits query (id (i), id (j), cid (i) ), i 6= j to
‘‘Re-encryption Oracle’’, the challenger C in turn gen-
erates ciphertext cid (j) ← ReEnc(rk (i→j), cid (i) );

5) (Challenge Phase.) At some point, A submits iden-
tity id∗ ∈ ID and messages m0, m1 to ‘‘Challenge
oracle’’, then C chooses a random bit b ∈ {0, 1}, and
returns cidi∗ ← Enc(mpk, idi∗ ,mb) to A. Actually,
after the challenge query, A may continue to make
key-extraction queries, with the added restriction that
id 6= id∗;

6) (Guess.) This is done only once, A finally outputs
b′ ∈ {0, 1} as a guess of b, if b′ = b, then outputs
1, otherwise, outputs 0. Here, the id∗ is the challenge
identity, and id1, · · · , idQ are identities for whichA has
made key-extraction queries.

We denote the advantage of an adversary as |Pr[b′ =
b] − 1

2 |. Then we say the uni-directional IBPRE scheme is
IND-ID-CPA-secure if there is no PPT adversaries have an
overwhelming advantage.
Remark 21: To the best of our knowledge, we can eas-

ily observe that the above security definition is equivalent
to the definition of IND-ID-CPA/CCA defined by Boneh
and Franklin at CRYPTO’01 [28]. The only difference is
that, in our IBPRE scheme, the adversary A makes some
queries of the form ‘‘Re-encryption key generation’’ and ‘‘Re-
encryption oracle’’. Hence, if rk (i→j) is not deployed, then the
IBPRE remains IND-ID-CPA/CCA-secure.
Proposition 22 (Single/Multi-Hop IBPRE): We say the

IBPRE scheme is single-hop if the number of the hops
between the output side and the input side is j− i = 1, which
only allows the proxy server to re-encrypt the ciphertexts
one time. If j − i = L > 1, we say the IBPRE scheme is
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L-hop (a.k.a., multi-hop IBPRE), which allows the proxy
server to re-encrypt the ciphertexts up to L times.

Compared with original IBPRE, the following definition
of the homomorphic IBPRE has the same PPT algorithms
except that the encryption algorithm supports homomorphic
evaluation.
Definition 23 (Homomorphic IBPRE): A scheme as the

definition of IBPRE is called homomorphic IBPRE scheme
if it has the following evaluation algorithm:
• c? ← Eval(mpk,C, id, (c1, · · · , cn)) Takes as input an
mpk , an identity id , a list of ciphertexts c1, · · · , cn, and
a circuit C ∈ Cλ, and it outputs a ciphertext c?, where
n is polynomial over λ.

meanwhile, with the following properties,
- Correctness of Re-Encrypted Ciphertexts:

Pr[Dec
(
skid ,ReEnc

(
rk,Enc(mpk, id, µ)

))
:= µ]

with overwhelming probability.
- Homomorphisms: The property of homomorphic is
preserved as long as the ciphertexts in operations are
under the same public key, for the encryption and re-
encryption algorithms. In more detail, for any λ, any
µ1, · · · , µ` ∈ {0, 1}∗, and C ∈ Cλ, we have that

C(µ1, · · · , µn)

= Dec
(
skid , id,

(
Eval

(
mpk, id, (C,

ReEnc(rk, id, c1), · · · ,ReEnc(rk, id, cn))
)))
.

- Security: The property of security is the same as
the security definition of IBPRE. We denote by the
IND-ID-CPA game between a challenger C and an
adversary A. Hence, we omit the description of the
CPA game. So, if the advantage of PPT adversary
A is negligible in λ, AdvA = | Pr[b′ = b] − 1

2 |,
then we say the homomorphic IBPRE scheme is
IND-ID-CPA-secure.

III. SINGLE-HOP IBPRE SCHEME
In this section, we first give a detailed description of
GPV-style key switching, which is an important tool used
in our construction. Then we present our main construc-
tion of IBPRE by the fully key homomorphic technique of
Boneh et al. [32]. Lastly, we use the GPV-style key switching
to achieve re-encryption. More details are as follows:

A. YET ANOTHER KEY SWITCHING VIA DUAL REGEV
Our GPV-style key switching technique is greatly influenced
by LWE-based key switching construction of Brakerski and
Vaikuntanathan [15], [48]. But their construction is based on
Regev [4] scheme, ours is based on Dual Regev [5] scheme.
Most notably, Chandran et al. [11] also constructed key
switching which is based on Dual Regev [5] scheme, but they
created switching-key by a trapdoor, e.g., sampling algorithm
SampleD(·), which incurs an expensive overhead. In this
paper, inspired by the work of Li et al. [16], we improve the

key-switching mechanism via Dual Regev [5] scheme, which
is followed by the framework of [15] and [48].

Before describing our GPV-style key switching mecha-
nism, we review the GPV (a.k.a., dual Regev) scheme first.
In dual Regev scheme, the key generation algorithm generates
public key P := (u,B) ∈ Zm×1q × Zm×nq , where B ∈ Zm×nq
is a public matrix and u = B · e (mod q) for secret key e ∈
χn×1. In order to encrypt message µ ∈ {0, 1}, the encrypter
computes c = PT · r + q

2 (µ|0
n)T + x (mod q), where

r ← Zn×1q and x ← χ (n+1)×1. In this setting, the decrypter
decrypts ciphertexts c by computing 〈c, [1,−e]T 〉. Below we
give a detailed description of the important ‘‘GPV-style key
switching’’ technique in our construction.
• PskI :skO ← SwitchKeyGen(skI , skO):

1) For the ‘‘input’’ and ‘‘output’’ secret key skI =
[1,−eTI ]

T
∈ ZnI×1q and skO = [1,−eTO]

T
∈

ZnO×1q , set skTI · G := PowerOf2q(skI ) ∈ Z1×n̂I
q ,

where n̂I = nI × blog qc and the gadget matrix
G ∈ ZnI×n̂Iq .

2) Sample a random matrix AI :O ← Zn̂I× (nO−1)
q and

an random vector eχ ← χ
n̂I×1
q , then compute

uI :O = AI :O · eO ∈ Zn̂I×1q , then bI :O = AI :O ·

eO +
(
[1,−eTI ] ·G

)T
+ eχ ∈ Zn̂I×1q .

3) Output PI :O = [bI :O | AI :O] ∈ Zn̂I×nOq .
• cO← SwitchKey(PI :O,G−1(cI )):

1) To switch a ciphertext from skI to skO, compute
‘‘output’’ ciphertext cO := PTI :O·G

−1(cI ) ∈ ZnO×1q ,
where PI :O · [1,−eTO]

T
= bI :O − AI :O · eO :=(

[1,−eTI ] · G
)T
+ eχ ∈ Zn̂I×1q with G−1(cI ) :=

Bit(cI ) ∈ Zn̂I×1q .
Notably, there is no noise element 〈Bitq(cI ), errorO〉 in
Eq.(3.1) compared with the [15]. Obliviously, it will improve
computation efficiency of key switching.
Lemma 24 (Correctness): Set skI ∈ ZnI , skO ∈ ZnO

and cI ∈ ZnIq be any vectors. Suppose there exist PI :O ←
SwitchKeyGen(skI , skO) and cO ← SwitchKey(PI :O, cI ),
then 〈cO, skO〉 = 〈cI , skI 〉 +

(
G−1(cI )

)T eχ (mod q).
Proof: Considering cO := PTI :O ·G

−1(cI ) ∈ ZnO×1q and
skO = [1,−eTO]

T
∈ ZnO×1q , we hold that

〈cO, skO〉 =
(
G−1(cI )

)T
· PI :O ·

(
[1,−eTO]

T
)

= 〈cI ,
(
[1,−eTI ]

T
)
〉 +

(
G−1(cI )

)T
· eχ

= 〈cI , skI 〉 +
(
G−1(cI )

)T
· eχ (3.1)

where ‖
(
G−1(cI )

)T
· eχ‖ ≤ |

(
G−1(cI )

)T
| · |eχ | ≤ n̂I · B by

Lemma 6.
Lemma 25 (Security): Set skI ∈ ZnI be any vector. Sup-

pose we generate skO ← SecretKeyGen(params) and
PI :O ← SwitchKeyGen(skI , skO), then there is no efficient
adversary that can tell the difference between the distribution
PI :O and uniform distribution over Zn̂I×nOq under decisional
LWEn,m,χ,q assumption.
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B. HOMOMORPHIC COMPUTATION
Actually, we just use an encoding hash function H : Zm×nq
to map identities to matrices, i.e., represent the identities as
matrices in Zm×nq for some n and each entry is over Zmq . In the
following, we denote {0, 1} as the message space and ID =
{0, 1}κ as the identity space for λ ∈ N. In our IBPRE scheme,
there exists an efficiently computable injective map S that
maps an identity id ∈ {0, 1}κ to a subset S(id) = (y1, · · · , yd )
of [1, ξ ]d , where ξ = dκ1/de and yι ∈ [ξ ] are entries of the
subset S(id) for ι ∈ [d].
Definition 26 (From [7]): We denote the recursive func-

tion B∗j (i.e., Evald : (Zn×mq )d → Zn×mq ) by B∗j =
Evald (B1,B2, · · · ,Bd ) := B1 · G−1(B∗j−1) for j ≥ 1, which
takes a set of matrices B1,B2, · · · ,Bd ∈ Zn×mq as input and
outputs matrix B∗j in Z

n×m
q . Note that

B∗j = Evald (B1,B2, · · · ,Bd )

= B1 ·G−1
(
Evald−1(B2, · · · ,Bd )

)
Definition 27 (From [7]): We denote the recursive func-

tion R∗j (i.e., TrapEvald : (Zn×mq )d → Zn×mq ) by

R∗j = TrapEvald ({Rj}, {yj})j∈[d]

= R1G−1
(
R∗j−1

)
+ y1

(
R∗j−1

)
which takes a set of matrices R1, · · · ,Rd ∈ Zn×mq as input
and outputs matrix R∗j in Zn×mq .
Remark 28: Observe that R∗j := R1 for d = 1; if d ≥ 2,

then there exists

R∗j = TrapEvald ({Rj}, {yj})j∈[d]

= R1 ·G−1
(
TrapEvald−1({Rj}, {yj})

)
+ y1

(
TrapEvald−1({Rj}, {yj})

)
.

In this setting, for future convenience, we re-write

R∗j := RjG−1
(
AR∗j−1 +

(
5
j−1
i=1yj

)
G+ yjR∗j−1

)
.

Lemma 29 ( [7]): If there exists Bi = A · Ri + yi · G for
A, Bi ∈ Zn×mq and Ri ∈ Zm×mq with i ∈ [d], then it holds
that: B∗ := Evald (B1, · · · ,Bd ) = ARF + F(y)G where
RF is generated by TrapEvald (R1, · · · ,Rd , y1, · · · , yd ) and
satisfies that ‖RF‖ ≤ m · dδd−1.

Proof: Due to Bi = A · Ri + yj ·G for i ∈ [d]. Hence,

B∗ := Evald (B1, · · · ,Bd )

= Bd ·G−1
(
Evald−1(B1, · · · ,Bd−1)

)
= A

(
RdG−1

(
AR∗d−1 +

(
5d−1
j=1 yj

)
G
)
+ yjR∗d−1

)
+
(
5d
j=1yj

)
G = AR∗d +

(
5d
j=1yj

)
G

Therefore, ‖R∗‖ ≤ ‖Rd ·G−1
(
A ·R∗d−1+

(
5d−1
j=1 yj

)
G
)
‖∞+

|xd | ·‖R∗d−1‖∞ ≤ m ·‖Rd‖∞+1 ·‖Rd−1‖∞ = m ·δ+m(d−
1) · δ = mdδ since G−1(·) ∈ {0, 1}m×m.
Corollary 30: For an injective map S : {0, 1}κ → 2[d]×[ξ ]

that maps an identity id to a subset of the set [d]×[ξ ]. Hence,

for 2 ≤ i ∈ [d], 2 ≤ j ∈ [ξ ], we have

H(id) = B0 +
∑

(i,j)∈S(id)

Bi,ji ·G
−1(B∗i−1,j−1i−1 )

= A · Rid + Fy(id) ·G ∈ Zm×nq , (3.2)

where Rid = Ri,jiG
−1
(
R∗i−1,j−1i−1

)
+ yi

(
R∗i−1,j−1i−1

)
and

Fy(id) = y0 +
∑

(i,j)∈S(id) y1,j1 · · · yd,jd .

C. SINGLE-HOP HOMOMORPHIC IBPRE SCHEME
In this subsection, in order to obtain single-hop homomor-
phic IBPRE scheme, informally, we first assemble the IBE
scheme of Yamada [7] into PRE scheme [11], then, armed
with our GPV-style key-switching mechanism, we construct
IBPRE scheme by fully key homomorphic computation [32].
However, we easily find that the above IBPRE scheme only
supports addition homomorphic operation and limited times
multiplication homomorphic operation since the expansion of
noise. Our ultimate goal is to obtain a multi-hop homomor-
phic IBPRE scheme. Hence, we need to tweak the encryption
algorithm and make it support homomorphic (i.e., addition
and multiplication) operation. Inspired by the work of
Li et al. [49], which proposed a multi-bit FHE scheme via
dual Regev scheme. Thus we can work along Li et al.’s
technical line, and construct a homomorphic IBPRE scheme.
Below, we give a detailed description of homomorphic
IBPRE construction.
• (mpk,msk)← IBPRE.Setup(1λ):

1) Samples random matrices B0 ← Zm×nq and
Bι,k ← Zm×nq for (ι, k) ∈ [d, ξ ]. Then, draw a
vector u from distribution Zm×1q ;

2) Invokes the sub-procedure (A ∈ Zm×nq ,TA) ∈
Zm×m ← TrapGen(m, n, q) s.t. the trapdoor TA
satisfies the GM norm ‖TA‖GS = O

√
n log q;

3) Outputs mpk = (A,B0, {Bι,k}(ι,k)∈[d,ξ ],u) and
msk = TA.

Remark 31: Consider the master public key contains a
uniform random parity-check matrix A, random matrix
B0, and a sequence ofBι,k for (ι, k) ∈ [d, ξ ]. The master
secret key is a trapdoor for matrix A.

• skid ← IBPRE.KeyGen(mpk,msk, id):
1) Utilizing a deterministic hash function H : id →

Zm×nq to map each user’s identity id toH(id), then

it holds that

H(id) = B0 +
∑

(i,j)∈S(id)

Bi,ji ·G
−1(B∗i−1,j−1i−1 )

2) Then we associate each identity id with the user-
specific matrix Aid := [A|H(id)] ∈ Zm×2nq ;

3) Picks a vector e ∈ Z2n×1
q , then such that Aid ·

e = u (mod q) ∈ Zm×1q , by the algorithm
SampleLeft(A,H(id),u,TA, σ )→ e;

4) Sets and outputs the private key skid := s =
[1,−eT ] ∈ Z1× (2n+1)

q . Notably, the key observa-
tion is that (u,Aid ) · [1,−eT ]T = 0 (mod q).
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• c ← IBPRE.Enc(mpk, id, µ ∈ {0, 1}): Homomorphic
encryption algorithm with short ciphertexts follows by
Brakerski et al. [45].
1) First samples a uniform random vector r from
{0, 1}m×1, and 1-th standard basis vector t1;

2) Samples a random vector x from Gaussian
distribution χ (2n+1)×1

3) Computes and outputs the encryption c := (u |
Aid )T ·r+µ · (2`q−1t1)+x (mod q) ∈ Z(2n+1)×1

q .
Remark 32: We remark that, in this paper, we tweak the
encryption algorithm and make it support homomorphic
operation. Moreover, if we fully adopt the encryption
algorithm of Li et al. [49], the dimension of ciphertext
will expand, namely that the dimension of ciphertext
will expand from c ∈ Z(2n+1)×1

q to C := µG +
(u,Aid )TR + X (mod q) ∈ Z(2n+1)× (2n+1)`q

q for the
gadget matrix G ∈ Z(2n+1)× (2n+1)`q

q and error matrix
X ∈ χ (2n+1)× (2n+1)`q . To address this issue, we adopt
the technique of Brakerski and Perlman [45] which con-
structs a multi-key fully homomorphic encryption with
short ciphertexts. Actually, the only difference is that the
encryption algorithm [45] is achieved by a fragment of
G rather than the whole G.

• rk (i→j)
← IBPRE.ReKeyGen(mpk, id (j), id (i), skid (i) ):

In single-hop re-encryption setting, without loss of gen-
erality, we first assume the re-encryption from player i to
player j := i+ 1. Hence, at input side, i.e., player i with
the secret key skid (i) := si = (1,−eTi ) ∈ Z1× (2n+1)

q
which corresponds to the user-specific matrix Aid (i) .
Similarly, we can easily obtain the secret key skid (j) :=
sj = (1,−eTj ) of player j at output side, and the user-
specific matrix Aid (j) of player j. Thus, it holds that,
1) Samples a random matrix R(j)

← {−1, 0, 1}m×m

and computes

N(j)
:= (u|Aid (j) )

T
· R(j)

∈ Z(2n+1)×m
q ;

2) Samples a random matrix R(i→j)
←

{−1, 0, 1}m× (2n+1)`q and a random vector zj ←
{−1, 0, 1}1× (2n+1)`q , then computes and outputs
M(i→j)

∈ Z(2n+1)× (2n+1)`q
q , where

M(i→j)
←

[
uT · R(i→j)

+
(
[1,−eTi ] ·G

)
+ zj

AT
id (j)
· R(i→j)

]
;

3) Outputs re-encryption key rk (i→j)
:= K(i→j)

=

(M(i→j),N(j)).
• cid (j) ← ReEnc(mpk, rk (i→j), cid (i) ): For readability,
we rewrite cid (i) (and cid (j) ) as ci (and cj). In order to
achieve the re-encryption, we need to embed the cipher-
text and re-encryption key into NAND gate circuit,
i.e., the re-encryption ciphertext is K · G−1(c) for a re-
encryption key K and the ciphertext c at input side.
1) Samples random vectors r̂ ∈ {0, 1}m×1, and y :=

(y0← χ, y1← χ2n×1)← χ (2n+1)×1;

2) Computes and outputs

cj :=M(i→j)
·G−1(ci)+ N(j)

· r̂+ y ∈ Z(2n+1)×1
q ,

where G−1(ci) ∈ Z(2n+1)`q×1
q .

• Dec(params, skL , cL): There also exist two cases.
- Decryption at input side, computes and outputs the
results of 〈c, s〉 (mod q),

〈c, s〉 := µ · 2`q−1 + sx (mod q),

If noise(s,µ)(c) := ‖sx‖ < q/8, then sets µ = 1
and otherwise sets µ = 0. Outputs µ.

- Decryption at output side, i.e., decrypts the
re-encryption ciphertexts. In this setting, the re-
encryption ciphertext is cj := K(i→j)

· G−1(ci) for
j = i+1, hence the decrypter computes and outputs
the results of 〈cj, sj〉 = µ2`q−1 + noise(sj,µ)(cj)
(mod q), if noise(s,µ)(c) := ‖error‖ ≤ q/8 for
error := x1 − xT2 · ei + y1 − yT2 · ej + zjG−1(ci),
then outputs µ = 1 and otherwise µ = 0.

• IBPRE.Eval(params, id,mpk, c1, · · · , cn): There exist
two types of homomorphic operation. For ciphertexts
c1 and c2 under the same master public key mpk and
identity id , we have that,

- Homomorphic Addition: Add(mpk, id,
c1, c2): Computes and outputs c1 + c2 = (µ1 +

µ2) · (2`q−1t1)+AT (r1+r2)+ (x1+x2) (mod q);
- Homomorphic Multiplication: Mult(mpk, id,
C1, c2): Computes and outputs

C1 ·G−1(c2)

= (µ1G+ (u,Aid )TR1 + X1) ·G−1(c2)

= µ1µ2 · (2`q−1t1)+ µ1(u,Aid )T r2 + µ1x2
+ (u,Aid )TR1 ·G−1(c2)+X1G−1(c2)(mod q)

where C1 = µ1G+ (u,Aid (1) )
TR1 + X1 (mod q)

for a random matrix R1 ∈ {0, 1}m× (2n+1)`q and an
error matrix X1 ∈ χ

(2n+1)× (2n+1)`q .

D. CORRECTNESS
Below, we analyze the bound of homomorphic noise.
Definition 33 ( [45], [46]): If the short ciphertext of dual

GSW scheme is c = µ2`q−1t1+(u,Aid )T ·r+x ∈ Z(2n+1)×1
q ,

along with the secret key s = (1,−eT ) ∈ Z1× (2n+1)
q , random

noise vector x ∈ Z(2n+1)×1
q , and 2`q−1t1 ∈ Z(2n+1)×1

q ,
then the noise of c is the infinity norm of the noise vector:
noise(s,µ)(c) = ‖c − µ2`q−1t1‖∞, i.e., noise(s,µ)(c) =
‖s · (u,Aid )T r+ s · x‖ = ‖0+ s · x‖ ≤ ‖x1 + xT2 · e‖ ≤

q
8 .

Lemma 34: For the ciphertexts c = µ2`q−1t1+ (u,Aid )T ·
r+x ∈ Z(2n+1)×1

q , along with the secret key s = (1,−eT )T ∈
Z2(n+1)×1
q and 2`q−1t1 ∈ Z(2n+1)×1

q , then the noise in nega-
tion, addition and multiplication is bounded as follows:

- Addition: For all messagesµ1,µ2 ∈ {0, 1}, it holds that

noise(s,µ1+µ2)(c1 + c2) ≤ noise(s,µ1)(c1)

+noise(s,µ2)(c2);
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- Multiplication: For all messages µ1, µ2 ∈ {0, 1},
it holds that

noise(s,µ1µ2)(C1G−1(c2)) ≤ µ1 · noise(s,µ2)(c2)

+(2n+ 1)`q · noise(s,µ1)(C1)

for an efficiently computable function G−1 :
Z(2n+1)`q
q → Z2n+1

q . i.e.,

noise(s,µ1µ2)(C1G−1(c2)) ≤ ‖µ1 · (sT x2)

+(sTX1) ·G−1(c2)‖.

We note that, c2 = µ22`q−1t1 + (u,Aid )T r2 + x2
over Z1× (2n+1)

q and C1 = µ1G + (u,Aid )TR1 + X1

over Z(2n+1)× (2n+1)`q
q .

- Negation: For all messages µ ∈ {0, 1}, it holds that

noise(s,1−µ)(2`q−1t1 − c) = noise(s,µ)(c).
Lemma 35: We say the homomorphic IBPRE scheme is

correct at input side if the noise is bounded by E ≤ q
8 .

Proof: Consider the ciphertexts cid (i) and secret key
skid (i) at input side, we hold that

〈cid (i) , skid (i)〉

=
(
(u,Aid (i) )

T
· r+ µ2`q−1t1 + x

)T
·

(
1
−ei

)
≤ µ2`q−1 + noise(si,µ)(ci) (mod q);

If and only if noise(s,µ)(c) := ‖x1−xT2 ·ei‖ ≤ |x1|+|x
T
2 ·ei| ≤

E ≤ q
8 via Lemma 8, we can correctly decrypt.

Definition 36: If the ciphertexts of output side cj :=
M(i→j)

· G−1(ci) + N(j)
· r̂ + y ∈ Z(2n+1)×1

q , along with
the secret key sj = (1,−eTj ) ∈ Z1× (2n+1)

q at the output
side, then the noise of cj is the infinity norm of the noise
vector: noise(sj,µ)(cj) = ‖noise(si,µ)(ci) + yT · sj‖ =
‖noise(si,µ)(ci) + y1 − yT2 · ej‖ ≤ noise(si,µ)(ci) + ‖y1 −
yT2 · ej‖ ≤ noise(si,µ)(ci).
Lemma 37: We say the IBPRE scheme is correct at output

side if the noise is bounded by E ≤ q
8 .

Proof: Consider the ciphertexts cj and secret key skid (j)
at output side, we hold that

〈cj, sj〉 =
(
M(i→j)

·G−1(ci)+ N(j)
· r̂+ y

)T
· sj

=

([uTj R(i→j)
+
(
[1,−eTi ]G

)
+ zj

(Aid (j) )T · R(i→j)

]
·G−1(ci)

+PTj · R
(j)
· r̂+ y

)T
·

(
1
−ej

)
=
(
[1,−eTi ]GG−1(ci)

)
+
(
R(i→j)G−1(ci)

)Tuj
−
(
R(i→j)G−1(ci)

)T (Aid (j)ej)+ zj ·G−1(ci)

+ (y1 − yT2 ej)

= µ · 2`q−1 + x1 − xT2 ei + zjG−1(ci)+ y1 − yT2 ej
≤ µ · 2`q−1 + noise(sj,µ)(cj) (mod q)

If and only if noise(sj,µ)(cj) = ‖x1 − xT2 · ei + y1 −
yT2 · ej + zjG−1(ci)‖ ≤ ‖x1 − xT2 ei‖ + ‖y1 − yT2 ej‖ +
‖zjG−1(ci)‖ ≤ ((2n+ 1)`q)2B ≤

q
4 , outputs µ = 1.

E. SECURITY ANALYSIS
In order to satisfy the work of security proof, we need the
following theorem to address it.
Theorem 38: The above IBPRE scheme is IND-ID-CPA

(semantic) secure assuming the LWEn,m,χ,q is hard.
Proof: We show the security via the following hybrids

games. Let Game0 be the interaction between A and C in
above definition 20.
• Game0: This is identical to the IND-ID-CPA with the
real security game, where the adversary A gets prop-
erly the master public key mpk generated by Setup(·),
uncorrupted secret key skid generated by KeyGen(·),
re-encryption key rk (i→j) generated by ReKeyGen(·),
and an encryption of 0 or 1 computed by Enc(·).
Moreover, in the challenge phase, the challenge cipher-
text is set as c∗ ← Z(2n+1)×1

q if b = 1. Hence,
at the end of the game, A outputs a guess bit b′

for b. Finally, the challenger C sets b′ = b. Hence,
by the definition, the advantage of adversary A is
Adv[A] 1= |Pr[b′ = b]|.

• Game1: This game is identical to Game0 in every-
thing except the generation of the challenge identity
in key extraction queries. Below we sketch this game
and refer the reader to find more details from [7]. The
challenger C first picks y = (y0, {yi,j}(i,j)∈[d]×[ξ ]) as
y0, {yi,j}(i,j)∈[d]×[ξ ] ∈ Zq for (i, j) ∈ [d]× [ξ ]. For future
convenience, we define a function Fy(id) at Corollary 30
which satisfies the following condition

Fy(id∗) = 0
∧

Fy(id1) 6= 0
∧
· · ·

∧
Fy(idQ) 6= 0,

for the challenge identity id∗. The adversary A has
made key extraction queries identity id1, · · · , idQ,
where Q < q. As we show in Lemma 39, it fol-
lows that there exists an adversary A1 with advantage
Adv[A] ≤ Adv[A1]+ δ.

- Game2: This game is identical to Game1 in everything
except the generation of mpk . Considering the distribu-
tions of mpk(

A,AR0 + y0G, {ARi,j + yi,jG}(i,j)∈[d]×[ξ ]
)

and a uniform distribution(
A,B0, {Bi,j}(i,j)∈[d]×[ξ ]

)
are statistical indistinguishable via leftover hash lemma,
where B0, {Bi,j}(i,j)∈[d]×[ξ ]← Zn×mq . Now, we have the
advantage Adv[A1] ≤ Adv[A2]+ δ1.

- Game3: This game is identical to Game2 in everything
except the user-specific matrix Aid . In more detail: for
the user-specific matrix Aid := [A,H(id)] ∈ Zm×2nq ,
where H(id) = A · Rid + Fy(id) · G. If Fy(id) = 0
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and aborts, otherwise, the challenger C samples Âid ←

Zm×2nq , and Aid ≈s Âid by leftover hash lemma.
Namely, it follows that there exists Adv[A2] ≤

Adv[A3]+ δ2.
• Game4: This game is identical to Game3 in every-
thing except: 1). the way of the key extraction queries
are answered and 2). the way of the matrix A is sam-
pled without trapdoor, i.e., A ← Zn×mq . In this game,
the adversary A first makes a key extraction query
KeyGen(·) for an identity id , then, the challenger C
checks whether Fy(id) = 0 and aborts, otherwise, C
computesRid via the functionTrapEval as the definition
of Rid . Hence, we have that [A|H(id)] · e = u for
H(id) = A ·Rid +Fy(id) ·G., i.e., the challenger gener-
ates e ← SampleRight(A,G,Rid ,Fy(id),u,TG, σ ),
as the secret key, then sends e to A. 1

In this argument, we note that identity id of our IBPRE
is generated by SampleLeft with the trapdoor basis TA
of3⊥q (A). Therefore, we say that the output distribution
of SampleRight is indistinguishable from the sample
over Du

(A|H(id)),σ via Rid (Corollary 30) and the choice
of σ 2 by Lemma 11. Namely that the computational dis-
tance is δ3, where δ3 is negligible in λ. Hence, we have
the advantage Adv[A3] ≤ Adv[A4]+ δ3.

• Game5: This game is identical to Game4 in everything
except the method of generating the re-encryption key.
More specially, the adversary can’t check the correct-
ness of re-encryption ciphertext. Considering the re-
encryption key distribution rk (i→j)

= {N(j),M(i→j)
},

the challenger first change the way of the generation of
N(j) by sampling from the distribution Z(2n+1)×m

q rather
than by computing AT

id (j)
· R(j); secondly, the challenger

change the way of the generation ofM(i→j) by sampling
from the distribution Z(2n+1)× (2n+1)`q

q rather than by
computing; lastly, the challenger sends rk (i→j) to adver-
sary. Since the vector u is fixed and the user-specific
matrix Aid (i) := (A|H(id (i))) ∈ Zm×2nq is replaced
by unform distribution in Âid ∈ Zm×2nq , then the join
distribution of rk (i→j)( uT

AT
id (j)

)
· R(j),

(uT · R(i→j)
+ [1,−eTi ] ·G+ zj

AT
id (j)
· R(i→j)

)
remains computationally indistinguishable from random
distribution by the LWE assumption. Hence, we can say
that the re-encryption key over Z(2n+1)×((2n+1)`q+m)

q is
formed by the identities from user i and j and secret key
from user i. The ciphertext of re-encryption is distributed
identically as in Game4. Namely, it follows that there
exists Adv[A4] ≤ Adv[A5]+ δ4.

• Game6: This game is the same as Game5 except the
generation of ciphertext ‘‘at input side’’, i.e., in this

1Recall that the secret key generated via e ←

SampleLeft(A,H(id),u,TA, σ ), i.e., the matrix A sampled with a
trapdoor TA s.t. A · e = u.

2Actually, SampleLeft ≈c Du
(A|H (id)),σ

game, the adversary submits the challenged identity id∗

and message µ to Enc oracle, and then, the challenge
ciphertext is generated by assuming the message µ = 0.
Hence, the form of the challenge ciphertext is as follows:

ĉ = (u|Âid )T r+ x+ 0 · 2`q−1t1 (mod q) ∈ Z(2n+1)×1
q

where u is fixed and matrix Âid is sampled uniformly
from Zm×2nq . Hence, utilizing the LWE assumption,
the LWE instance (u|Âid )T r + x is indistinguishable
from uniform distribution c′ ∈ Z(2n+1)×1

q . In this setting,
we have Adv[A5] ≤ Adv[A6]+ δ5.

• Game7: This game is the same as Game6 except the
generation of ciphertext ‘‘at output side’’, i.e., in this
game, the output side ciphertext is generated by invok-
ing the deterministic re-encryption algorithm ReEnc,
i.e., computing

cj :=M(i→j)
·G−1(c′i)+ N(j)

· r̂+ y ∈ Z(2n+1)×1
q .

Thus, the adversary submits the challenged input side
ciphertext c′i to ReEnc oracle, and then, the challenger
samples c̃ from uniform distribution. Utilizing the left-
over hash lemma, we can say c̃ ≈s c′j. Hence, it follows
that there exists Adv[A6] ≤ Adv[A7]+ δ6.
Most importantly, we note that, in Game7, all the ele-
ments of the ciphertext, re-encryption key, secret key and
user-specific matrix are uniformly random and indepen-
dent of the message. Hence, we have Adv[A7] = 1/2.

In summary, putting them together, we have Adv[A] <

Adv[A7] +
∑6

i δi = 1/2 + negl(λ), where δi (i ∈ [6]) is
negligible in λ. That means, the adversary A can break the
IND-ID-CPA-security of our IBPRE scheme with at most
negligible advantage. This completes the proof.

Moreover, in order to finish the security proof, it remains
to show the following Lemma.
Lemma 39 (From [7]): We first define 0(ID) as

0(ID) = Pr
y

[
Fy(id∗) = 0

∧
Fy(id1) 6= 0

∧
· · ·

∧
Fy(idQ) 6= 0

]
for a sequence of identities ID = (id∗, id1, · · · , idQ) ∈
IDQ+1, where the probability is taken over y =

(y0, {yi,j}(i,j)∈[d,ξ ]).
If the above parameters are chosen as specific in Game1,

and for any ID = (id∗, id1, · · · , idQ) s.t., id∗ 6= idi for i ∈
[Q], then there exist a upper bound and a lower bound for
0(ID) are all negligible in λ , i.e.,

1
κ + 1

·
( 1
dλc

)
d ·
(
1−

Q
λc

)
≤ 0(ID) ≤

1
κ + 1

·
( 1
dλc

)
d

where c is constant. Hence, for any PPT adversary A1,
we have Adv[A1] = negl(λ) which implies Adv[A] ≤
Adv[A1]+ negl(λ) (i.e., Game0 ≈c Game1).
The detailed proof of Lemma 39 will be found [7].
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IV. MULTI-HOP HOMOMORPHIC IBPRE
In this section, we describe the construction of the multi-
hop homomorphic IBPRE (mIBPRE). In order to transform
the above single-hop homomorphic IBPRE into multi-hop
homomorphic IBPRE, we still embed the ciphertext and re-
encryption key into NAND gate circuit. Next, we transform
the NAND gate into BP. In simple terms, for length L and
width w, BP contains (L + 1) · w nodes and each node (i, t)
has two fan-out (or edges) p0,t and p1,t where each edge is
associated with a node at next level, i.e., at level i + 1, p0,t
and p1,t are associated with (i+ 1, p0,t (j)) and (i+ 1, p1,t (j))
respectively for t ∈ [L] and i ∈ [w]. BP starts at (1, 1)
node and stops at (i,L) node, namely that (1, 1) :

x
→ (i,L),

x ∈ {0, 1}L−1 is a boolean permutation. Hence, we associate
the initial ciphertext c with the node (1, 1) of the BP, and the
re-encryption key Xvar(t) and G − Xvar(t) to the edges, then
compute theBP on a permutation rk = {Xvar(t),G−Xvar(t)}

L

as input, where we set rk is a sequence of re-encryption key,

i.e., (1, 1) :
rk
→ (1,L). Actually, in our scheme, we first use

the bit-decompose function Bit to decompose the secret key.
Upon encrypting each bit of secret key, we collect all of these
encrypted bits and assemble them into the re-encryption rk
by using the Extend algorithm. We stress that rk is the sum
of bit encryption of secret key by Extend algorithm.

A. OUR CONSTRUCTION: MULTI-HOP IBPRE VIA BP
In this subsection, we also adopt the same Setup, KeyGen,
Enc and Eval algorithms and do not repeat here. We just
focus on the ReKeyGen, ReEnc, and Dec algorithms. More
details are as follows:
• rk (i→j)

← ReKeyGen(params,mpk, ski, id (i), id (j)):
In order to generate re-encryption key rk (i→j) which is
from player Pi to Pj, we encrypt the input side secret
key (i.e., player Pi) in bit-by-bit manner according to
the GSW encryption algorithm, perform the following
steps:
1) Firstly, samples a random matrix R(i→j) from
{−1, 0, 1}m× (2n+1)`q and a random vector zj ∈
{−1, 0, 1}1× (2n+1)`q , then computes

−→
S [i] =

[
uTR(i→j)

+ Bitk (ski)G+ zj
Aid (j) · R(i→j)

]
,

where Bit is bit decompose operation and Bitk (ski)
denotes the k-th bit of sk for k ∈ [2n · `q];

2) Constructs a concatenation matrix
−→
S =

[
−→
S [1], · · · ,

−→
S [`q]] by reassembling all of

−→
S [i];

3) Invokes the Extend algorithm of Peikert and
Waters [42] to generate the matrix M(i→j)

:=

Extend
(−→
S , (u,Aid (i) ,Aid (j) )

)
∈ Z(2n+1)× (2n+1)`q

q

which satisfies M(i→j)
=

∑`q
i
−→
S [i]. Actually,

M(i→j) can be viewed as

M(i→j)
=

[
uTR(i→j)

+ [1,−eTi ]G+ zj
AT
id (j)
· R(i→j)

]
;

4) Samples a random matrix R(j)
← {0, 1}m×m and

computes N(j)
:= (u | Aid (j) )

T
· R(j)

∈ Z(2n+1)×m
q .

We stress that, (u | Aid (j) ) ·
( 1
−ej

)
= 0.

5) Outputs the re-encryption key rk (i→j)
:= K(i→j)

=

(M(i→j),N(j)).
• cL ← ReEnc

(
(rk (0→1), · · · , rk (L−1→L)), c0

)
: In order

to achieve multi-hop re-encryption by BP, i.e., we con-
vert the augmented NAND circuits into BP. Hence,
we proceed a BP homomorphically as follows,
1) Initiation: For readability, without the loss of

generality, we only consider K(i→j)
:= M(i→j).

We also omit the subscript, and abbreviate rk (i→j)

to rkj (K(i→j) to Kj), i.e., rk1 := K1, · · · , rkL :=
KL . Then, we set i = 0, c0 = 2`q−1t1, and the
state vector −→w 0 := (2`q−1t1, 0, 0, 0, 0), where
we denote t1 := [1, 0, · · · , 0]T ∈ Z1×nN

q .
Next, we initiate the on-the-fly variant of Bar-
rington’s theorem BPOTFPredC and invoke the
predecessor function PredC which takes the label i
of a gate as input and outputs the next layer
ofBP, i.e.,

((
γt,1,0, · · · , γt,5,0

)
,
(
γt,1,1, · · · , γt,5,1

)
,

var(t)
)
. We stress that BPOTFPredC was denoted

by Brakerski and Perlman [45], we adopt this
definition and re-present it in Preliminaries.
In more detail:

2) Iterative Step: For every step t = 1, · · · ,L it
proceeds as follows:
1). Computes the constants γt,i,0 and γt,i,1 by run-
ning BPOTFPredC to obtain the next layer of the
branching programs((
γt,1,0, · · · , γt,5,0

)
,
(
γt,1,1, · · · , γt,5,1

)
, var(t)

)
2). For every i = 1, · · · , 5 it homomorphically
computes the encryption of next state:

wt,i = (G−Kvat(t)) ·G−1(wt−1,γt,i,0 )

+Kvat(t) ·G−1(wt−1,γt,i,1 )

where Kvar(t) :=
∑−→

S var(t) is the sum encryp-
tion of the secret key

−→
S var(t). Finally, outputs the

ciphertext cL := wL,1.
• Dec(params, skL , cL): There also exist two cases.

- Decryption at input side, which is the same as
single-hop homomorphic IBPRE and outputs the
results of 〈c, s〉 (mod q),

〈c, s〉 := µ · 2`q−1 + sx (mod q),

If noises,µ(c) := ‖sx‖ < q/8, then sets µ = 1 and
otherwise sets µ = 0. Outputs µ.

- Decryption at output side, L-level decryption algo-
rithm, after L-hop re-encryption from player i ∈ [L]
to player j ≥ i + 1. In this setting, re-encryption
ciphertext is cj := K(i→j)

·G−1(ci), hence, computes
and outputs the results of 〈cj, sj〉 (mod q). More
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concretely, after L-hop re-encryption from player
i := L − 1 to player j := L, the re-encryption
ciphertext is cL := K((L−1)→L)

·G−1(c(L−1)). Hence
the decrypter computes and outputs the results of
〈cL , sL〉 (mod q), i.e., 〈cL , sL〉 = µ2`q−1 + error,
if ‖error‖ ≤ 1/8, then outputs µ = 1 and other-
wise µ = 0.

B. CORRECTNESS AND SECURITY
In this subsection, we analyze the correctness and security of
multi-hop homomorphic IBPRE. We note that, The correct-
ness of decryption at input side can be obtained easily from
the single-hop homomorphic IBPRE, i.e., Lemma 35. Thus
we omit further details. Below, we analyze the correctness of
decryption at output side.
Lemma 40 (Multi-Hop Correctness): We can say the

multi-hop homomorphic IBPRE scheme with short cipher-
texts is correct after L-hop along with t = 0, 1, · · · ,L
and i ∈ [5] if the following holds noiseskL ,vt [i](wt,i) <

2t((n+ 1)`q)2 · B.
Proof: We first consider noise(w0,i) = 0, since we

setup −→w0 is just a messages without noise. Assume that the
hypothesis holds for t ′ < t , then it holds that for t ′ = t − 1,
namely that noiseskt−1,vt [i](wt−1,γt,i ) = (t−1)· ((2n+1)`q)2 ·
B. Then, we prove it by induction on step t , by definition of
wt , we obtain:

noiseskL ,vt [i](wt,i)

= noiseskL ,vt [i]
(
(G− Xvat(t)) ·G−1(wt−1,γt,i,0 )

+Kvat(t) ·G−1(wt−1,γt,i,1 )
)

= (1− xvat(t)) · noiseskL ,vt [i]
(
wt−1,γt,i,0

)
+ 2(2n+ 1)`q · noiseskL ,rkvar(t)

(
Kvat(t)

)
+ xvat(t) · noiseskL ,vt [i]

(
wt−1,γt,i,1

)
≤ max

{
noiseskL ,vt [i]

(
wt−1,γt,i,0

)
,

noiseskL ,vt [i]
(
wt−1,γt,i,1

)}
+ 2(2n+ 1)`q · noiseskL ,rkvar(t)

(
Kvat(t)

)
≤ 2(t − 1)((2n+ 1)`q)2 · B+ 2((2n+ 1)`q)2 · B

≤ 2t((2n+ 1)`q)2 · B

Moreover, after the L-hop iteration, and combining it with
Lemma 40, we have that noiseskL ,vL [1](wL,1) < L · 2t((2n+
1)`q)2 · B <

q
8 , where L = 4d and d is circuit depth. This

completes the proof.
Theorem 41 (Security): The multi-hop homomorphic

IBPRE is IND-ID-CPA-secure if the single-hop homo-
morphic IBPRE under decision-LWE assumption is
IND-ID-CPA-secure.

Proof: The proof is the same as the proof of
single-hop IBPRE except that we need repeat L times
Game1, · · · ,Game5. Below, we sketch the proof.

1) Firstly, for each hop, the challenger C first picks y =
(y0, {yi,j}(i,j)∈[d]×[ξ ]) as y0, {yi,j}(i,j)∈[d]×[ξ ] ∈ Zq for
(i, j) ∈ [d] × [ξ ]. For future convenience, we define
a function Fy(id) at Corollary 30 and Fy(id) satisfying
the following condition

Fy(id∗) = 0
∧

Fy(id1) 6= 0
∧
· · ·

∧
Fy(idQ) 6= 0,

for the challenge identity id∗ and A has made key
extraction queries identity id1, · · · , idQ, Q < q.

2) Secondly, as described inGame2 andGame3, for each
hop, we consider the way of generation of mpk .

- Considering the distributions of mpk
(
A,AR0 +

y0G, {ARi,j + yi,jG}(i,j)∈[d]×[ξ ]
)
and a uniform

distribution
(
A,B0, {Bi,j}(i,j)∈[d]×[ξ ]

)
are statisti-

cally indistinguishable via leftover hash lemma,
where B0, {Bi,j}(i,j)∈[d]×[ξ ]← Zn×mq .

- Consider the user-specific matrix [A,H(id)],
where H(id) = ARid + Fy(id)G. If Fy(id) = 0
and aborts, otherwise, we apply the leftover hash
lemma to show that the user-specific matrix is
indistinguishable from a uniform over Zm×2nq .

3) Thirdly, as described in Game4, for each hop, the chal-
lenger C first checks whether Fy(id) = 0 and
aborts, otherwise, C computes Rid via the function
TrapEval as the definition of Rid , then, C gener-
ates e ← SampleRight(A,G,Rid ,Fy(id),u,TG, σ )
as the secret key. We argue that the output dis-
tribution of SampleRight is indistinguishable from
the sample over Du

(A|H(id)),σ via Rid (Corollary 30)
and the choice of σ by Lemma 11. We stress that,
SampleLeft ≈c Du

(A|H(id)),σ .
4) Fourthly, for each hop, the challenger changes the way

of the generation of M(i→j) by sampling from the dis-
tribution Z(2n+1)× (2n+1)`q

q rather than by computing.
In this setting, we use LWE assumption to show that
the rk is indistinguishable from a uniform.

5) Fifthly, for each hop, we use the leftover hash lemma
to show that the original ciphertext c = (u,Aid )T · r+
µ(2`q−1t1) + x (mod q) at input side is indistinguish-
able from a uniform vector over Z(2n+1)×1

q ;
6) Lastly, after 1-hop re-encryption, we have the cipher-

texts c2 := X(1→2)
·G−1(c1) at output side. Hence we

use the leftover hash lemma to show that c2 is indistin-
guishable from a uniform vector over Z(2n+1)×1

q . Simi-
larly, c3 := X(2→3)

·G−1(c2) is indistinguishable from
a uniform. Repeating L times in this way, i.e., after
L-hop re-encryption, we get the ciphertext cL :=
wL,1 which is indistinguishable from a uniform vector
over Z(2n+1)×1

q .
This completes the sketch of the proof.

V. CONCLUSION
In this paper, we propose an efficientmulti-hop homomorphic
IBPRE scheme via BP. We give a comparison result of
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TABLE 2. The parameters comparison of some important PRE, IBE IBPRE and ours scheme.

Chandran et al.’s PRE scheme [11], Singh et al.’s IBPRE
scheme [14], Yamada’s IBE scheme [7] and ours scheme
in Table 2, where the parameters m ≥ n log q + λ, n are
the dimensions of the vectors, t is the length of encrypted
messages, and `q = dlog qe.

As is shown in Table 2, the length of the secret key,
ciphertext, and re-encryption key of our scheme are better
than Singh et al.’s IBPRE scheme [14]. Importantly, our
scheme supports homomorphic operation and multi-hop re-
encryption. Moreover, the parameters of our scheme are the
same as the scheme of those of Yamada’s scheme [7] except
the re-encryption key. We stress that there are many follow-
up works and optimizations of lattice-based PRE. Hence we
just compare some closely related works with our scheme.
We leave many works for future.
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